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Rationale. Overall validity of existing genetic biomarkers in the diagnosis of obstructive sleep apnea (OSA) remains unclear. The
objective of this systematic genetic study is to identify “novel” biomarkers for OSA using systems biology approach. Methods.
Candidate genes for OSA were extracted from PubMed, MEDLINE, and Embase search engines and DisGeNET database. The
gene ontology (GO) analyses and candidate genes prioritization were performed using Enrichr tool. Genes pertaining to the top
10 pathways were extracted and used for Ingenuity Pathway Analysis. Results. In total, we have identified 153 genes. The top 10
pathways associated with OSA include (i) serotonin receptor interaction, (ii) pathways in cancer, (iii) AGE-RAGE signaling in
diabetes, (iv) infectious diseases, (v) serotonergic synapse, (vi) inflammatory bowel disease, (vii) HIF-1 signaling pathway, (viii) PI3-
AKT signaling pathway, (ix) regulation lipolysis in adipocytes, and (x) rheumatoid arthritis. After removing the overlapping genes,
we have identified 23 candidate genes, out of which >30% of the genes were related to the genes involved in the serotonin pathway.
Among these 4 serotonin receptors SLC6A4, HTR2C, HTR2A, and HTR1B were strongly associated with OSA. Conclusions.This
preliminary report identifies several potential candidate genes associated with OSA and also describes the possible regulatory
mechanisms.

1. Introduction

According to the Centers forDisease Control and Prevention,
sleep disorders now constitute a public health epidemic. The
National Healthy Sleep Awareness Project estimated that
at least 25 million American adults are affected by OSA
for the year 2014 [1]. The underlying pathophysiology and
physiological mechanisms of OSA are multifactorial, may
vary considerably between individuals, and are not clearly
understood [2]. It is estimated that majority of the patients
with sleep apnea are undiagnosed [3] increasing evidence
supporting an association between OSA and obesity [4],
hypertension [5], metabolic syndrome [6], type 2 diabetes
(T2DM) [7] and cardiovascular mortality [8], increased risk

of psychiatric disorders [9], and traffic and occupational
accidents [10]. Given the potentially serious consequences
of OSA, timely diagnosis and recognition, risk stratification,
and appropriate treatment are of utmost importance [11].

In-lab polysomnography (PSG) is the “gold standard” test
for the diagnosis of OSA [12]. However, PSG is resource-
intensive and cumbersome and requires patients to spend the
night under observation in a foreign (hospital) environment.
Although home-based sleep monitoring devices overcome
these problems, they are less accurate, are prone to technical
breakdown, fail to capture other forms of sleep disorders, and
underestimate the severity ofOSA [13]. Recently, several sleep
based psychometric questionnaires are available to screen
individuals at low to highOSA risk. However, the lack of high
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quality evidence from large scale epidemiological studies hin-
ders their applicability in clinical practice [12]. Also, question-
naires did not allow reliable differentiation between different
phenotypes of OSA; that is, they were unable to identify
individuals who are susceptible to metabolic, cardiovascular,
and neurologic effects of OSA. Also, sleep based question-
naires may not be suitable to the general population because
they include questions related to sleepiness and not all
patients, even those with severe OSA, report sleepiness. For
instance, Wisconsin Sleep Cohort Study found that only 37%
of patients with severe OSA (Apnea-Hypopnea Index (AHI)
score ≥ 30 events/h) are aware of questions related to daytime
sleepiness [14].

