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Abstract: Melatonin (MLT) is a powerful chronobiotic hormone that controls a multitude of circadian
rhythms at several levels and, in recent times, has garnered considerable attention both from academia
and industry. In several studies, MLT has been discussed as a potent neuroprotectant, anti-apoptotic,
anti-inflammatory, and antioxidative agent with no serious undesired side effects. These characteristics
raise hopes that it could be used in humans for central nervous system (CNS)-related disorders.
MLT is mainly secreted in the mammalian pineal gland during the dark phase, and it is associated
with circadian rhythms. However, the production of MLT is not only restricted to the pineal gland;
it also occurs in the retina, Harderian glands, gut, ovary, testes, bone marrow, and lens. Although most
studies are limited to investigating the role of MLT in the CNS and related disorders, we explored a
considerable amount of the existing literature. The objectives of this comprehensive review were
to evaluate the impact of MLT on the CNS from the published literature, specifically to address
the biological functions and potential mechanism of action of MLT in the CNS. We document the
effectiveness of MLT in various animal models of brain injury and its curative effects in humans.
Furthermore, this review discusses the synthesis, biology, function, and role of MLT in brain damage,
and as a neuroprotective, antioxidative, anti-inflammatory, and anticancer agent through a collection
of experimental evidence. Finally, it focuses on the effect of MLT on several neurological diseases,
particularly CNS-related injuries.

Keywords: MLT; central nervous system; synthesis; brain damage; neuroprotection; antioxidative;
anti-inflammatory; anticancer

1. Introduction

The brain and spinal cord are both critical constitutes of the central nervous system (CNS). Injury
or disease can lead to the degeneration of the CNS, including loss of homeostasis [1]. CNS injuries cause
illness and death, including traumatic brain injury (TBI) and spinal cord injury (SCI), and such injuries
eventually lead to lose of body functions [1–4]. CNS injuries ultimately cause blood–brain barrier (BBB)
and blood spinal cord barrier disruption, mitochondrial dysfunction, neurotransmitter accumulation,
and apoptosis. These defects follow the initial primary mechanical trauma [5,6]. The occurrence
of CNS cancers has been increased between 1990 and 2016, and it affects both children and adults;
CNS cancers cause illness and death of brain cancer worldwide [7]. The highest occurrence of CNS
cancer was observed in East Asia. Most brain tumors are not linked with any known risk factors;
however, one of the most significant risk factors for CNS cancer is exposure to radiation. Mostly,
children are vulnerable to brain cancer during brain radiation treatment, as part of their treatment for
leukemia. People with weakened immune systems are more prone to developing lymphomas of the
brain or spinal cord. Besides these factors, other risk factors include industrial exposures, aspirin use,

Cancers 2020, 12, 1567; doi:10.3390/cancers12061567 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0001-9924-8433
https://orcid.org/0000-0003-4402-7064
https://orcid.org/0000-0003-1232-5307
http://dx.doi.org/10.3390/cancers12061567
http://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/12/6/1567?type=check_update&version=2


Cancers 2020, 12, 1567 2 of 25

cell phone radiation, low-frequency magnetic fields, hormonal factors and hormonal imbalance, use of
enormous pesticides in agriculture, and dietary factors [8,9].

Melatonin (MLT) is primarily secreted by the pineal gland from the essential amino acid tryptophan.
Tryptophan is involved in both hydroxylation and decarboxylation processes for the synthesis of MLT.
The synthesis of MLT is mainly influenced by the dark and light cycle. MLT is also produced by
other organs, including the liver, stomach, bone marrow cells, lymphocytes, muscle, spleen, thymus,
heart, intestine, and epithelial cells [10]. Recent studies have investigated its unique role in the CNS
as a free-radical scavenger, neuroprotective, anti-inflammatory, and anti-apoptotic agent. MLT is
produced in several parts of the mammalian body and regulates the chronobiotic actions of the circadian
pacemaker and peripheral organs. Additionally, the function of MLT is not only restricted to circulation
but also extends to direct effects in the CNS. MLT is a highly resourceful, multifaceted molecule and a
pleiotropic regulator that orchestrates countless physiological functions [11–14]. MLT regulates various
functions through MT1 and MT2, G protein-coupled MLT receptors, which are widely distributed
within the brain [15–17]. MLT plays a major role in a variety of mechanisms, including the elimination
of reactive oxygen species (ROS) and the reduction of the formation of ROS and reactive nitrogen species
(RNS) [11,18,19]. MLT protects mitochondria by preventing excessive electron leakage and damage to
components of the electron transport chain [20–26]. MLT controls high-grade inflammation, such as
overactivation of innate immunity, loss of circadian control of mitochondria, enhanced free-radical
formation, inflammasome activation, and overproduction of pro-inflammatory cytokines (such as
IL-1β) due to alteration in the circadian oscillator function [27]. Although MLT exhibits various
beneficial activities in the body, a lack of secretion or production of MLT or MLT receptor expression,
and decreases in MLT levels, lead to numerous dysfunctions and diseases [28]. This review aims at
providing a detailed overview of the current state of knowledge related to the role of MLT in the CNS
and CNS related cancers and also at summarizing the protective role of MLT against various CNS
related diseases.

2. Synthesis, Biology, and Functions of MLT

MLT was first isolated in 1958, by Lerner, from the extract of bovine pineal tissue [29,30]. MLT is
an ancient molecule and phylogenetically old molecule with a life span of approximately 2.5–3.0 billion
years. Initially, MLT function was described as a free-radical scavenger. MLT presumably evolved
in bacteria, and structures were conserved in all organisms. The extensive distribution of MLT in
various biological systems indicates that the chemical is a prehistoric molecule that has been conserved
throughout the evolution of all organisms [31]

The biological functions of MLT vary from species to species, depending on necessity. The hormonal
functions of MLT regulate various tasks, such as reproductive activities, facilitation of sleep physiology,
immunomodulation, promotion of stem cell proliferation, anti-inflammation, and modulation of
aging [32]. MLT can modulate various physiologic processes, including mood regulation, the circadian
clock in our body, anxiety, appetite, sleep, cardiac functions, and immunological responses. Moreover,
MLT has been widely available in various foods, such as fungi, plants products, eggs, and fish.
Particularly within plant foods, fruits and nuts have the highest content of MLT. Rich sources of MLT are
essential for normal biological functions and the exhibition of various functions, including antioxidant,
antidiabetic, anti-inflammatory, anti-obese, immunity booster, neuroprotective, and cardiovascular
protective, anticancer, and anti-aging activities.

