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Abstract

Recent innovations of next-generation sequencing such as RNA-seq have generated an enormous amount of comparative tran-

scriptome data, which have shed lights on our understanding of the complexity of transcriptional regulatory systems. Despite

numerous RNA-seq analyses, statistical methods and computational tools designed for phylogenetic transcriptome analysis and

evolutionhavenotbeenwell developed. In response to thisneed,wedevelopedsoftwareTreeExp2 specifically forRNA-seqdata. The

R-package TreeExp2 has implemented a suite of advanced, recently developed methods for transcriptome evolutionary analysis. Its

main functions include the ancestral transcriptome inference, estimation of the strength of expression conservation, new expression

distance, and the relative expression rate test. TreeExp2 provides an integrated, statistically sound framework for phylogenetic

transcriptome analysis. It will considerably enhance our analytical capability for exploring the evolution and selection at the tran-

scriptome level. The current version of TreeExp2 is available under GPLv3 license at the Github developer site https://github.com/

jingwyang/TreeExp; lastaccessedNovember12,2019,and itsonline tutorialwhichdescribes thebiological theories indetailsand fully

worked case studies with real data can be found at https://jingwyang.github.io/TreeExp-Tutorial; last accessed November 12, 2019.
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Introduction

Recent remarkable progress in next-generation sequencing

(RNA-seq) (Wang et al. 2009) has shed some lights on one

of central topics in evolutionary biology, that is, how gene

regulation plays a key role in phenotypic innovations (King

and Wilson 1975; Lehner 2013). Although an enormous

amount of transcriptome data from multiple tissues with di-

verse species have been generated (Brawand et al. 2011;

Barbosa-Morais et al. 2012; McCarthy et al. 2012; Necsulea

and Kaessmann 2014; Xu et al. 2018; Cardoso-Moreira et al.

2019), the challenge immediately becomes the availability of

statistically sound analytical tools that enable evolutionists to

explore the pattern of transcriptome evolution. In 1980s and

1990s, promoted by advances in DNA sequencing techni-

ques, the conceptual framework of DNA sequence evolution

and analytical methods had been well developed (Nei 1987,

2014; Nei and Kumar 2000; Yang 2006, 2014). For instance,

a rich body of theoretical and empirical studies were published

about the evolutionary distance between two sequences.

However, the expression distance for transcriptome evolution

between species has not been generally accepted among a

number of distance measures proposed in the literature (Gu

and Su 2007; Pereira et al. 2009; Gu et al. 2013; Sudmant

et al. 2015; Chen and He 2016).

Apparently, development of an integrated, statistically

sound framework for the evolutionary transcriptome analysis

is highly desirable. It is interesting to have a comparison with

MEGA (Kumar et al. 2008, 2018), a widely used software

package for molecular evolutionary genetics analysis. Yet,

we fully acknowledge that phylogenetic analysis for transcrip-

tome evolution is still in the early stage comparing to phylo-

genetic analysis of DNA and protein sequence. Moreover, the

theoretical foundation of transcriptome to describe how gene

expression evolves between species has not been well
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developed. As a first attempt, in this article, we present an R-

package, TreeExp2, which is designed to make several pub-

lished (Gu 2016; Gu et al. 2017, 2019; Yang et al. 2018) and

new statistical methods available for phylogenetic analysis of

transcriptome data. Based on our previous work in developing

bioinformatics tools implemented in TreeExp 1.0 (Tree-depen-

dent Expression analysis for short) (Ruan et al. 2016), the

TreeExp2 is the updated version with a suite of advanced,

recently developed methods. The package can be applied to

comparative expression evolution analysis based on RNA-seq

data, which includes pairwise expression distance estimation,

relative rate test for transcriptome evolution, the strength of

expression conservation estimation, ancestral transcriptome

inference, etc. Figure 1 illustrates the main features and func-

tions in TreeExp2, as well as supplementary table S1,

Supplementary Material online, for a summary. The current

version of TreeExp2 is available under GPLv3 license at the

Github developer site https://github.com/jingwyang/TreeExp;

last accessed November 12, 2019, and its online tutorial which

describes the biological theories in detail and fully worked case

studies with real data can be found at https://jingwyang.

github.io/TreeExp-Tutorial; last accessed November 12, 2019.