Blood biomarkers may offer alternative approach for
screening and identifying individuals at risk of developing
OSA and related outcomes. Biomarker is defined as a char-
acteristic that is objectively measured and evaluated as an
indicator of normal biologic processes, pathogenic processes,
or pharmacologic response to a therapeutic intervention.
In the case of OSA, the candidate biomarkers should be
useful for the following: diagnosis, assessing disease burden
and severity, and evaluating response to treatment. Several
epidemiological studies suggest that the circulatory levels
of natriuretic peptide (BNP) or N-terminal-pro-BNP [15],
leptin, C-reactive protein (CRP) [16, 17], TNF𝛼 [18], vaspin
[19], ghrelin [20], and interleukin-6 [17] are associated with
OSA.To ensure diagnostic accuracy, a biomarker should yield
both high sensitivity and specificity to identify individuals at
high risk of developing OSA. Such diagnostic performance
would limit the necessity of PSG, an expensive and laborious
modality, at least in some patients. Additional aspects should
include low cost and facility in use, as well as the ability to
simultaneously evaluatemultiple pathogenic pathways. How-
ever, current knowledge of biomarkers for OSA is limited by
data collection techniques, disease complexity, and potential
confounding factors.

Advances in computational approaches and experimental
omics methods that allow the simultaneous analysis of multi-
dimensional data such as DNA, RNA, and proteins in a single
analysis have made these systems biology approaches feasible
for biomarker discovery [21]. Systems biology is a scientific
discipline that endeavors to quantify all of the molecular
elements of a biological system to assess their interactions and
to integrate that information into graphical network models
[21]. Therefore, the objective of this report is to (a) identify
“novel” biochemical markers and associated pathways of
OSA using systems biology approach, (b) assess the associ-
ation of the selected candidate genes with OSA comorbid
conditions, and (c) study potential interaction of the candi-
date genes in a biological network context.

2. Methodology

2.1. Literature Mining and Identification of Candidate Genes.
Literature search was conducted in PubMed, MEDLINE,
and Embase search engines for studies published for
“genes, polymorphisms, and biomarkers” using the terms

“Apnea, Obstructive Sleep” or “Apneas, Obstructive Sleep”
or “Obstructive Sleep Apnea” or “Obstructive Sleep Apneas”
or “Obstructive Sleep Apnea Syndrome” or “OSAHS” or
“Sleep Apnea Hypopnea Syndrome” or “Sleep Apneas,
Obstructive” or “Sleep Apnea Syndrome, Obstructive” or
“Syndrome, Obstructive Sleep Apnea” or “Syndrome, Sleep
Apnea, Obstructive” or “Syndrome, Upper Airway Resis-
tance, Sleep Apnea” or “Upper Airway Resistance Sleep
Apnea Syndrome” for obstructive sleep apnea (MeSH� ID:
D020181). Furthermore, we queried the DisGeNET database
(http://www.disgenet.org/web/DisGeNET/menu) [22] that
integrates information from four repositories (search term:
umls:C0520679 for OSA): (a) Online Mendelian Inheri-
tance in Man (OMIM), (b) UniProt/SwissProt (UniProt), (c)
PharmacogenomicsKnowledge Base (PHARMGKB), and (d)
Comparative Toxicogenomics Database (CTD). DisGeNET
can be accessed through the Cytoscape 2.8.3, a platform for
complex network analysis. The identified genes were then
evaluated to verify authenticity and to remove redundancies.
Genes with unknown functions were excluded from the
analysis (<5%).

2.2. Gene-Set Enrichment Analysis and Candidate Gene Pri-
oritization. The gene ontology analysis was performed using
ToppGene suite [23]. The ToppGene suite is used for (i) gene
list functional enrichment, (ii) candidate gene prioritization
using either functional annotations or network analysis,
and (iii) identification and prioritization of novel disease
candidate genes in the interactome. The disease pathways
prioritization and gene enrichment analysis were performed
using Enrichr (http://amp.pharm.mssm.edu/Enrichr/) [24,
25]. Enrichr is an integrative web-based and mobile software
application that includes new gene-set libraries, an alternative
approach to rank enriched terms, and various interactive
visualization approaches to display enrichment results using
the JavaScript library and Data Driven Documents (D3).
Enrichr implements three approaches to compute enrich-
ment: the first method is a standard Fisher exact test; the
second method is Fisher exact correction test based on
intuition analysis to generate a 𝑧-score of the deviation
from the expected rank; and the third method (which we
used for this analysis) is a combination of both 𝑃 value
computed using the Fisher exact test and the 𝑧-score. For this
analysis, we have employed third approach for gene ontology
analysis.