MLT regulates various functions through the activation of G-protein-coupled receptors, such as
MT1, MT2, and MT3. In mammals, MLT receptors are found in the brain and some peripheral
organs [11,33,34]. MLT, which plays a critical role as a neuroprotectant and antioxidant in various
physiological conditions, is primarily synthesized by using tryptophan as a precursor. The conversion of
tryptophan into MLT goes through several intermediate steps, such as hydroxylation and decarboxylation,
after which it is converted into serotonin. Serotonin is then acetylated by N-acetyltransferase to form
N-acetyl serotonin (NAS). Finally, NAS is converted to N-acetyl-5-methoxytryptamine (MLT) by enzyme
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hydroxyindole-O-methyltransferase/acetylserotonin methyltransferase [35,36]. The synthesis of MLT is
mainly influenced by the dark and light cycle (Figure 1). MLT is mainly produced by the pineal gland
and also other organs involved to produce MLT such as gastrointestinal tract, retina, tongue, skin, blood
platelets, and bone marrow cells [37]. The majority of animal studies suggests that the duration of MLT
synthesis is mostly influenced by the duration of the night, and the level of the hormone is high in dark and
slowly decreases in the daytime. Pineal substances play a critical role in brain tumor growth. Many cells
can produce MLT and NAS, including astrocytes [38], macrophages [39], fibroblasts, and skin cells [40].
The synthesis of MLT in astrocytes is mainly governed by the availability of serotonin and apolipoprotein.
MLT is produced by extra pineal tissues, pineal glands, and other organs, such as Harderian gland, retina,
bone marrow, gut, platelets, glial cells, astrocytes, pancreas, kidneys, and lymphocytes. Pinealocytes
are the main source of MLT in blood and CNS, and MLT synthesis is well documented in animals and
plants [41,42]. The rate of synthesis of MLT merely depends on the circadian and seasonal action of
tryptophan, serotonin, arylalkylamine N-acetyltransferase, and tryptophan hydroxylase [30]. MLT serves
as an immune enhancer, anti-inflammatory agent [43], free-radical scavenger [44], human mood- and
behavior-modulating agent [45], and anticancer agent [46,47]. It is also involved in the oral cavity [48],
traumatic CNS injury [2], an anti-angiogenic molecule in breast tumors [49], and sleep regulation [50].
MLT activity is mainly regulated and governed by MT1 and MT2, which are widely distributed in CNS
and primarily found in suprachiasmatic nuclei in the hypothalamus of the mammalian cells.
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The molecular activity of MLT was regulated by two high-affinity G protein–coupled receptors,
termed MT1 and MT2, to exert beneficial actions in sleep and circadian abnormality, mood disorders,
learning and memory, neuroprotection, drug abuse, and cancer. The clear understanding of the role
of MLT receptors involved in various functions in the central nervous system led to the discovery
of a novel class of MLT agonists for treating various type of diseases, such as insomnia, circadian
rhythms, mood disorders, and cancer. MLT activates MLT receptors MT1 and MT2 in the CNS, to
signal photoperiodic information and regulate physiological functions. Exogenous MLT modulates
processes and responses in the central nervous system via activation of the MT1 and/or MT2. Further
MLT activation of MT1 receptors decreases breast and prostate cancer cell growth [51]. MLT regulates
various signaling molecules such as forskolin-stimulated cAMP, protein kinase A signaling, and CREB
phosphorylation. The MT1 receptor also increases phosphorylation of mitogen-activated protein kinase
1/2 and extracellular signal–regulated kinase 1/2, as well as increasing potassium conductance [52].
MLT interacts with its surface receptors to activate intracellular signaling cascades, and it leads to
the activation of transcription factors that cause changes to the DNA in a manner that enhances
apoptosis of cancer/pre-cancer cells and reduces angiogenesis, which is necessary for tumor growth and
metastasis. On the other hand, MLT could change the DNA to activate the upregulation of antioxidant
defenses, downregulation of pro-oxidants, and modifications to immune responses that alter the
microenvironment of cancer cells in a manner that reduces cancer progression and metastasis [53].
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The most important activities of MLT, such as antioxidant and anti-inflammatory activities, play a
critical oncostatic role by activating the MLT receptors. The activation of MLT receptors induces the
activation of a wide range of transcription factors and signaling pathways. For example, activation of
MT1 receptors by MLT inhibits stress-mediated cytochrome c release, which plays a crucial role in the
prevention of neurodegeneration associated with mitochondrial cytochrome c release and downstream
caspase activation [54]. Activation of MT3 receptors by MLT selectively causes cytotoxicity and
promotes apoptosis in tumor cells [55].

3. Role of MLT in Brain and Spinal Cord Injuries

In the USA alone, 2.5 million people are afflicted with TBI, which is a devastating neurological
deficit. As a result of TBI, various pathological and physiological damage was observed, such as
contusion, vascular injury, axon shearing, immediate and irreversible disruption of neuronal cell
bodies, and most symptomatic occurrences such as respiratory depression, apnea seizures, ischemia,
hypoxia, parenchymal inflammation, and oxidative damage to lipids and elevated level of nitric
oxide (NO) production [2]. The secondary injury is a result of the primary injury that constitutes
a complex cascade of metabolic, physiologic, and biochemical factors that cause progressive tissue
damage [6]. The primary and secondary mechanisms include complex consequences of the activation of
pro-inflammatory cytokines, cerebral edema, upregulation of NF-κβ, disruption of BBB, and oxidative
stress. SCI includes primary and secondary injury cascades that are a result of the generation of free
radicals and oxidative or nitro-oxidative damage [56]. CNS injuries, including TBI and SCI, constitute
a major cause of morbidity and mortality [2–4] and cause loss of body functions. As a result of TBI and
SCI, several impairments occur in the CNS, including mitochondrial dysfunction, neurotransmitter
accumulation, BBB and blood spinal cord barrier disruption, apoptosis, excitotoxic damage, and the
initiation of inflammatory and immune processes [5,6].

As a result of secondary injury, excessive levels of ROS and RNS are generated, and this causes
damage to macromolecules and the cell membrane and impairments in ionic homeostasis. The ionic
pump is highly sensitive to ROS and LPO. Consequently, it increases the intracellular concentration of
Ca2+, which is the primary cause of excitotoxicity, and it also causes overwhelming effects, including
the production of free radicals. These metabolic alterations induce overactivation of phospholipases,
calpains, protein kinases, and endonucleases [57,58].