Results and Discussion

Overall, TreeExp2 offers an analytical framework under a uni-

fied evolutionary model to help our understanding of tran-

scriptome evolution that may underlie phenotypic evolution

across species. Several new features are discussed below. One

may also see the tutorial document that not only describes the

statistical model in details but also demonstrates each method

by the real data set. To become more flexible when this R-

package is applied to a broad range of research projects with

various experimental designs and data types, TreeExp2 only

adopted the normalized expression data set as input, without

any specific requirement for the normalization procedure.

Nevertheless, we strongly recommend users should consider

their multispecies input data sets to be processed appropri-

ately so that they are comparable between tissue and species

samples. RPKM (Reads Per Kilobase Million) or FPKM

(Fragments Per Kilobase Million) method has been widely

used to normalize the raw reads count data and to remove

the feature-length and library size effects; the drawback is

that this procedure tends to be less stable when the number

of expressed genes differs considerably across samples. This

problem can be mostly (if not all) alleviated by the TPM

FIG. 1.—RNA-seq data from multiple species and tissues, illustrated by expression levels x¼ (x1, x2, . . ., xn) of an orthologous gene over n species.

TreeExp2 can perform the following analyses. 1) Infer the ancestral expression state (node y in red brown as example) of a gene in a tissue, which is a

(phylogeny-dependent linear) combination of x. 2) Estimate the strength of expression conservation (W) for any gene when x is given in a tissue. 3) Calculate

expression distance that is linear to the evolutionary time. And 4) detect lineage-specific fast-evolving expression divergence in species A or B (yellow

branches) using species C (purple branch) as outgroup.
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(Transcripts Per Kilobase Million) method that can effectively

normalize the differences in composition of the transcripts.

More statistically sophisticated methods such as TMM

(Trimmed Mean of M-values) and the median ratio normali-

zation are also suggested (Robinson et al. 2010).

The Stationary Ornstein–Uhlenbeck Model of
Transcriptome Evolution

Those new methods we have implemented in TreeExp2 are

based on the Ornstein–Uhlenbeck (OU) model that considers

the stabilizing selection as the baseline model of transcrip-

tome evolution (Hansen and Martins 1996; Lemos et al.

2005). The notion of optimal expression claims that stabilizing

selection, which maintains the optima under the background

of random mutations, dominates the transcriptome evolution

(Bedford and Hartl 2009). Following the most common prac-

tice, the stabilizing selection on the expression of a gene (x)

satisfies a Gaussian-like fitness,

f ðxÞ ¼ ewðx�lÞ2=2; (1)

where l is the optimal value and w is the coefficient of sta-

bilizing selection; a large w means a strong selection pressure,

and vice versa. Lande (1976) showed that the evolution of X

follows an OU stochastic process (fig. 2A). That is, given the

initial expression value x0, the OU model predicts that x(t), the

values of X after t evolutionary time units, follows a normal

distribution with the following mean E[xjx0] and variance

V(xjx0):

E½xjx0� ¼ x0e�bt þ lð1� e�btÞ

Vðxjx0Þ ¼
1� e�2bt

W
;

(2)

respectively, where the rate of expression evolution b¼Wr2,

and W¼ 2New; Ne is the effective population size (Hansen

and Martins 1996; Bedford and Hartl 2009). Hence, an OU

model can be concisely represented by OU(xjx0; t) (model

parameters omitted for simplicity). Intuitively speaking, an

OU process can be thought of as adding an elastic spring to

a Brownian motion. As random mutations push the gene ex-

pression farther away from this fixed optimum, the strength

of elastic return increases proportionally.

The stationary OU model along a given phylogeny can be

described as follows. Consider the evolution from the origin of

the tissue (node Z) to the root (node O) of the species tree

(fig. 2B): The first part is the conventional species tree with a

specified root (O), and the second part is the evolutionary

lineage from the origin of the tissue (node Z) to the root

(node O) of the species tree, with s time units. Although

the timing of tissue origin was so ancient that the root of

species phylogeny (node O) can be approximated by the sta-

tionary condition as s!1, the mean and the variance of x0

at the root of phylogeny is simply given by l and 1/W, respec-

tively, according to equation (2). Since then, both the optimal

level (l) and the strength of stabilizing selection (W) remain

constant along the species phylogeny. Consequently, the ex-

pression variances in all internal and external nodes are the

same, which equal to 1/W. It has been shown that the sta-

tionary assumption can simplify the analysis considerably, be-

cause the variance–covariance matrix V along a phylogeny is

root independent (Hansen and Martins 1996).

