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Retinopathy of prematurity (ROP) is a leading cause of childhood blindness world-
wide. The diagnosis of ROP is subclassified by zone, stage, and plus disease, with each
area demonstrating significant intra- and interexpert subjectivity and disagreement. In
addition to improved efficiencies for ROP screening, artificial intelligence may lead to
automated, quantifiable, and objective diagnosis in ROP. This review focuses on the
development of artificial intelligence for automated diagnosis of plus disease in ROP
andhighlights the clinical and technical challenges of both the development and imple-
mentation of artificial intelligence in the real world.

Introduction

Retinopathy of prematurity (ROP) is a leading
cause of childhood blindness worldwide. This vasopro-
liferative retinal disease affects extremely preterm
infants, and low gestational age and low birth weight
are the two strongest risk factors for the develop-
ment of ROP.1,2 The Multicenter Study of Early
Treatment for Retinopathy of Prematurity (ET-ROP)
study found that 68% of infants born <1251 g devel-
oped at least mild ROP.3 A large population study of
184,700 preterm babies with ROP found that >10% of
children became blind or severely visually impaired.4

An estimated 20,000 babies go blind around the world
each year,4 and the Global Burden of Disease study
estimated that 257,000 years livedwith disability world-
wide in 2010 were associated with visual impairment
secondary to ROP.5 This is despite the fact that blind-
ness from ROP is often preventable with appropriate
primary, secondary, and tertiary prevention.6

There are a number of challenges for ROP screening
and diagnosis using current technology. ROP screen-
ing requires either bedside ophthalmoscopic screening
or telemedicine using remote interpretation of digital
fundus imaging; however, in a typical population, only
5% to 10% of babies within a screening population will
develop sight-threatening ROP. Unfortunately, there
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are often barriers to ensuring consistent screening of
at risk babies especially in low- and middle-income
countries, including inadequate equipment and train-
ing, personnel shortages, and inconsistent examina-
tions between clinicians and/or institutions.7 Moreover,
owing to differences in the level of oxygen regulation,
the population at risk in these regions is significantly
higher.

Automated image analysis and deep learning (DL)
systems for ROP have the potential to improve ROP
care by (1) improving the efficiency, accuracy, and
objectivity of diagnosis and (2) facilitating quanti-
tative disease monitoring and risk prediction.8 This
review focuses on recent major advances, controver-
sial topics, and knowledge gaps in artificial intelligence
(AI), machine learning, and DL research as it relates to
ROP diagnosis and management.

ROP Diagnosis and Current
Limitations

ROP is classified based on the location, extent,
and severity of disease according to the guide-
lines described by the International Classification of
Retinopathy of Prematurity (ICROP) in 1984 and
2005.9–11 The cryotherapy for ROP (CRYO-ROP)
study defined threshold ROP (i.e., ROP requiring treat-
ment) as five or more contiguous or eight total clock-
hours of extraretinal fibrovascular proliferation (i.e.,
stage 3 ROP) in zones I or II in the presence of
plus disease,12 defined as venous dilatation and arteri-
olar tortuosity in two or more quadrants within the
posterior pole that is greater than or equal to that
of standard published photographs selected by expert
consensus.13 The subsequent ET-ROP trial further
classified ROP into type 1 and type 2 prethreshold
treatment to guide the treatment of infants before the
development of threshold ROP.3 Treatment of type 1
ROP, defined as any eye with 1) zone 1 disease (any
stage) with plus disease; 2) zone 1 stage 3 disease
without plus disease; or 3) zone 2 stage 2 or 3 disease
with plus disease, remains the currently accepted treat-
ment threshold for ROP. In 2005, an intermediate level
(pre-plus) was introduced to the ICROP classification
reflecting the fact that vascular changes present on a
continuum. Vascular dilation and tortuosity increase
with more posterior disease and with higher stage
and extent of peripheral disease. The development of
neovascularization of the retina (i.e., stage 3 ROP) can
result in tractional membranes and retinal detachments
(e.g., stages 4 and 5 ROP).9 Thus, timely and accurate
diagnosis is essential to prevent blindness from ROP.