MLT, a naturally occurring hormone, possesses various salient features, including low toxicity [59],
the ability to cross the blood–brain barrier [60], and receptors that bind MLT in the CNS [61]. Preclinical
studies demonstrated that MLT reduces injuries, symptoms, and functional aspects of various CNS
disorders. MLT plays a critical role in brain damage; the brain uses a large amount of the total
oxygen (O2) inhaled, even though the organ accounts for only 2% of the body weight. Generally,
the antioxidative defense system in the brain is fragile and not equipped to overcome oxidative stress.
MLT can cross the BBB. In contrast, typical free-radical scavengers such as vitamin C and E are not able
to enter the brain, and these do not protect against acute oxidative/nitrosative stress in the brain [62].
Neural structures of the brain can uptake MLT rapidly, and the CNS can utilize high concentrations of
MLT to protect against oxidative-stress-induced damage [63,64]. Several CNS disorder model studies
including Parkinsonism, Alzheimer’s and Huntington’s disease, amyotrophic lateral sclerosis, neural
trauma, and ischemia/reperfusion (I/R) injury demonstrated that MLT can protect the brain from
various toxicities, such as chemical and neurotoxicity [43,65–68]. MLT rescues free-radical-induced
brain damage I/R injury [66]. MLT protects not only the CNS but also against damage induced by free
radicals in other organs. MLT protects against neural morphological loss and functional destruction
and also provides a cerebral-protective effect by inducing upregulation of anti-apoptotic factors such
as Bcl-2 and reduction of the pro-apoptotic factor Bax in ischemic injury [69,70]. Mitochondria is the
main organelle for energy source, and if impaired, it leads to various neurodegenerative diseases.
Therefore, maintaining mitochondrial homeostasis is critical for the normal physiological function of
the cells. MLT can inhibit the release of cytochrome c and the loss of membrane potential; maintenance
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of cellular bio-energetic homeostasis and its dissipation leads to the formation of mPTP in stroke.
MLT act as an anti-inflammatory agent by regulating the levels of NO, pro-inflammatory cytokines,
and various enzymes like cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in
various neurodegenerative diseases [71]. Furthermore, MLT can dissolve blood clots as a protective
agent with tissue plasminogen-activator. MLT protects against acute and chronic cerebral ischemia due
to disruptions of BBB and edema formation. MLT is a good free-radical scavenger that is effectively
used as an anti-permeability agent to regulate membrane permeability and edema formation, and it
can preserve the neural morphology, function, and integrity of the brain [72].

Primary injury of SCI is responsible for physical impacts such as alteration in cellular and
molecular cascade of events, and it is also involved in free-radical-induced cell death, glutamate
excitotoxicity, autoimmune response, vascular events, apoptosis, inflammation including release of
pro-inflammatory cytokines IL-1β and TNF-α, and microglial activation [73]. The severity of SCI
depends on a series of events including cellular, molecular, and biochemical reactions; tissue damage;
calcium ion influx; oxidation of lipids; myelin degradation; and vascular changes inflammatory reaction
and autoimmune response. Furthermore, SCI causes tissue damage as a result of activation of various
proteases, including lipases, endonucleases, and metalloproteinases [74]. Excessive ROS production
induces damage of various macromolecules, including unsaturated fats, lipids, proteins, and DNA,
and it also induces secondary injury. Various beneficial effects of MLT are shown in Figure 2.
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4. MLT: Antioxidant, Neuroprotectant, and Immunomodulatory Agent

Antioxidant, neuroprotectant, and immunomodulation are associated processes and linked with
each other. Particularly, oxidative stress is the source of all dysfunctions. MLT’s natural molecules
serve as antioxidant, neuroprotectant, and immunomodulator. As a result of mechanical injury,
the CNS develops devastating injury effects, such as neuroinflammatory responses, including the
influx of monocytes, activation of microglial cells, and activation of pro-inflammatory cytokines,
such as IL-1α, IL-1β, IL-6, TNF-α, interferon-γ, and intracellular adhesion molecules. These events
facilitate the induction of nitro-oxidative stress, inhibition of neurodegeneration, and also exacerbate
cerebral damage and inflammation [76,77]. MLT has a potential role in deactivating the release of
pro-inflammatory cytokines in TBI [43]. An in vivo rat model suggested that the administration
of MLT decreases brain edema, BBB permeability, and ICP at 72 h after TBI, at both low and high
doses [78]. A Sprague–Dawley rat model of TBI suggested that administration of MLT either alone
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(200 mg/kg) or in combination with uridine, reduced posttraumatic edema in various brain regions
of the male rat [79]. MLT inhibits mRNA expression of NF-κβ and decreases AP-1 levels to half
the basal level, both of which are involved in different pathological conditions, including TBI and
ischemia [80,81]. As a result, TBI increases BBB permeability, thus leading to astrocytic dysfunction,
inflammation-related mechanisms, and permeability to endogenous proteins, which may cause brain
dysfunction [82,83]. MLT acts as a good neuroprotectant by balancing the level of pro-oxidants
and antioxidants. For example, MLT regulates the level of glutathione (GSH) and lipid peroxide
levels [84]. Daily administration of MLT increases superoxide dismutase (SOD) and glutathione
peroxidase (GPX) activity, and it also decreases the malondialdehyde (MDA) level significantly within
72 h, thus protecting cerebral tissue against oxidative stress [78]. A study demonstrated that, as a
result of SCI injury, pro-inflammatory cytokines such as interleukin 1 (IL-1α) and IL-1β are activated
within a few hours in SCI [85]. Cytokines such as IL-6 and TNF-α play a critical role in pathogenesis
of pro-inflammatory damage and immune and vascular responses, respectively [86]. Activation of
the NF-κβ signaling pathway plays a crucial role in inflammation and is a pathophysiologic cause
of spinal cord inflammatory response [86]. After 24 h, SCI injury causes an increased expression
of the p65 subunit protein in the nuclear fractions of the spinal cord tissue [87]. MLT serve as a
neuroprotectant by suppressing the expression of NF-κβ-regulated adhesion molecules and reducing
the production of pro-inflammatory cytokines [88]; it also prevents neuronal death by improving
the recovery function in injured neuronal cells [89]. Animal model studies demonstrated that MLT
can potentially reduce the activation of inflammation and tissue injury [90,91]. An experimental
study suggests that upregulation of NO, iNOS and increased mRNA expression was observed in
damaged regions of the spinal cord in three days after injury, compared with the control group.
An animal model study shows evidence that MLT could significantly reduce iNOS expression and NO
production [92], whereas phosphorylation of stress-activated protein kinase ERK1/2 was significantly
increased. Conversely, administration of 50 mg/kg MLT post spinal cord trauma significantly reduced
activation of mitogen-activated protein kinases (MAPKs) p38, JNK, and ERK1/2 [93,94]. Ersahin et al.
reported that MDA levels were significantly increased, and GSH levels were significantly reduced in
the SCI group of animals, whereas administration of MLT (10 mg/kg) reduced the level of MDA and
restored the decreased level of GSH in spinal cord tissue [89]. An increased level of endogenous colony
stimulating factor decreased the level of oxidants in TBI; MLT was also an effective neuroprotective
agent to treat Alzheimer-type dementia, which is a progressive fatal neurodegenerative disorder [95].