2.3. Network Analysis by Ingenuity Pathway Analysis (IPA).
Finally, the shortlisted genes were submitted to Ingenu-
ity Pathway Analysis (IPA 4.0, Ingenuity Systems Inc.,
https://www.ingenuity.com/) for mapping to canonical path-
ways and identifying upstream regulators using a set of
criteria: genes and endogenous chemicals, direct and indirect
interactions, maximummolecules per network, networks per
analysis, humans as the selected species, and all tissues and
primary cells. The resulting networks were scored based on
the fold change provided by Cuffdiff as log2 (fold change) for
each gene.The obtained 𝑃 values correspond to Fisher’s exact
test, with the null hypothesis that the molecules within the
networks are connected based on chance.

http://www.disgenet.org/web/DisGeNET/menu
http://amp.pharm.mssm.edu/Enrichr/
https://www.ingenuity.com/
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Figure 1: (a) Clustergram showing the top 10 highly significant gene ontology molecular functions associated with OSA. The selected genes
(𝑛 = 153) were imported into Enrichr web tool using default setting. The top GO molecular activity was ranked based on enrichment scores
(combined Fisher’s exact test 𝑃 values and the 𝑧-scores). The top 10 associated molecular functions are (1) serotonin receptor activity, (2)
G-protein coupled amine receptor, (3) catecholamine binding, (4) cytokine receptor binding, (5) cytokine activity, (6) growth factor activity,
(7) adrenergic receptor activity, (8) G-protein coupled receptor, (9) G-protein coupled peptide receptor, (10) and peptide hormone binding.
(b) Clustergram showing the top 10 highly significant KEEG pathways associated with OSA. The selected genes (𝑛 = 153) were imported
into Enrichr web tool using default setting. The top KEEG pathways were ranked based on enrichment scores (combined Fisher’s exact test
𝑃 values and the 𝑧-scores). The top 10 highly significant OSA disease pathways include (1) serotonin receptor interaction, (2) pathways in
cancer, (3) AGE-RAGE signaling in diabetes, (4) infectious diseases, (5) serotonergic synapse, (6) inflammatory bowel disease, (7) HIF-1
signaling pathway, (8) PI3-AKT signaling pathway, (9) regulation lipolysis in adipocytes, and (10) rheumatoid arthritis.

3. Results: Candidate Gene Identification

Literature mining for the search terms as described in
the methodology resulted in 2200 abstracts. After carefully
screening the abstracts we got 550 genes related to OSA
and from that we have shortlisted 153 genes (removal of
redundancies, duplicates, unknown functions, etc.), for fur-
ther analysis. The analysis of statistically overrepresented
pathways in the shortlist of genes revealed 28 canonical
pathway maps (by ToppGene suite) with confidence level
𝑃 < 0.05 (adjusted for false discovery rate (FDR)). The top 10
pathways and their corresponding genes revealed by Enrichr
tool are given in Figures 1(a) and 1(b). This includes (i) sero-
tonin receptor interaction, (ii) pathways in cancer, (iii) AGE-
RAGE signaling in diabetes, (iv) infectious diseases, (v) sero-
tonergic synapse, (vi) inflammatory bowel disease, (vii)HIF-1
signaling pathway, (viii) PI3-AKT signaling pathway, (ix) reg-
ulation lipolysis in adipocytes, and (x) rheumatoid arthritis.
After merging all the pathways, “23” unique genes remained

for the core analysis (Box 1). The set of unique genes impli-
cated in OSA showed maximal association with OSA comor-
bid conditions (Figure 2) such as anxiety disorders (𝑃 =
2.84𝐸