There are several potential challenges to ensuring
every at-risk baby is diagnosed accurately and in a
timely manner. Besides wide disparities worldwide in
the distribution of ophthalmologists between rural and
urban settings and between countries, the diagnosis of
ROP is based on subjective assessment of disease sever-
ity (zone, stage, and plus), and it is well-established
that there is wide interobserver variability for all three
components.14 In a recent review, Ghergherehchi et
al.13 offered several potential explanations for variabil-
ity in plus disease diagnosis: (1) attention to undefined
vascular features (i.e., venous tortuosity which can be
quite striking but which is not formally a diagnostic
criterion); (2) differences in field of view (the standard
photograph is quite narrow, but when we examine an
eye we see a wider field of view and it is possible differ-
ent examiners focus on different parts of the retina);
(3) unfamiliarity with digital images; (4) magnifica-
tion of the standard photograph; and (5) differences
in plus disease thresholds along a continuum. As with
any medical specialty, some experts are aggressive in
their treatment plans, whereas others are more conser-
vative. Significant interexpert variability across differ-
ent regions has also been reported.13,15,16 Further, most
examiners do not routinely perform photography at
the time of examination, which hinders their ability
to objectively make comparisons across serial exami-
nations or with other examiners. The lack of objective
diagnosis of ROP and the high rates of interobserver
variability have been a key limiting step in the develop-
ment of AI technology in ROP.

Telemedicine in ROP

The ability to easily image a neonatal retina paved
the way for telemedicine to provide a more efficient
method to screen at-risk babies. There are now multi-
ple examples of successful telemedicine programs in the
United States and around the world.17–21 The Stanford
University Network for Diagnosis of Retinopathy of
Prematurity (SUNDROP) trial found that telemedicine
had 100% sensitivity, 99.8% specificity, 93.8% positive
predictive value, and 100% negative predictive value
for detection of treatment-warrantedROP.22 Especially
in regions where there are too few trained or willing
ophthalmologists to manage ROP screening and treat-
ment, telemedicine can allow a single provider to screen
babies over a large geographic area. Digital fundus
imaging also enabled for the first time large databases
of retinal images of babies with ROP, which is an
essential step for the development of AI for automated
image-based diagnosis.23
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Figure 1. Machine learning in ROP. Early efforts to quantify the
vascular changes in ROP used user-defined features of dilation
and tortuosity (steps 1 and 2) without a computer-based classifi-
cation (step 3). For example, the ROPTool used a semiautomated
process to sum these features into a score64 that correlated with
the expert disease labels. Machine learning uses a classifier (step
3), such as a support vector machine, that learns the best relation-
ship between the features (step 2) and the diagnosis (step 4).26

Deep CNNs differ from traditional feature extraction and machine
learning systems by allowing the CNN to learn features that best
correlate the input image (step 1) with the diagnosis (4) with or
without preprocessing but without explicit human defined features
(step 2).27,28,42

The Development of AI Systems for
ROP Diagnosis

Computer-based systems for ROP diagnosis have
been around more than a decade.24 Some of the first
systems used hand-crafted measures of dilation and
tortuosity to attempt to produce an objective metric
of severity. There are more than a dozen ways to
algorithmically measure tortuosity and dilation, and
the earliest systems varied in the equations used and
in the methods used to identify the blood vessels.
In 2012, Wittenberg et al.24 reviewed the four main
computer-based ROP diagnostic systems at the time:
ROPTool, Retinal Image multiScale Analysis, Vessel
Map, and Computer Assisted Image Analysis of the
Retina. All of these systems were feature extraction–
based systems; that is, they had a system, manual
or semiautomated, to quantify dilation and/or tortu-
osity into a value that had some variable diagnostic
agreement with clinical diagnosis of ROP, as shown in
Figure 1. As opposed to subsequent machine learning
and DL techniques, there was no learning performed
by the computer. Feature combinations and diagnos-
tic cut-points were determined manually by the human
users. Some of systems were semiautomatic with
requirements of clinicians to label or select findings

within the images, and, in general, the outputs did
not correlate well enough with clinical diagnose to be
widely used. However, these systems laid the ground-
work for future machine learning.25