Oxidative stress is a condition of the imbalance between the levels of pro- and antioxidants. ROS are
biphasic and contribute to beneficial effects such as cell proliferation, differentiation, and survival at the
physiological level. However, their excessive production leads to adverse effects, including apoptotic
and necrotic death of cells. ROS play an important role as secondary messengers in many intracellular
signaling pathways, and also as mediators of oxidative damage and inflammation [96]. Excessive
levels of ROS cause LPO, protein oxidation, and DNA damage and also increase the pro-inflammatory
response [97,98]. Most of the neurological disorders include the oxidative-stress-mediated disease
pathology, which can counteract the body’s antioxidant enzyme battery that scavenges the excessive
ROS and maintains the cells under physiological conditions [99]. Oxidative stress is a major cause of
the development of neurodegenerative diseases such as Alzheimer′s disease and Parkinsonism, as
well as neurological conditions, including epileptic seizures, stroke, brain damage, and neurotrauma,
due to the excessive generation of ROS and low antioxidative potential of the neuronal cells. Oxidative
stress causes pathogenesis of CNS injuries such as stroke, TBI, and SCI. The CNS demands a high
level of oxygen, and the unsaturated lipid contents of CNS can easily react with free radicals. When
an excessive level of oxidative stress occurs in the CNS cells, lipids are more prevalent and easily
susceptible to oxidative stress; oxidation of lipids releases 4-hydroxy-2-nonenal (4-HNE) and acrolein.
This oxidative stress renders the CNS as a target tissue for the onset and pathogenesis of several CNS
disorders [100,101]. Nuclear factor erythroid-2-related factor 2 (Nrf2) found in the CNS regulates the
antioxidant response and is involved in a central role in the astrocyte-mediated protection of neurons
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from ROS [102]. MLT has a remarkable antioxidant property, and its production rate determines the
susceptibility to a disease. MLT not only acts as free radical scavenger but also has antioxidative
potential and stimulates the synthesis of antioxidative enzymes.

A study has revealed the antioxidative effects [103], while another showed the
free-radical-scavenging ability of MLT [104]. Direct administration of MLT exhibited detoxification
of OH and toxic oxygen-related peroxyl radical LOOP [105,106]. MLT administration is effective in
various oxidative-stress-induced neurodegenerative diseases [107]. MLT exhibited a neuroprotective
effect against sodium-arsenite-induced oxidative stress in the nigrostriatal dopaminergic system of
the rat brain. Similarly, a study reported that MLT protects arsenite-induced peripheral neurotoxicity
by using dorsal root ganglion explants [108,109]. Administration of sodium arsenite (5 mg/kg/day)
increased the number of apoptotic germ cells and the levels of the biomarker of LPO and MDA, while
reducing SOD, CAT, and GPx activities; sodium arsenite also induced testicular apoptosis and oxidative
stress [110]. A major oxidative stress is caused by an abundance of polyunsaturated fatty acids (PUFA).
To prove that MLT has a role in antioxidative property, an in vivo study demonstrated that MLT
inhibited arsenite-mediated lipid breakdown in a concentration-dependent manner in rat brain [111].
Furthermore, MLT acted as an anti-genotoxic agent against human blood cells, protecting them from
the exposure of the pro-oxidant actions of arsenite [112]. All of these studies clearly indicated that
MLT could protect or prevent arsenite-induced oxidative stress, and MLT seems to be a superior
therapeutic tool to reduce oxidative stress caused by arsenite in the CNS. MLT could neutralize LOOP
effectively and is more effective than water-soluble vitamin E/Trolox in neutralizing LOOP [106].
MLT is capable of decreasing oxidative damage to membrane lipids [113], protein [114], and DNA [115].
MLT can increase the activities of the brain and liver mitochondrial respiratory complexes I and IV
and also prevent the reduction in the activity of complexes I and IV due to mitochondrial damage
and induced oxidative stress [116]. Several studies confirmed that MLT could intervene in various
pathological processes associated with I/R injury by a free-radical scavenger and promote antioxidant
enzymes [117,118]. MLT has dual functions on mitochondria as free-radical scavenger, and it also
promote the activity of the antioxidant enzymes, including SOD, GPx, GRd, and catalase. Another
function of MLT is to maintain GSH level in mitochondria and to enhance the production of ATP by
enhancing the expression of complexes I and IV of the electron transport chain under normal conditions
and restores their activities in some pathological situations; MLT also acts as an electron donor to
certain proteins [117,119]. Hence, MLT is an excellent antioxidative molecule and also a promising
agent for neuronal therapeutics.

