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A large number of studies have shown that mature adipocytes are able to dedifferentiate in vitro into progeny cells,
which possess proliferative capacity and mutilineage potential. Our present study confirms that mature adipocytes
derived from Angus cattle also dedifferentiate into proliferative-competent progeny cells. However, this report is unlike
any published for all other breeds of cattle we have worked with or that we have seen in published reports, in which
mature adipocytes retain and distribute lipids into daughter cells symmetrically or asymmetrically. In the present work,
we noted that Angus-derived mature adipocytes extruded a majority of their cellular lipid droplets prior to cell division. In
this manner, these cells are processing lipid in a manner observed in mature adipocytes isolated from swine tissue. These
results suggest that regulation of the mechanism(s) underlying lipid processing might be different between and within
animal breeds. Lipid processing in beef-derived adipocytes during dedifferentiation may serve as a unique animal model
for studying lipid metabolism during reverse adipogenesis.

A key component of meat animal production is the consumer
acceptance of the final product.1 While a number of factors
influence final carcass quality, marbling/intramuscular fat (IMF)
plays an important role in imparting flavor and juiciness to
enhance the eating quality of meat.1,2 Devising a variety of
regimens to improve IMF in meat animals, while decreasing
undesirable fat accumulation (such as subcutaneous and visceral
fat tissue), has been the focus of numerous studies.1-11 As the main
contributor of adipose tissue, the cellularity of adipocytes and the
underlying mechanisms regulating adipogenesis and lipid mobil-
ization deserve considerable attention.1-3,5,8-10,12-16

Adipogenesis is a complex process involving cells of the adipose
lineage, whereby cells proliferate, become committed, switch to
differentiation mode and begin to express differentiated pheno-
types.2,14,17-20 Mature adipocytes, possessing large-unilocular
lipid vesicles, have traditionally been considered incapable of
returning to a proliferative state and could only metabolize
lipid.20 However, recent studies have shown that lipid-filled
adipocytes may dedifferentiate into proliferative-competent pro-
geny cells and these daughter cells may redifferentiate into
adipocytes or transdifferentiate into other types of cells
in vitro.2,9,10,12-14,17,18,21-42 As such, evaluation of mature adipocyte
(cellular) physiology, dedifferentiation and plasticity may reveal a
new understanding of adipogenesis.

To initiate studies with mature adipocytes, we previously
documented that pure cultures of beef-derived (lipid-filled)
adipocytes were capable of resuming proliferation even with
considerable cytosolic lipid in either an asymmetric or symmetric
manner.18,24,25 Alternatively, pig-derived mature (lipid-filled)
adipocytes always dumped their lipid directly into the media
(external) environment prior to proliferation.43,44 However, in our
present work, during an ordinary cell expansion protocol, beef-
derived mature (lipid-filled) adipocytes dedifferentiated into
proliferative-competent cells by first dumping their cytosolic lipid
in a manner similar to pig-derived adipocytes in vitro. As the
present observations were through the use of a different breed of
cattle (Angus), it is possible that different breeds or even
individuals (Angus breed individuals) may possess diverse lipid
metabolism and handling, which may contribute to our
observations. As such, Angus-derived mature adipocytes posses-
sing different dedifferentiation systems could be a novel mode for
studying lipid routing during dedifferentiation of mature
adipocytes.

Cells were observed daily and pictures were taken for the
adipocytes derived from pig (Fig. 1) and Angus cattle (Fig. 2).

Results showed that fat cells derived from pig adhered firmly to
the surface of the flask after the purified ceiling culture.
Subsequently, the attached fat cells stretched membrane and big
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lipid droplets were extruded from cytoplasm, followed by cell
division (Fig. 1). This phenomenon was in accord with what we
found before, of which lipid-filled adipocytes derived from pig
could dedifferentiate into proliferative-competent progeny cells,
extruding lipids prior to cell division.