In 2015, Ataer-Cansizoglu et al.26 reported a
machine learning model for automated diagnosis of
plus disease that performed as well as experts. Unlike
prior systems, although this model used traditional
features, a trained support vector machine (SVM)
was used to determine the combination(s) of features
and field of view that best correlated with expert
diagnosis. A SVM is an type of supervised machine
learning classifier that learns the best relationship
between features and diagnosis.26 The accuracy of
the system was highest (95%) when it incorporated
vascular tortuosity from both arteries and veins with
the widest field of view (i.e., 6-disc diameter radius).
Moreover, when the images were cropped to the field
of view of the standard photograph, the accuracy
was <85%, suggesting that clinicians factor in vascu-
lar information from a larger area of retina than
the standard photograph depicted. Despite expert-
level performance, this system was limited in its clini-
cal usefulness because it required manual tracing and
segmentation of the vessels as an input.26

To our knowledge, Worrall et al.27 were the first
to demonstrate fully automated plus disease diagnosis
using a convolutional neural networks (CNN). Using a
real-world dataset with multiple conflicting labels from
experts, they found that their best classifier performed
as well as some of the human graders, but they
concluded that “a classifier can only ever be as good as
its training data, as suchwe need to look to less human-
dependent training data if we are to surpass human
performance.”27 In 2018, Brown et al.28 reported the
results of a fully automated DL-based system for
automated three-level diagnosis of plus disease. This
deepCNN, called the i-ROPDL system, was trained on
>5000 images with a single reference standard diagno-
sis (RSD) based on multiple expert diagnosis (consen-
sus diagnosis of three independent image gradings and
the ophthalmoscopic diagnosis). Using five-fold cross-
validation, the area under the curve for plus disease
diagnosis was 0.98. On an independent dataset of 100
images, the i-ROP DL system had higher diagnostic
agreement with the RSD than seven of eight ROP
experts. For the diagnosis of plus disease, the sensitiv-
ity and specificity of the algorithm were 93% and 94%,
respectively. These sensitivity and specificity values
increased to 100% and 94%, respectively, when includ-
ing pre-plus disease or worse.28

Most studies to date have focused on computer-
based systems to diagnose plus disease; however, there
are a number of reports of using DL to grade ROP
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Figure 2. The continuum of vascular change. Each row depicts
imageswith a label of normal vessels, pre-plus, or plus disease based
onmultiple (>3) expert consensus fromophthalmoscopy and image
grading. For any row, there is increasing tortuosity anddilation of the
vessels from left to right demonstrating a continuous rangeof vascu-
lar change within current ordinal categories of disease. Quantifica-
tion of plus disease using AI has shown promise in the diagnosis and
monitoring of disease change over time.

severity category or classify zone or stage specifi-
cally.29,30 For example, a DL system called DeepROP
achieved a sensitivity of 96.62% (95% confidence inter-
val, 92.29%–98.89%) and a specificity of 99.32% (95%
confidence interval, 96.29%–9.98%) for the detection
of ROP (vs no ROP).31,32 Zhao et al.30 reported the
development of a DL system that can automatically
draw the border of zone 1 on a fundus image as a
diagnostic aid.Mulay et al.29 were the first to report the
identification of a peripheral ROP ridge (stage) directly
in a fundus image. Thus, DL seems to hold promise for
automated and objective diagnosis of ROP in digital
fundus images; however, none of these systems are yet
available for clinical use.

A Continuous Severity Score for ROP

Vascular disease in ROP presents on a contin-
uum, as shown in Figure 2, and experts have been
shown to have poor absolute agreement on classifica-
tion (normal, plus, or pre-plus), but good relative agree-
ment on disease severity.33 This finding motivated the
development of a continuous vascular severity score
using the i-ROP DL system. Redd et al. reported that
a scale from 1 to 9 could accurately detect type 1 ROP
with an area under the curve of 0.95 and, in theory,
could decrease the number of ophthalmoscopic exami-
nations by 80% in a real-world telemedicine program