MLT is a double-edged sword, which has both pro- and anti-inflammatory actions.
Anti-inflammatory actions of MLT can be measured by inhibition of the activation of inflammatory
cells via reduced myeloperoxidase activity. A study demonstrated that MLT protected sepsis-induced
functional and biochemical changes in rat ileum and urinary bladder [120]. NO, COX-2,
and myeloperoxidase (MPO) are important inflammatory mediators for cerebral I/R. A middle cerebral
artery occlusion stroke model demonstrated that the administration of MLT significantly reduced the
infarct volume in rats. Furthermore, pretreatment with MLT at 5 mg/kg provided neuroprotection
against I/R injury, partly via inhibition of the consequential inflammation [121]. The mouse model
consisted of control, inflammation (IA), and MLT-treated (IAM) groups. A study suggests that the
IA group mice had a significantly elevated concentration of lipid peroxides, whereas a reduction
in antioxidant enzyme levels, and also dopamine, 5-hydroxytryptamine, and norepinephrine, was
observed. Interestingly, MLT treatment effectively reversed these abovementioned changes, normalized
the lipid peroxide and antioxidant enzyme levels, and also recovered the brain cells from inflammation.
This study concluded that the administration of MLT protects against inflammation associated with
amyloid-beta vaccination [122]. MLT suppresses NLRP3 activation in radiation-induced damage of
oral mucositis [123], small intestine toxicity [124], and subarachnoid hemorrhage [125]. NO mostly
contributes to inflammation in the CNS. The anti-inflammatory actions of MLT depend on its inhibition
of the expression of iNOS; MLT acts efficiently as an NO scavenger and forms a stable product that



Cancers 2020, 12, 1567 8 of 25

does not easily re-donate NO [126]. MLT exerts its anti-inflammatory activity by preventing the
activation of the pro-inflammatory enzymes COX-2 and iNOS in glioma cells without simultaneous
inhibition of the COX-1 enzyme [127] and reduces the expression of both components of the NLRP3
inflammasome and the levels of pro-inflammatory cytokines [125,128]. An in vitro model study using
human dopaminergic neuroblastoma SH-SY5Y cells suggests that MLT could inhibit methamphetamine
(METH)-induced iNOS expression, the levels of TNF-α mRNA, and phosphorylated nuclear factor-κB
(NF-κB); MLT also downregulated Nrf2 [129]. A mouse model demonstrated that intraperitoneal
injection of MLT (10 mg/kg) in SCI showed that long-term MLT treatment attenuated the inflammatory
response, decreased IL-1β and neuron/glial antigen 2 levels, and can also prevent the secondary
inflammatory response and tissue damage [130]. Long-term treatment of MLT provides protective
effects by preserving cell and nerve structures. MLT alleviates post-traumatic injury associated with
SCI by binding the PPAR-α receptors [131]. MLT potentially reduces histological damage, nuclear
factor of kappa light polypeptide gene enhancer in B-cells inhibitor-alpha degradation, nuclear factor
κB activation, polymorphonuclear leukocyte infiltration, and MAPK activation in the injured spinal
cord [91]. TNF-α is a critical factor for inflammation in the acute phase of SCI. The administration of MLT
in radiation-induced rat potentially reduces the expression of TNF-α expression after radiation-induced
SCI [132]. MLT acts as both a pro-inflammatory and anti-inflammatory agent, depending on the
requirement of the cells, and it activates various immunological response cells (Figure 3).
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5. MLT as an Anticancer Agent

A study reported that concomitant administration of MLT in patients with glioblastoma treated
with radical or adjuvant radiotherapy (RT) with MLT showed significant survival as compared to RT
alone. Therefore, a radio neuroendocrine approach with RT plus MLT may prolong the survival time
and improve the quality of life of patients affected by glioblastoma [133]. A clinical study demonstrated
that the concomitant administration of aloe with MLT enhanced the therapeutic results of MLT in
patients with advanced solid tumors. Additionally, patients with lung cancer, gastrointestinal tract
tumors, breast cancer, or brain glioblastoma treated with MLT alone (20 mg/day orally) or MLT
plus A. vera tincture (1 mL twice/day) achieved significant positive responses [134]. Exogenous
supplementation of MLT (3 mg) for two weeks reversed the sleep disorder in a child with a germ cell
tumor involving the pineal region, which is primarily responsible for the suppression of MLT secretion
associated with severe insomnia [135]. MLT potentially inhibits oxidative stress and neurotoxic effects
induced by the amyloid beta protein (A beta) by preventing the death of cultured neuroblastoma
cells [136]. Oral MLT supplementation for the child with the diagnosis of a pineal tumor, severe
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reduction of secretion of MLT, and lack of sleep significantly improved her sleep, without any adverse
effects. MLT replacement therapy is beneficial for the patients with deficient MLT synthesis and sleep
disorder [137]. A study demonstrated that, in female CBA mice supplemented with MLT (20 mg/L)
for five consecutive days every month, the consumption of MLT did not significantly influence food
consumption. However, it did increase the bodyweight of older mice and decreased locomotor activity
and body temperature.

Further analysis revealed that MLT decreases the level of free radicals in the serum, brain, and liver
and eventually increases the life span [138]. Granzotto et al. reported that the attenuated effect of
MLT on doxorubicin (DOX) induced toxicity in a variety of human cancer cell lines, including human
normal mammary epithelium HBL-100, mammary adenocarcinoma MCF-7, colon carcinoma LoVo,
mouse P388 leukemia cell lines, and tumor cell sublines pleiotropically resistant to anthracyclines [139].
The results depicted that MLT causes an inhibition of the growth of the human cell lines in the
concentration range 10–2000 pg/mL, but not in a dose-dependent manner. Conversely, 200–1000
pg/mL MLT causes a significant and dose-dependent partial sensitization to DOX in resistant P388
mouse leukemia (P388/ADR) both in vitro and in vivo. The in vitro studies proved that MLT induces
apoptosis of rat pituitary prolactinoma cells. A rat model with 17-beta-estradiol (E2)-induced pituitary
prolactin-secreting tumor was inhibited with MLT, and also daylight illumination shows potential
impact by inhibition of proliferation and increased cell apoptosis through induced mRNA expression
of Bax and cytochrome c protein expression in prolactinoma cell, whereas anti-apoptotic proteins were
significantly reduced [140].

Animal studies suggest that administration of MLT with dose of 15 mg/kg body weight of
MLT to rats injected with C6 glioma cells reduces tumor growth. Further evidence from in vitro
studies suggested that MLT reduced cell growth of C6 glioma cells by inhibiting cell progression
from G (1) to S phase of the cell cycle; MLT also inhibited cell growth [141]. In addition, another
study demonstrated that MLT inhibits cell viability and induces apoptosis through the accumulation
of cells in the G2/M cell cycle phase and increasing leakage of lactate dehydrogenase and caspase-3
activation [142]. Combination of cisplatin (CDDP) and etoposide or CDDP plus gemcitabine with MLT
showed a significant impact in non-small-cell lung cancer (NSCLC) or gastrointestinal tumors patients.
Similarly, the combination of oxaliplatin plus 5-fluorouracil (5-FU) and MLT exhibited significant tumor
reduction in colorectal cancer patients. These findings suggest that anticancer therapeutic properties of
MLT enhance the efficacy of the standard anticancer chemotherapies [143].