New Method for Expression Distance

For phylogenetic transcriptome analysis, it is desirable to esti-

mate the expression distance that is linear in evolutionary time

(t), a property that most measures may not have (Sudmant

et al. 2015). For two species diverged t time units ago, let x1

and x2 be the expression levels of an orthologous gene pair,

respectively. Under the stationary OU model, it has been

shown that the covariance between x1 and x2 is given by

Covðx1; x2Þ ¼ e�2bt=W (3)

and the variances Var(x1)¼Var(x2)¼ 1/W. Equation (3) indi-

cates that the expression covariance between two species

decays exponentially with time t, characterized by the expres-

sion distance defined by D12¼ 2bt, where b is the rate of

transcriptome evolution. Based on equation (3), it appears

that this linear-to-time expression distance between species

can be simply estimated by

D12 ¼ �lnð1� P12Þ; (4)

where P12¼ 1� r12 is the Pearson distance (r12 is the Pearson

coefficient of correlation). Because the expression distance

may vary considerably among different gene sets, it is impor-

tant to evaluate the bias caused the gene selection procedure

such as “only expressed genes included” or “all genes

included.”

It should be noticed that equation (4) assumes that the

optimal expression level (l) is the same among genes, referred

as the constant-l distance. Because the optimal expression

level (l) actually varies considerably among genes, this as-

sumption is biologically unrealistic. Indeed, computer simula-

tions showed that neglecting the l-variation among genes

could lead to an underestimation of D12 by equation (4),

which becomes nontrivial when D12> 0.5. To correct the

bias caused by the constant-l assumption, we developed a

new method called the variable-l method, in which a general

formula to estimate the express distance D12¼ 2bt is given by

D12 ¼ �ln½ðr12 � pÞ=ð1� pÞ� ¼ �ln½1� P12=ð1� pÞ� (5)

(see Materials and Methods), where p measures the degree of

l-variation among genes: p¼ 0 means a constant-l assump-

tion and equation (5) reduced to equation (4), whereas p¼ 1
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means a very strong l variation among genes. TreeExp2

implemented a statistical method to estimate the parameter p.

We estimated p¼ 0.35–0.40 based on mammalian RNA-

seq data of six tissues (Brawand et al. 2011). In particular,

table 1 presents a detailed analysis of transcriptome evolu-

tion between the human and macaque. The coefficient of

expression correlation between species ranges from 0.71 to

0.90 among six tissues. We then estimated the expression

distance D12 by three methods, that is, the Pearson dis-

tance, the constant-l distance and the variable-l distance.

For instance, D12 of tissue liver is 0.104, 0.110, and 0.191,

respectively, illustrating that different estimation methods

may result in as many as 2-fold differences. If one assumes

that the human–macaque split time about 29 Ma, the rate

of expression evolution in liver is around 1.79� 10�9–

3.29� 10�9 per year.

Ancestral Transcriptome Inference along a Phylogeny

To trace the route of transcriptome evolution, ancestral

transcriptome inference plays an essential role. We (Yang

et al. 2018) recently reported a new statistically sound

method particularly designed for high-throughput RNA-

seq data. This phylogeny-dependent method used an em-

pirical Bayesian approach under the OU model, which

includes the Brownian motion model (Gu 2004) as a spe-

cial case. Although the procedure is technically sophisti-

cated, the biological interpretation is actually

straightforward. Let x¼ (x1, . . ., xn) be the observed ex-

pression profile of a given orthologous gene over n spe-

cies, and y be the expression level at an ancestral node of

interest. Yang et al. (2018) showed that the posterior

mean of y conditional of x1, . . ., xn is given by

FIG. 2.—The evolutionary phylogeny for comparative transcriptome analysis (A) under Ornstein–Uhlenbeck (OU) model. (B) Phylogeny when considering

the origin of the tissue (node Z) to the root (node O) of the species tree. When the tissue origin is so ancient that s!1, it is called the stationary OU model

along the species phylogeny.