because most babies will have no or mild disease.34
More recently, Taylor et al.35 implemented the i-ROP
DL algorithm to assign a continuous ROP vascular
severity score (1–9) and to classify images based on
severity: no ROP, mild ROP, type 2 ROP, and pre-
plus disease, or type 1 ROP. Using reference standard
diagnoses, this retrospective cohort study concluded
that the continuous ROP vascular score was associ-
ated both with the ICROP category of disease at a
single point in time, and clinical progression of ROP
over time.35 Gupta et al.36 showed that these contin-
uous scores reflected posttreatment regression in eyes
with treatment requiring-ROP. Using i-ROP data, this
group also found that eyes requiringmultiple treatment
sessions (laser or intravitreal injection of bevacizumab)
had higher pretreatment ROP vascular severity scores
compared with eyes requiring only a single treatment,
suggesting that treatment failure may be related to
more aggressive disease or disease treated at a later
stage.36 Using a similar automated quantitative sever-
ity scale for ROP diagnosis may help to optimize treat-
ment regimens by better predicting the preterm infants
that are at risk for treatment failure and disease recur-
rence.36 Future clinical trials may use a quantitative
scale to help evaluate treatment thresholds.

Challenges to AI Implementation

Ting et al.37 recently published on the clinical and
technical challenges of DL applications in ophthal-
mology. Although AI holds great promise for improv-
ing care for ROP, the gap between scientific discov-
ery and clinically useful implementation of technology
remains wide. The main potential challenges hinder-
ing the deployment of DL systems include ensuring
generalizability, explainability, and overcoming regula-
tory and medicolegal issues.37 We discuss these topics
as they apply to AI for ROP diagnosis.

Generalizability

It is well-established that CNNs often do not gener-
alize well to unseen data. This can be due to differ-
ences in the populations being studied, differences in
theways the imageswere acquired, technical differences
between camera systems, and other unknown factors.
ROP phenotypes that are seen in low- and middle-
income countries are often qualitatively different from
phenotypes seen in North America; therefore, it is criti-
cal to validate the performance of AI systems on the
target population before clinical use. At a minimum,
AI systems need to be further validated using datasets
widely tested in different populations (i.e., patients
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with different levels of pigmentation, image quality)
and on different devices (e.g., various cameras, fields
of view). Open access datasets and software could
alleviate such issues and encourage timely clinical appli-
cation for ROP diagnosis.38

Explainability

One common criticism for AI algorithms is that
acceptance by physicians and patients may be reduced
owing to the inability to explain how the algorithm
arrived at a conclusion. We agree with efforts to
improve explainability; however, there are problems
with all of the currently available techniques to explain
the workings of CNNs.39 Moreover, it is interest-
ing to consider whether and how the same standard
of explainability is applied to the cognitive reason-
ing of clinicians. When human experts are asked to
explain what features they used to arrive at a diagnosis
they often (1) disagree40 and (2) cite different features
based on clinical judgment that led to the diagno-
sis.41 It may be that the eventual clinical adoption
of technology is predicated on developing methodol-
ogy for understanding the high-level features CNNs
use for discrimination. But, it may also be that clini-
cal adoption occurs after rigorous clinical validation
demonstrating improvement in outcomes despite a lack
of complete transparency. The primary goal of AI
research in ROP is to improve outcomes. As a field,
we may need to determine whether explainability or
improved outcomes is our primary goal given the black
box nature of clinical diagnosis in general.38 This is
analogous to the fear of self-driving cars causing a fatal
accident. Technology never will be perfect, but it may
be better than the status quo.

One approach to have more explainable AI is to
combine DL methods with traditional feature extrac-
tion, and several groups have attempted this for plus
disease.42,43 Mao et al.42 trained a DL network to
segment retinal vessels and the optic disc and to
diagnosis plus disease based on automated quantita-
tive characterization of pathologic features, such as
vessel tortuosity, width, fractal dimension, and density.
Graziani et al.43 compared the black box CNN features
with known hand-crafted features using regression
concept vectors. Although these approaches do not
explain how the CNNs make their decisions, both
methods demonstrated that disease-specific features
(e.g., dilation and tortuosity) correlate with the CNN’s
diagnostic outcome and may provide enough face
validity to satisfy clinicians and regulators. In addition,
these quantitative metrics may be useful for disease
monitoring over time.