Patients with untreatable metastatic solid tumors treated with exogenous MLT alone or MLT plus
subcutaneous low-dose interleukin-2 exhibited tumor progression on NSCLC or gastrointestinal tract
tumors and increased survival time. The association of lL-2 with MLT increases the percentage of
tumor regressions [144]. A combination of MLT and vincristine and ifosfamide showed a synergistic
antitumor effect on SK-N-MC human Ewing sarcoma cancer cells, through extrinsic apoptosis [145].
Combinations of MLT and temozolomide showed a significant synergistic toxic effect on BTSCs
and A172 malignant glioma cells by downregulation of the ABC transporter ABCG2/BCRP [146].
A combination of MLT and chemotherapeutic drugs exhibited a synergistic toxic effect on A172
malignant glioma cells and brain tumor stem cells via downregulation of the expression and function
of adenosine triphosphate (ATP)-binding cassette transporter ABCG2/BCRP [146]. MLT potentially
inhibits tumor development, progression, therapeutic resistance, and tumor relapse by MLT alone
and in combination with a chemotherapeutic drug. MLT has the ability to suppress cAMP formation;
it inhibits the uptake of LA and its metabolism to 13-Hydroxyoctadecadienoic acid (13-HODE) by a
MEL-receptor-mediated mechanism found in rat hepatomas and human breast cancer xenografts [147].
MLT has the potential ability to regulate cell proliferation, lipid signaling, Warburg effect, and tumor
growth depending on dark and light phase (Figure 4).
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Furthermore, MLT treatment reduces glioblastoma-initiating cell proliferation and induces a
decrease in self-renewal and clonogenic ability, accompanied by a reduction in the expression of stem
cell markers. Hence, MLT can be used as a potential therapeutic agent for malignant glioblastoma [149].
MLT competently inhibits methamphetamine (METH)-induced neurotoxicity in rat glioma cell line
(C6 cells) through the reduction of oxidative stress, nitro-oxidative stress, and inflammation by
suppression of NF-κB and translocation of the NF-κB (p65) subunit into the nucleus. Furthermore, MLT
pretreatment promoted Nrf2 activation, reversed the METH-induced NF-κB response, and increased
SOD activity. This study suggests that MLT reduces the pro-inflammatory responses induced by
inhibiting NF-κB activation and inducing Nrf2-mediated HO-1, NQO-1, and γ-GCLC expression in C6
cells [150].

MLT also protects cadmium-induced neurotoxicity of mitochondrial damage in cortical neurons
and brain tissues. Exposure of cortical neurons to 10 µM of cadmium causes an imbalance in
mitochondrial dynamics by altering the structure and morphology of mitochondria, fragmentation of
mitochondria, production of excessive ROS, decreased ATP content, and loss of mitochondrial
membrane potential (MΨm). Interestingly, 1 mM MLT pretreatment efficiently attenuated
cadmium-induced mitochondrial fragmentation, which improved the turnover of mitochondrial
function in cortical neurons. Similarly, MLT protects the brain tissues of rats exposed to 1 mg/kg CdCl2
for seven days. As a result, MLT ameliorated excessive mitochondrial fragmentation and mitochondrial
damage in rats. Thus, the results suggest that MLT prevents abnormal mitochondrial dynamics caused
by cadmium [151]. MLT significantly suppresses the release of the cytokine, metastasis, and invasion
under hypoxic stress in glioma cells [152]. MLT inhibits conditioned-medium-induced angiogenesis in
endothelial cells [153].

Recent studies have highlighted combination therapy as an attractive approach to reduce severe
toxicity in normal cells and drug resistance in cancers by chemotherapy. Lee et al. investigated the
underlying antitumor mechanism of MLT and its potency as a sensitizer of paclitaxel in X02 cancer
stem cells [154]. MLT suppressed sphere formation and induced G2/M arrest in X02 cells expressing
nestin, CD133, CXCR4, and SOX-2. MLT reduced the expression of CDK2, CDK4, cyclin D1, cyclin E,
and c-Myc and upregulated cyclin B1 in X02 cells. Finally, the study concluded that MLT synergistically
promotes the sensitivity of paclitaxel, to increase cytotoxicity, sub-G1 accumulation, and apoptotic
body morphology, as well as decrease the expression of Nestin and c-Myc in X02 cells. These results
indicate the potency of MLT as a paclitaxel sensitizer, since long-term RT is one of the treatments for
cancer. However, a recent study suggests the combination of MLT with RT as a treatment for colorectal
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cancer. The study revealed that MLT significantly inhibited human colorectal carcinoma cell line HCT
116 cellular proliferation, colony formation rate, and cell migration counts following IR.

MLT potentiates the radio sensitivity of colorectal cancer cells to induce apoptosis by
cell-cycle-arrest downregulation of proteins and activation of the caspase. The combined treatment
of MLT and IR exhibited significant suppression of tumor cell growth compared with either MLT
or IR alone. Similarly, the combination of vorinostat and MLT induces apoptosis by promoting the
oligomerization of transcription factor EB proteins, inhibition of CSC properties, and proliferation of
GSCs, and it also induced the expression of cleaved PARP and p-γH2AX in glioblastoma cells [155].
The anticonvulsant effect of MLT in pentylenetetrazole (PTZ)-induced seizures in mice was investigated
by acute intraperitoneal administration of MLT (40 and 80 mg/kg). MLT increased the latency of
clonic seizures and reduced its frequency in mice receiving an intraperitoneal injection of PTZ. Using
glibenclamide as a KATP channels blocker and diazoxide and cromakalim as KATP channels openers
increased the anti-seizure effect of MLT in the PTZ model of seizures. These findings suggest that the
anti-seizure effect of MLT was achieved by increasing the opening of KATP channels. The targets of
ATP-sensitive potassium (KATP) channels are important to determine, as they are considered to be
essential in the modulation of seizures [156].