Table 1

Expression Distance Estimates between Human and Macaque (t¼29 Ma)

Tissues Brain Cerebellum Liver Kidney Heart Testis

r12 0.9016 0.004 0.8936 0.004 0.8966 0.004 0.8766 0.005 0.7086 0.007 0.7446 0.004

Pearson expression distance

Expression distance 0.0896 0.004 0.1076 0.004 0.1046 0.004 0.1246 0.005 0.2926 0.007 0.2566 0.004

Rate of transcriptome evolution 1.53� 10�9 1.84� 10�9 1.79� 10�9 2.14� 10�9 5.03� 10�9 4.41� 10�9

Constant-l expression distance, equation (4)

Expression distance 0.1046 0.005 0.1136 0.006 0.1106 0.006 0.1326 0.007 0.3456 0.021 0.2966 0.011

Rate of transcriptome evolution 1.79� 10�9 1.95� 10�9 1.90� 10�9 2.28� 10�9 5.95� 10�9 5.10� 10�9

Variable-l expression distance, equation (5)

Estimated p 0.354 0.384 0.401 0.377 0.327 0.392

Expression distance 0.1486 0.008 0.1916 0.009 0.1916 0.009 0.2226 0.010 0.5696 0.038 0.5476 0.023

Rate of transcriptome evolution 2.41� 10�9 3.29� 10�9 3.29� 10�9 3.83� 10�9 9.81� 10�9 9.43� 10�9
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yjx ¼ E½yjx1; . . . ; xn� ¼ b0 þ
Xn

i¼1

bixi; (6)

where b0 and bi (i¼ 1, . . ., n) are those coefficients specifically

related to the ancestral node y, which are phylogeny

dependent. Hence, Bayesian ancestral expression inference

by equation (6) can be also interpreted as a simple linear

combination of the current expression profile, weighted by

node-specific coefficients. TreeExp2 implemented a practically

feasible algorithm to calculate the coefficients b0, b1, . . ., bn,

which makes a fast reconstruction of ancestral

transcriptomes.

Estimation of the Strength (W) of Expression Conservation

Evolution of gene expression across species is subject to the

stabilizing selection to maintain the optimal expression level.

Although it is wildly accepted that the resulting expression

conservation varies considerably among genes, statistically re-

liable estimation remains a challenge, due to very few species

and a high number of unknown parameters. We (Gu et al.

2019) developed a gamma distribution model to describe the

variation of the strength of expression conservation (W)

among genes. Given the high-throughput RNA-seq data

sets from multiple species, we then formulate an empirical

Bayesian procedure to estimate W for any gene-k with the

expression profile (xk) among n species, which can be con-

cisely written by

W jxk ¼ a=½c þ QðxkÞ�; (7)

where Q(xk) is the quadratic function of gene-k after account-

ing for the phylogeny dependence of n species under study;

two constants a and c can be estimated from the data.

Because Q(x) measures the level of expression variability

among species, equation (7) shows that a low expression var-

iability among species indicates a strong strength of expres-

sion conservation (a large W-estimate), and vice versa.

Actually, this property can be intuitively demonstrated in the

case of star tree such that Q(xk)¼Rj(xk,j� lk)
2, where lk is the

mean expression level of gene-k among j¼ 1, . . ., n ortholo-

gous genes. Our case studies showed that those W-estimates

are useful to study the pattern of expression conservation

during the species evolution. One frequently asked question

is whether unexpressed genes should be included in this anal-

ysis. Our suggestion is as follows: 1) the all-gene set would

give an objective picture of the W-estimates, regardless of no

expression, low expression or high expression and 2) the

expressed-gene set would allow researchers to focus on

some interesting patterns that may relate to the phenotypic

evolution, but it might be subjective to define unexpressed

genes in multiple species. Our recommendation is to carry out

the analysis for both treatments, and then compare between

them. We believe it would become more informative.

Phylogeny-Dependent Expression Distance Analysis

We implemented several tools for phylogeny-dependent ex-

pression distance analysis. 1) When an expression distance

matrix from a set of species is calculated, we are able to infer

the expression tree by the Neighbor-Joining method. The sta-

tistical reliability of the inferred expression tree can be further

evaluated by the implemented bootstrapping approach

by resampling orthologous genes with replacements.