Regulatory andMedicolegal Issues

ROP care is the highest medicolegal risk within
ophthalmology; thus, any discussion of AI assistance
for ROP care must consider this issue. As AI enters
clinical medicine, there is increasing awareness of
the need to adjudicate liability from care decisions
informed by AI.44 To this end, there is a distinction
between autonomous and assistive AI systems. In the
former, such as IDx-DR,45 decisions are based solely
on the output of the AI system. In the latter, the
output is used as an aid to clinical diagnosis by a physi-
cian. The US Food andDrug Administration is rapidly
innovating their methods of evaluation to ensure safe
implementation of these technologies into clinical care
given a precise indication for use and evidence of effec-
tiveness in a real world population with consideration
of these challenges regarding generalization, explain-
ability, and bias.46 As these technologies become
more commonplace, the regulatory requirements will
likely continue to evolve, as will the medicolegal
implications.

AI for ROP Education

Multiple computer-based analyses have also been
used to explain interobserver variability in diagno-
sis, which may help to standardize ROP education.
Chiang et al. and Gelman et al. measured agree-
ment and accuracy of plus disease diagnosis among
ROP experts compared with the Retinal Image multi-
Scale Analysis system.47–50 They found that experts
often focused on qualitative features outside of the
published definitions of ROP.50 Ataer-Cansizoglu et
al.40,51 analyzed 66 image features and quantified inter-
expert variability in evaluating these ROP features
and found significant differences in the features used
between different examiners. A quantitative analysis of
vascular features was also performed byWoo et al.52 in
2015 looking specifically at aggressive posterior ROP, a
rapidly progressive form of ROP predominantly in the
posterior region with marked plus disease. Woo et al.52
found that aggressive posterior ROP was often misdi-
agnosed, and interexpert agreement was poor when
comparing retinal images of normal, plus, or aggres-
sive posterior ROP eyes. Some clinicians refer to a two-
quadrant rule for the level of disease in ROP, that is, an
eye has plus disease if two or more quadrants analyzed
individually have findings greater than the standard
photography. Kim et al.53 compared quadrant diagno-
sis versus eye-level diagnosis and found lower accuracy
when clinicians diagnosed plus disease one quadrant
at a time, suggesting that clinicians subconsciously
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evaluate the whole eye, even when they intend to
carefully evaluate plus by quadrant.

If ROP experts often do not agree on how to
diagnose ROP, or on the diagnosis of individual babies,
it is not surprising that ROP trainees find the task of
ROP diagnosis challenging as well. It is well-established
that ophthalmology graduates complete residency, as
well as retina and pediatric ophthalmology fellow-
ship programs, without confidence in their ability to
diagnose ROP.54–56 A recent survey of 95 interna-
tional ophthalmology trainees found that <33% of
learners performed ROP screenings under direct super-
vision.57 Chan et al.58 demonstrated that there was
significant variability in diagnostic accuracy among
retinal fellows when analyzing ROP images compared
with reference standard diagnoses. Both Chan et al.58
and Myung et al.59 demonstrated the inconsistent
accuracy of detecting type 2 ROP and treatment-
requiring ROP by fellows. These studies raise serious
concerns for ROP screening performed by inexperi-
enced examiners, and there are no accepted criteria for
minimum necessary supervision, examinations, treat-
ments, and so on for clinical competency forROP cases.
Improved global education for ROP training is neces-
sary to ensure treatments are performed adequately.
The development of AI systems for automated diagno-
sis in ROP may facilitate the incorporation of these
algorithms within medical training to standardize ROP
education through tele-education, and perhaps, ROP
certification.56