6. CNS Cancers

CNS is composed of the brain, spinal cord, and retina, and CNS disease is complex and has
limited treatment options for patients with CNS injuries or diseases. Glioma tumor growth is the
common malignancy with high invasiveness in the central nervous system. Interestingly, MLT (1 mM)
was able to inhibit glioma cell growth in both human tissue specimens and two different glioma cell
lines [157]. Metastasis of malignancies to the brain represents a common neurological complication
in cancer patients [158,159]. Currently, 10% of all cancer patients experience involvement of the
central nervous system (CNS) [160]. Though 40% of patients with metastatic cancers are affected by
brain metastases [161], surgery and radiotherapy are commonly used treatment options for brain
metastases [162]. Recently, CNS cancers were treated with various therapeutic approaches, such as
chemotherapy, gene therapy, immunotherapy, phototherapy, and thermotherapy [163]. Chemotherapy
was the most common treatment for brain cancer. Single chemotherapy facilitated the drug resistance
of the tumor after a certain period, which greatly hindered the successful treatment of brain cancer.
A combination of anticancer drugs improved the brain cancer therapy [164]. Radiotherapy was one of
the clinical treatments for CNS cancers. Since the combination of radiotherapy with chemotherapy
is standard treatment strategy to inhibit brain cancer [165], the radiotherapy concomitant with
free temozolomide or carmustine entered into clinical trials. Phototherapy was composed of
the photothermal therapy (PTT) and the photodynamic therapy (PDT), which was a promising
non-invasive strategy for cancer treatments. Phototherapy treatment induces cancer-cell death through
generation of reactive oxygen species [166]. Immunotherapy seems to be an important therapy for
the treatment of various types of cancers, including CNS cancers. It could activate the body’s own
immune systems and induce the specific immune responses with tumor antigens, to eliminate the
tumor cells [167,168]. Immunotherapy facilitates the long-term reduction of cancer metastasis and
recurrence [169]. The immunotherapeutic methods cover a variety of approaches, including the cancer
vaccines, monoclonal antibodies, oncolytic virus, engineered T cells, and immunomodulation [169].
However, immunotherapy has several challenges, such as a lack of specific tumor antigens and limited
immunogenicity of the cancer cells and the immunosuppressive environment of the tumors [170,171].
Besides these, hyperthermia therapy seems to be safe and effective complementary therapy for
cancer treatments. The combination of magnetic and thermal therapy is more effective against brain
cancer [172]. Similarly, the combination of photoimmunotherapy exhibited a better effect compared
to either phototherapy or immunotherapy against brain cancer. The combination therapy uses
the specific antibodies that could facilitate targeting the tumor cells without damaging the normal
cells and also uses enhanced photosensitizer delivery into tumors and increases the light-activated
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cytotoxicity [173]. Recently, gene therapy was used as an adjuvant for the current glioblastoma
treatments. The combination of gene therapy with immunotherapy shows better results of glioblastoma
treatments [174,175].

Programmed death ligand 1 (PD-L1) is a major prognostic biomarker for immune therapy in
many cancers, and it is widely expressed on various cell types, such as tumor cells, monocytes,
macrophages, natural killer (NK) cells, dendritic cells (DCs), and activated T cells, as well as on
immune-privileged sites such as the brain, cornea, and retina; it also plays a critical role in tumor
progression and immunotherapy [176]. A recent study suggested that the activation of the PD-1/PD-L1
signaling pathway can arrest the T-cell cycle at the G1 phase rather than directly causing apoptosis [177].
For instance, exosomes obtained from MLT-treated hepatocellular carcinoma cells were able to
downregulate the expression of PD-L1 and the secretion of cytokines (IL-6, IL-1β, IL-10, and TNF-α) in
macrophages [178]. Inhibition of the PD-1/PD-L1 pathway by using antibodies shows a significant
impact in advanced melanoma, including in its brain metastasis [179,180]. Clinical studies suggest that
the overall effect of PD-1 antibody therapy in glioma is limited, particularly in the presence of MLT.
However, a combination of immune therapy, including PD-1/PD-L1 antibodies, and molecular-targeted
antitumor drugs may be a future direction of brain cancer therapy. Altogether, all of these therapies
show a potential effect against CNS-related cancers.

There is a significant amount of evidence from human, animal, and cellular studies that shows
that MLT could inhibit tumor growth and progression. MLT mitigates the pathogenesis of various
types of cancer. Particularly, MLT is involved in preventing the initiation of the tumorigenic pathway
and the ability of MLT to retard the progression of cancer [53,181]. Potential ability of antioxidant and
immunomodulatory effects of MLT could modulate various gene expression following activation of
various transcription factors in CNS cancers, which are likely to be an important mediating event in
cancer prevention. MLT’s epigenetic activity is responsible for its antineoplastic and epigenetic effects,
which are able to control CNS-related cancers. For example, MLT significantly inhibited the viability
and self-renewal ability of glioblastoma stem-like cells (GSCs), accompanied by a decrease of stem cell
markers [182]. The combination of MLT and a chemotherapeutic agent exhibited a potential synergistic
toxic effect against A172 malignant glioma cells and brain tumor stem cells via downregulating the
expression and function of adenosine triphosphate-binding cassette transporter ABCG2/BCRP [146].
MLT triggering various transcription factors and signaling pathways inhibits the proliferation and
invasiveness of cancer progression. The MT1/MT2 receptor antagonist luzindole inhibits the expression
of MMP-2 and MMP-9 genes, which regulate metalloproteinase activity in endometrial cancer [183].
The inhibitory effect of MLT on glioma cell lines is proportional to the expression level of MT1 in
glioma [157]. Altogether, all of these studies indicate that MLT and its receptors play a significant role in
CNS cancer prevention. Previously, several studies suggested that MLT inhibited the gene expression of
MMP-9 in head and neck cancers, which is majorly responsible for metastasis [184,185]. MLT targeted
the ERK/JNK pathways to reduce MMP-9 transcription and cancer cell invasion through modulating
histone acetylation and SP1 activation in head and neck cancer [184]. Single-nucleotide polymorphism
(SNP) occurs as a variation in one nucleotide, which occurs at specific locations in the genome, SNPs
in genes involved in cell cycle control ECM remodeling, DNA repair, folate metabolism, and that
carcinogen metabolism may be associated with increased susceptibility to cancers [186]. MLT exhibits
oncostatic properties in many cancer types mainly mediated by its membrane-bound receptors, such as
MT1/MT2 A. Increased expressions of MT1/MT2 promoted the inhibitory actions of MLT on the growth
of cancer cells, and the variations of MLT receptor genes are associated with susceptibility to many
diseases, including head and neck cancers [187,188]. The combination of polymorphism in the MLT
receptor gene and environmental parameters increases the risk for cancer and eventually leads to
reduce the survival rate of cancer patients.
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7. MLT: A Novel Therapeutic Agent for the Treatment of CNS Disorders and Cancers