Comparative analysis between the expression tree and the

sequence tree may help resolve the question to what extent

the phylogenetic signals is maintained in the across-species

transcriptome data. In TreeExp2, one may intuitively use the

bootstrapping method to evaluate whether the different

bifurcations in the tree topology is statistically meaningful.

In the future, we shall develop a more powerful approach

based on the minimum evolution principle to statistically dis-

criminate between the star tree (no phylogenetic signal), the

reference tree (correct phylogenetic signals) and expression

tree (incorrect phylogenetic signals). 2) When the species phy-

logeny is biologically known or can be reliably inferred, it is

useful to map the expression distances onto the given tree to

further explore the pattern of expression divergence. A least

squares algorithm is implemented, which estimates all branch

lengths of the given tree topology by minimizing the summed

squared deviations from the expression distances. 3) When

studying the evolutionary pattern of multiple functionally

related tissues, a phylogenetic network approach may be

more suitable (Gu 2016; Gu et al. 2017). In the case of

two-species/two-tissues quartet, one may have two internal

branches that represent the expression divergences of devel-

opmental similarity (cD) and evolutionary relatedness (cE)

which can be estimated.

A new application of phylogeny-dependent expression

distance analysis is to test whether the rate of transcrip-

tome evolution for a given gene set differs significantly

between the lineages of species A and B, using a third

species (C) as outgroup (fig. 1). Let DAB, DAC, and DBC be

the pairwise expression distances, respectively. Because lin-

eages A and B have experienced the same evolutionary

time (t), the relative expression rate test considers the fol-

lowing statistic:

DAB ¼ DAC � DBC : (8)

The null hypothesis DAB¼ 0 means an equal rate of expression

divergence between lineages A and B. Rejection of this null

indicates a lineage-specific rapid expression evolution.

TreeExp2 implemented a statistical method to determine

the significance level. The relative expression rate test may

have a broad applications for detecting the underlying mech-

anism of transcriptome evolution (Enard et al. 2002; Gilad

et al. 2006).

In TreeExp2, implementation of the distance method

through the popular Neighbor-Joining algorithm for

Yang et al. GBE
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expression phylogeny inference is straightforward, as long

as the pairwise distance matrix is calculated. One may im-

plement the parsimony method easily when the expression

level of a gene has been classified into a few discrete states;

the simplest one, for instance, is binary (expressed or not

expressed). Because under the OU model the expression

profile along a phylogeny follows a multivariate normal

distribution, the maximum likelihood method can be

implemented by searching the tree topology with the high-

est likelihood value, though the algorithm could be com-

plicated. In the future, we will implement these phylogeny

inference methods.

Concluding Remarks

High-throughput, high dimension transcriptome data have

considerably accelerated our studies of genome-wide ex-

pression profiles in a multitude of cell-types, tissues, and

species. To our best knowledge, TreeExp2 provides a

unique toolkit to explore the pattern of transcriptome evo-

lution ultimately toward the gene regulatory network level.

Indeed, our preliminary analysis of transcriptome data in

primate brain areas (Xu et al. 2018) has demonstrated the

powerfulness of TreeExp2 to detect fast-evolution

coexpression modules in the human lineage (J. Yang and

X. Gu, unpublished data).

Materials and Methods

Variable-l Method for Expression Distance

Suppose that the optimal expression value l varies among

genes according to a normal distribution with the mean

zero and variance Vl. Under the stationary OU model, one

can show that the expression variances are given by

V11¼V22¼ 1/WþVl¼VT and the covariance by

Cov12 ¼ e�2bt=W þ Vl: (9)

By the definition of Pearson coefficient of correlation r12, we

have

r12 ¼ ðe�2bt=W þ VlÞ=ð1=W þ VlÞ ¼ pþ ð1� pÞe�2bt ;

(10)

where p¼Vl/VT. One can easily obtain equation (5) from

equation (10).

When equation (5) is applied to the evolutionary analysis of

RNA-seq data, we have to know the parameter p, which can

be estimated when RNA-seq data of the same tissue from

more than three (n� 3) species are available.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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