−24), obesity (𝑃 = 1.65𝐸−23), obsessive-compulsive
disorder (𝑃 = 8.77𝐸−21), dyslipidemia (𝑃 = 5.87𝐸−20), social
anxiety disorder (𝑃 = 1.28𝐸−18), T2DM (𝑃 = 5.14𝐸−18),
blood pressure (𝑃 = 3.52𝐸−17), eating disorders (𝑃 =
3.75𝐸

−15), depression (𝑃 = 3.61𝐸−14), and metabolic syn-
drome (𝑃 = 1.10𝐸−13) (Figure 3). Among twenty-three genes
identified, 9 (36.0%) genes are involved in serotonin receptor
mediated pathways. Therefore, for the subsequent network
analysis we focused only on serotonin pathways.

For network analysis Figure 3 shows the Ingenuity
Pathway Analysis of the selected candidate genes and their
corresponding molecular interactions. The significant net-
work associations include (a) carbohydrate metabolism,
small molecule biochemistry, and psychological disorders;
(b) behavior, cell signaling, and neurological disease; and
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Figure 2: The genes identified from the enrichment analysis were significantly associated with OSA comorbidities. Ingenuity Pathway
Analysis was used to create gene-disease network. The selected candidate genes (𝑛 = 23) were significantly associated with anxiety disorders
(2.8𝐸−24), obesity (1.65𝐸−23), obsessive-compulsive disorder (8.77𝐸−21), dyslipidemia (5.87𝐸−20), social anxiety disorder (1.28𝐸−18), type 2
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Selected genes associated with OSA
APOA5: apolipoprotein A-V
ADRA1B: adrenoceptor alpha 1B
ADRA2A: adrenoceptor alpha 2A
ADRB1: adrenoceptor beta 1
ADRB2: adrenoceptor beta 2, surface
ECE1: endothelin converting enzyme 1
EDNRA: endothelin receptor type A
EDN1: endothelin 1
HIF1A: hypoxia inducible factor 1, alpha subunit
HTR1B: 5-hydroxytryptamine (serotonin) receptor 1B
HTR2A: 5-hydroxytryptamine (serotonin) receptor 2A
HTR2C: 5-hydroxytryptamine (serotonin) receptor 2C
HTR3A: 5-hydroxytryptamine (serotonin) receptor 3A
HTR3B: 5-hydroxytryptamine (serotonin) receptor 3B
HTR3C: 5-hydroxytryptamine (serotonin) receptor 3C
HTR3D: 5-hydroxytryptamine (serotonin) receptor 3D
HTR3E: 5-hydroxytryptamine (serotonin) receptor 3E
IRS1: insulin receptor substrate 1
LEP: leptin
LEPR: leptin receptor
LIPC: lipase, hepatic
LPL: lipoprotein lipase
NOS3: nitric oxide synthase 3 (endothelial cell)
SLC6A4: solute carrier family 6 (neurotransmitter transporter), member 4

Box 1: Top 23 candidate genes identified by enrichment analysis. The box shows the 23 unique genes (in alphabetical order) identified from
Enrichr analysis. The majority of the pathway genes are involved in serotonin based regulatory pathways.
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(c) drug metabolism, endocrine system development and
function, and lipid metabolism. In the predicted merged net-
work generated by IPA algorithm, four serotonin receptors,
HTR1B, SLC6A4, HTR2A, and HTR2C, were found to be
the potential candidates regulating the OSA. The expression
of our candidate genes could be modulated mainly by 3
molecules: 5-hydroxy tryptamine (for HTR1B and SLC6A4),
PRL (HTR2A and HTR2C), and HSP90AB1 (for SL6CA4).
The important regulators of these genes were insulin (𝑃 <
1.05𝐸

−09), melatonin (𝑃 < 1.41𝐸−09), glucocorticoid (𝑃 <
5.83𝐸

−09), lithium (𝑃 < 1.45𝐸−08), and RAB1A (𝑃 <
5.48𝐸

−08).