MLT affects every system of the body. MLT regulates various functions associated with the circadian
rhythm in the dark phase, such as blood pressure, sleep induction, induction of insulin resistance and
glucose intolerance, regulation of body temperature, and blockade of cortisol secretion [189]. MLT plays
a critical role in cardiovascular-related disorders, including hypertension, ischemia, and valvular
heart diseases [189,190]. MLT does not only provide neuroprotection in the CNS but also acts as
an antioxidant and promotes the synthesis of antioxidant enzymes [189,191]. The concentration
of MLT is directly associated with neurologic disorders such as TBI [192], mood disorders [193],
and delirium [194]. The use of MLT as adjuvant therapy is most warranted in patients with neurologic
disorders [189]. For example, a reduced level of MLT causes various metabolic disorders, such as glucose
intolerance and insulin resistance, sleep disorders, metabolic syndrome, hypertension, and increased
diabetes and cancer risk. Conversely, overproduction of MLT also causes various disorders, including
hypogonadotrophic hypogonadism, Rabson–Mendenhall syndrome, anorexia nervosa, spontaneous
hypothermia hyperhidrosis, and polycystic ovarian syndrome.

BBB damage leads to a variety of neurological diseases in older patients, including acute and
chronic cerebral ischemia and Alzheimer’s disease [38]. The level of MLT was significantly lower in
older people, and this lower level of MLT causes BBB damage by the degradation of tight junction
proteins [195]. The supplementation of MLT protects BBB in neuronal cells. Hu et al. demonstrated that
MLT-mediated TLR4/NF-κB-signaling pathway was an important signaling cascade involved in BBB
integrity [196]. This study suggests that MLT seems to be a suitable candidate as a therapeutic agent
for protecting the CNS neurological diseases characterized by a compromised BBB. The dysregulation
of MLT signaling in the brain constitutes a causal risk factor to neurodegenerative diseases and mood
disorders. MLT restores sepsis-related inflammatory response and neurological complications [197].
MLT has been shown to restore the mitochondrial production of ATP in septic mice [198]. For example,
MLT improved cardiac mitochondria and the survival rate in rat septic heart injury [74] through
the inhibition of iNOS and the preservation of neuronal nitric oxide synthase [199], and attenuated
sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism [200]. The decreased
level of MLT causes BBB damage in older people, which leads to sepsis and neuroinflammation.
MLT supplementation treatment significantly inhibits sepsis and neuroinflammation. MLT is effectively
used to treat sleep disorders and phase shift of circadian rhythms, depressive disorders, and improve
learning and memory [201–203]. Studies demonstrated that MLT protects against neurodegeneration,
apoptosis, and I/R injury by the mechanism of free-radical-scavenging properties [204,205].

In clinical trials, the anticancer effect of MLT was reported as an adjuvant therapy with
other chemotherapeutic drugs. Several clinical studies suggested that MLT could enhance the
therapeutic efficacy and reduce the toxicities of other anticancer drugs, as shown by increased
partial response, induced tumor regression, higher survival rate, and relieved symptoms of side
effects [188]. Combination of low-dose subcutaneous interleukin-2 and MLT significantly increased
the one-year survival rate of patients with metastatic colorectal cancer, compared with supportive
care alone [206]. In a phase-II study including 14 patients with metastatic breast cancer, the patients
were free from anxiety [207]. MLT potentiates the effect of chemotherapeutic agents and reduces
the toxicity in patients with metastatic solid tumor [208]. Concomitant administration of MLT on
metastatic NSCL cancer patients receiving cisplatin and etoposide exhibited tumor regression rate
and increased survival rate [209]. Similarly, concomitant administration of MLT with irinotecan
on metastatic colorectal cancer patients achieved a higher percent of disease-control on patients
than irinotecan alone [210]. Meta-analysis data revealed that 21 clinical trials, which all dealt with
solid tumors, revealed that MLT as an adjuvant cancer care with chemotherapy decreased one-year
mortality and reduced chemotherapy-induced symptoms, such as asthenia, leucopenia, nausea,
vomiting, and hypotension [211]. MLT exhibited positive effect in tumor therapeutic strategies,
including improving tumor remission rate and overall survival rate, while reducing the incidence of
chemotherapy side effects [212]. Collectively, in clinical trials, MLT showed the ability to enhance the
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therapeutic effect of various anticancer drugs. Meanwhile, MLT might help improve the sleep and
quality of life of cancer patients. Hence, MLT seems to be an efficacious alternative therapeutic agent
for the treatment of CNS disorders and cancers.

8. Conclusion and Future Perspectives

MLT is a versatile hormone that is primarily secreted by the pineal gland in the human brain
and is known to regulate various physiological processes by photoperiodicity. MLT exhibits a wide
range of psychophysiological functions through the activation of MLT receptors, such as MT1 and
MT2. Several studies have demonstrated the beneficial effects of MLT in different types of cancers.
Here, we documented the overall effect of MLT on various activities, including its synthesis, biology,
and functions; the role of MLT in brain damage as a neuroprotectant and antioxidative; and its
anti-inflammatory and anticancer properties. Furthermore, we discussed the underlying mechanisms
involved in the beneficial effect of its treatment of CNS and CNS-related disorders. In particular,
MLT differentially regulates anticancer effects in the presence and absence of light. Several preclinical
studies suggest that MLT exhibits neuroprotective effects and promotes the restoration of neurologic
function after SCI. Although several studies have documented the mechanisms that are involved in the
regulation of various beneficial effects as described in animal models, additional studies are needed to
increase the therapeutic efficacy of MLT with a precise drug for cancer therapy. This review further
emphasizes that more studies are required to address the administration of MLT to achieve the desired
effect and to avoid undesired side effects; dosage and formulation should be carefully tailored to each
individual. Systematic research is needed to understand and establish the connection between MLT
and specific aspects of the CNS. Therefore, further studies should be directed at clarifying the cellular
and molecular mechanisms that underlie the therapeutic effects of MLT and providing evidence-based
rationales for the development of clinical therapies that can be used in CNS and CNS-related-disorder
patients. Additionally, the development of MLT-receptors-based drugs is essential for the treatment of
sleep and circadian rhythm disorders, depression disorders, learning and memory, neuroprotection,
and various types of cancers. The design and development of new drugs targeting the MT1 and MT2
MLT receptors is the next challenge for the field of MLT.
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