Recommendations for Future
Research in AI Applied to ROP

The 2018 US Food and Drug Administration
approval of IDX for diabetic retinopathy screening
in the primary care setting set the stage for clini-
cal use of AI45,60; this technology, which assesses
image quality and detects diabetic retinopathy based
on biomarkers (e.g., hemorrhages, exudates), was the
first automated screening in all medical specialties with
no need for physician input.45 As discussed, similar
technology exists for the detection of plus disease and
ROP staging, yet there are several hurdles that ROP
researchers must tackle to advance this AI technol-
ogy into the clinical arena. First, the automated DL-
enhanced algorithms must first be integrated into
commonly used cameras (e.g., RetCams) or into cloud-
based systems. This effort will require collaborations
with engineers, system developers, and, in some cases,
the development of infrastructure for telemedicine. AI-
assisted ROP screening may be most useful in regions

that have a dearth of trained ROP providers. Low-cost
fundus cameras, including smartphone-based devices,
have also been proposed to lower the capital costs
required for telemedicine infrastructure; however, this
strategy has not been validated on a large scale.8
Moreover, validation studies in the intended popula-
tion need to be performed, because the image quality,
fundus pigmentation, prevalence of disease, and ROP
phenotype can vary dramatically between geographic
regions.

Experts have poor absolute agreement on ROP
vascular disease classification (normal, plus, or pre-
plus) but good relative agreement on ROP disease
severity.33 As previously described, this finding
motivated the development of a continuous vascu-
lar severity score using the i-ROP DL system. This
continuous ROP vascular score provided a more
quantitative diagnosis for plus disease and was associ-
ated with both the ICROP category of disease at a
single point in time and clinical progression of ROP
over time.35 The quantitative ROP vascular severity
group (1–9), which was described and evaluated by
Gupta et al.36 and Taylor et al.35 consistently reflects
plus disease presence (i.e. more advanced ROP stages
are associated with increased plus score)2, ROP disease
progression, and posttreatment regression. However, it
is not uncommon for preterm infants to have comor-
bidities, such as pulmonary hypertension, which cause
increased retinal vessel dilation and tortuosity. Thus,
the ROP vascular severity score and the CNNs that
detect these subtle changes should be tested for the
ability to differentiate between ROP- and non–ROP-
related vascular changes. More precise definitions of
AP-ROP also need to be developed for the purpose
of training CNNs to distinguish AP-ROP from either
ROP or plus disease.

Demonstrating abnormal regions of the retina or
affected vessels as a detailed figure or heat map
would be helpful for clinicians to identify areas at
risk for progression. Such technology would likely
have clinical implications for older children with an
ROP history to determine which patients with persis-
tent avascular retina are at risk of further seque-
lae and need prophylactic laser treatment. Further,
there are structural changes on optical coherence
tomography (OCT) that correlate with severe ROP.61
OCT and OCT angiography could identify the earli-
est structural and angiographic signs preceding disease
progression to advanced stages of ROP, such as early
vitreoretinal traction preceding retinal detachment61
and AI-assisted OCT image acquisition and inter-
pretation is an active area of research.62 Maldon-
ado et al.63 demonstrated three-dimensional struc-
tural changes in patients with severe ROP. DL-based
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OCT for improving the efficiency in image acquisi-
tion, auto-segmentation, and extraction of quantifi-
able biomarkers in ROP represents a potential area of
future research.

Conclusions

There are multiple reasons that AI may improve
diagnosis of ROP worldwide. ROP diagnosis has
been shown to be both subjective and qualitative,
and AI may add objectivity and improve accuracy.
The screening burden in low- and middle-income
countries is often too high to be met with the
available workforce, and AI-assisted disease screen-
ing may be a paradigm-shifting strategy to improve
efficiency. AI could provide objectivity to ROP educa-
tion, and AI-based augmented reality may repre-
sent a future pedagogical tool to improve trainee
performance on ROP diagnosis and treatment. AI
has enabled the development of an ROP severity
score that correlates with ICROP disease classifi-
cation and shows promise for quantitative disease
monitoring, improved risk prediction, and posttreat-
ment identification of treatment failure and recurrence.
Deployed into a telemedicine system, AI could signif-
icantly benefit ROP clinical care by improving the
efficiency, accuracy, and objectivity of ROP diagno-
sis. AI may also improve early identification of severe
ROP before the development of retinal detachment.
Finally, at the population level, quantitative diagnosis
may enable epidemiologic monitoring of disease sever-
ity between neonatal care units within a geographic
region and over time (Redd, T et al., IOVS, 2019,
ARVO E-Abstract, A0207).
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