4. Discussion

The overall validity of existing biomarkers in the diagnosis
of obstructive sleep apnea (OSA) remains unclear. Although
the existing adipokines and inflammatory markers seem to
have a favorable potential to become a good biomarker to
identify OSA they are not specific for the disease. In this
study, we have performed the gene mining analyses and
found 23 candidate genes that are likely associated with
OSA. Functional enrichment analysis suggested that most
of these genes are directly involved in the above-mentioned
biological processes (Figure 2), which are highly relevant for
OSA. Several pathways found in our study have already been
discussed by many authors with inconclusive evidence [26–
33] before as well as their involvement in the pathogenesis of
OSA. For instance, Diefenbach et al. [34] showed the positive
association between EDN1 variant Lys198Asn genotype and
OSA. However, plasma levels of EDN1 were not associated
with the OSA severity.

The disease pathway analysis showed that the selected
candidate genes were also associated with the OSA comorbid
conditions such as anxiety disorders, obesity, and dyslipi-
demia. For the subsequent analysis, we focused only on
serotonin pathway because majority of serotonin genes make
up this pathway. Dysfunction of the serotoninergic system
has long been suspected in sleep disorders and respiratory
diseases [35, 36]. 5-HT acts as both a neurotransmitter and a
neuromodulator in the human central nervous system (CNS).
Serotonin pathway affects food intake, sleep, anxiety, sexual
behavior, and mood [37]. Approximately 2% of the body’s
serotonin is stored in central nervous system (CNS) and the
rest of the body’s serotonin is in the gut and stored periph-
erally, where it operates as a peripheral hormone, affect-
ing vasoconstriction, intestinal motility, primary hemostasis,
liver repair, and the control of the T-cell-mediated immune
system [38]. Emerging evidence from animal studies showed
that both peripheral and central 5-HT and its receptors were
involved in sleep regulation [39]. The oxygen deprivation
and hyperventilation which are characteristic of OSA can be
mimicked and induced in panic attack which might derange
the serotonin pathway mediators. Recently, 5-HT system has
been shown to be involved in circadian regulation [40],
glucose and lipid metabolism, and adipocyte differentiation
[41, 42]. Serotonergic neurons have a significant influence
on sleep/wake cycles due to their multiple connections
throughout the cortex, basal forebrain, limbic system, and
brainstem areas. The 5-HT systems function predominantly

to promote wakefulness and inhibit rapid eye movement
(REM) sleep. The recent finding suggests that serotonergic
connections have effects on numerous CNS processes, and
dysfunction in this system may be implicated in respiratory
pathology such as OSA [43]. Serotonin is thought to cause
its effects through these membrane-bound receptors [44]. In
our analyses, we have identified 4 receptors: SLC6A4,HTR2C,
HTR2A, and HTR1B which associated with OSA.

The genomewide association studies demonstrated the
association of 5-HTR 2A/2C polymorphisms with OSA.
Furthermore, by regulating the magnitude and duration of
serotonergic responses, the SLC6A4 (i.e., 5-HTT) is pivotal to
the fine-tuning of brain serotonergic neurotransmission and
of the peripheral actions of 5-HT [45].

5. Conclusion

It is clear that there is an intricate network of interacting
genes regulating sleep and the derangement in them leads
to OSA. In this preliminary report, we identified 23 novel
biomarkers especially from the serotonin pathway which
might associate with OSA. Consequently, we demonstrated
network-level analysis of potential OSA candidate genes and
the plausible regulatory mechanisms. Limited evidence from
the clinical trials showed that 5-HT has a critical role influ-
encing respiratory control during sleep. 5-HT acts as a potent
central ventilatory stimulant and serves to maintain upper
airway patency andmaintain eucapnia via the chemoreceptor
properties. Relative reductions in 5-HT may lead to the
development and worsening of OSA. Further biological
experiments are warranted to study the role of peripheral
5-HT and its receptors on the pathogenesis of OSA.
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