Similarly, pure mature adipocytes derived from Angus cattle
adhered on the flask after the ceiling culture regimen. Adipocytes
filled with lipid droplets showed oval-shaped conformation with
little (attachment) spindles on apical and dorsal poles of the cell.
After a few hours mature adipocytes began to spread out (Fig. 2A
and B). Then, however, unlike what we have previously observed
in 100% of our beef-derived adipocyte cultures (lipid-laden cells
retained lipids and segmented/processed them into daughter cells
symmetrically or asymmetrically),2,12,17,18,23-26,38,41 numerous
Angus-derived mature adipocytes deposited cytosolic lipid directly
into medium environment prior to proliferation (process took
approximately 2 d after flask re-inversion) (Fig. 2C), showing the
similar lipid handling with fat cells derived from pig.
Subsequently, lipid extruded cells divided into daughter cells at
next day and presented strong proliferative capacity (Fig. 2D).
These results suggest that different beef cattle-derived mature
adipocytes possess different dedifferentiation mechanisms.

The present study showed that mature adipocytes derived from
cattle and pig can dedifferentiate into proliferative-competent
progeny cells in vitro. This result is consistent with numerous
studies, which have suggested that lipid-filled adipocytes derived
from cattle and other species may not be terminally differ-
entiated.18,21,22,24-28,34,35,43,44 In previous studies, two different
processes were described for lipid handling/processing during
dedifferentiation of mature adipocytes. For lipid-filled adipocytes
derived from cattle, the lipid droplet is sectioned/partitioned and
transferred into daughter cells symmetrically (retain the same
amount of lipids) or asymmetrically (retain different amount of
lipids).18,24-26 Another (more definitive) manner of lipid processing
was determined for pig-derived mature adipocytes, which

suggested that pig-derived mature adipocytes extruded lipids into
the medium directly prior to cell division.43,44 However, in the
present study with Angus cattle, mature adipocytes also began to
extrude lipids quite rapidly (the first day after inverting the culture
flask), followed by most cells on the second day, showing the
similar manner with pig-derived fat cells. This has never been
observed in other cattle cell systems that we have conducted on
numerous occasions. These results suggest that not only different
species may possess diverse lipid metabolism manner but also the
different breeds or even individuals. Another explanation for the
difference in cell handling of lipid might be a simple result of
slight divergence in methods used for cell isolation. If so, then
more attention in isolation procedures may result in ability to
acquire representatives of specific populations of cells or of for a
wide-divergence of mature adipocytes possessing more general
properties. As such, the regulation underlying the different modes
of lipid handling manners remains unclear.

Recently, several studies were reported regarding the gene
expression profile during the opposite process of traditional
adipogenesis (what we term as dedifferentiation). Ono et al.36

indicated that the genes involving movement, growth, prolifera-
tion and morphogenesis were upregulated during pig-derived
mature adipocyte dedifferentiation and that lipid metabolism-
related genes were significantly downregulated (these genes
involved in the oxidation, quantity, modification and metabolic
process of fatty acid metabolism). However, some regulation
pathways of adipocytes derived from beef cattle were different
from other species-derived adipocytes.1,10,12,20,45-47 Different breeds
of beef-derived gene expression profiles involved in dedifferentia-
tion need to be examined.

In our ceiling culture work to isolate and purify homogeneous
cultures of progeny cells from dedifferentiated (mature) adipo-
cytes, not every lipid-filled cell possesses the ability to
dedifferentiate and form proliferative-competent progeny cells.29

In the present study, the purified mature adipocytes derived from

Figure 1. Lipid handing manner during dedifferentiation of pig-derived mature adipocyte. Pig-derived mature adipocyte extruded lipid prior to
proliferation. Isolation method was described by Chen et al.43,44 [(A–C), 200� magnification; (D), 100� magnification; in time order.]
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Angus cattle were evaluated by daily microscopic examination. A
total of 10 mature adipocytes were obtained after cell isolation and
early differential plating (step 1 of culture purification); nine cells
extruded lipids after 1 or 2 d, while one cell retained lipid, did not
proliferate but did survive during the subsequent 20 d after cell
isolation, when we ended the cell culture. However, from the nine
lipid-extruded cells, eight cells died and disappeared several days
after lipid-extrusion or evidence of progeny cell division, and
homogeneous progeny cells were obtained from one mature
adipocyte possessing dedifferentiation and proliferation capacity.
The lack of complete epigenetic events for cell self-renewal might
be the reason for the failure of dedifferentiation and proliferation.
Generation of increased numbers of cultures of homogeneous
progeny cells is a consideration, as studies on the progeny of one
single cell may not reflect the real physiology of a whole body.
Such a cell system could, however, provide considerable

information about the ability of progeny cells to undergo
adipogenesis to form lipid-filled adipocytes in vitro, and whether
the regulation of such is consistent with data derived from cell
lines or stromal vascular cells.19,20 Moreover, the cell physiology of
pure cell type has provided us the basis for better understanding
the complicated network for all kinds of cells. For example,
although the rate for dedifferentiation of mature adipocytes might
be 1% (based on whole animal estimates) there are millions of
mature adipocytes that possess the potential to dedifferentiate,
proliferate and form new cells when exposed to an appropriate
environment. We simply need to devise more efficient ways to
isolate and purify (to homogeneity) sufficient cells for a variety of
experiments.31 In addition, even if limited to only a few cells, the
dedifferentiation phenomenon of mature adipocytes in vitro will
provide us a novel model for studying lipid metabolism/handling/
processing.

Figure 2. Lipid processing during dedifferentiation of purified cultures of mature adipocytes derived from Angus cattle. At the end of ceiling culture,
mature adipocytes appeared like a spindle-shaped oval (A). One day after reinverting the flask the lipid-filled adipocyte began to enlarge and adhered
tightly to the flask surface (B). Two days after reinverting the flask the cell membrane spreaded significantly and a large lipid droplet was extruding into
the medium (C). Eight days after reinverting the flask, lipid has been expelled, and the cells proliferated into a number of daughter cells in vitro (D).
[(A–C), 200� magnification; (D), 100� magnification.]
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A number of studies, including this one, suggest that domestic
animals (like cattle and pig) may be used as models for humans
and other animals because the interactions between adipose and
(other) tissues may be more easily evaluated.10,46,48 Considering
that the dedifferentiation process of cattle-derived (mature)
adipocytes may involve individual-specific lipid mobilization, we
may need to resolve this issue prior to expounding on the
usefulness of such a system for human-related dysfunctions.49

Even so, as stored lipid serves as an energy-providing substrate, it
has an important role on regulating human health and animal
production. Consequently, the underlying mechanisms involved
in lipid processing/handling during dedifferentiation of pure
cultures of Angus-derived adipocytes may be useful in deciphering
regulating carcass composition and meat quality (for meat animal
production) and in mediating adverse effects related to human
health.

Collectively, our study indicated that Angus cattle unlike other
cattle breeds examined before possess mechanisms similar to pigs,
during the dedifferentiation of mature adipocytes. This suggests
that lipid metabolism may be different among species or even
individuals. Our results suggest that breed-specific dedifferentia-
tion systems may be at play and that we have devised a solid
experimental base for better understanding this unique model of
lipid metabolism and adipogenesis.

Materials and Methods

Animal/tissue samples. Sternomandibularis muscle samples of
Angus cattle (n = 1) and fat tissues of swine (n = 3) were collected

at Washington State University (WSU) Abattoir. The WSU
Animal Care and Use Committee screened the use of animals in
this research, and the animal use met the standards imposed by
both the United States Department of Agriculture (USDA) and
the United States Public Health Service (PHS).

Cell isolation and cell culture. Beef- and pig-derived adipocytes
isolation methods were previously described by Fernyhough
et al.26 and Chen et al.43,44 Briefly, isolated cells derived from IMF
of Angus cattle and fat tissues of swine were cultured in inverted
12.5 ml flasks (ceiling culture, upside down) filling with DMEM/
F12 + 10% horse serum (HS) after collagenase digestion and
wash, respectively. Early differential plating was done on the 2 d
of cell isolation.26 Transferred mature adipocytes were cultured for
4 d until floating lipid-filled adipocytes firmly attached the surface
of flask. Subsequently, the flask was re-inverted to normal
position, and medium was replaced by 5 ml DMEM/F12 + 10%
fetal bovine serum (FBS) and medium was changed every 2 d.
Cells were monitored daily to prevent any contaminations
according to adipocyte purification methods and cautions.26 All
the cells were cultured in 37°C incubator with 95% air and 5%
CO2. Cell numbers were recorded and each mature adipocyte was
marked and observed under microscope after flask re-inversion.
All photomicrographs were taken with a Sony RGB digital camera
(3/4-inch chip) married to a Nikon Diaphot phase contrast
microscope and Image Pro Plus1 image analysis software.
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