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a b s t r a c t

To monitor local and global COVID-19 outbreaks, and to plan containment measures, accessible and
comprehensible decision-making tools need to be based on the growth rates of new confirmed in-
fections, hospitalization or case fatality rates. Growth rates of new cases form the empirical basis for
estimates of a variety of reproduction numbers, dimensionless numbers whose value, when larger than
unity, describes surging infections and generally worsening epidemiological conditions. Typically, these
determinations rely on noisy or incomplete data gained over limited periods of time, and on many
parameters to estimate. This paper examines how estimates from data and models of time-evolving
reproduction numbers of national COVID-19 infection spread change by using different techniques and
assumptions. Given the importance acquired by reproduction numbers as diagnostic tools, assessing
their range of possible variations obtainable from the same epidemiological data is relevant. We compute
control reproduction numbers from Swiss and Italian COVID-19 time series adopting both data convo-
lution (renewal equation) and a SEIR-type model. Within these two paradigms we run a comparative
analysis of the possible inferences obtained through approximations of the distributions typically used to
describe serial intervals, generation, latency and incubation times, and the delays between onset of
symptoms and notification. Our results suggest that estimates of reproduction numbers under these
different assumptions may show significant temporal differences, while the actual variability range of
computed values is rather small.
© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

One of the key diagnostic tools of the current COVID-19
pandemic is the effective reproduction number Rt, a dimension-
less quantity updated in time that discriminates whether epide-
miological data at time t underpin a growth in the number of new
secondary infections (Rt >1) [1e3]. Instead, the basic reproduction
number, R0, is the number of secondary infections generated from
an initial case in an entirely susceptible population. As the number
of infections progresses, Rt is assumed to describe, not only for
severe acute respiratory syndromes, the number of secondary in-
fections generated within a population comprising immune in-
dividuals [4]. Together with other indicators, Rt forms the basis for
tto).

Inc. This is an open access article u
characterizing unfolding outbreaks, planning containment mea-
sures and monitoring the effectiveness of epidemiological policies
and emergency interventions.

The science of COVID-19 has assessed strengths and weaknesses
of current estimates of Rt [5]. The formers include its immediacy
and wide insight provided into the epidemiology of the virus, while
the latters consider the uncertainty affecting key epidemiological
parameters. This has been known for quite some time [4,6e15], and
it has direct application with reference to COVID-19 [16e19]. In
particular, complicating factors could bias the determination of Rt
for the ongoing pandemic [5,6]. They are: incompleteness and
inaccuracies of the epidemiological datasets (missing data,
improper timing of detection, under-evaluation of asymptomatic
infections by limited sampling effort); lack of detailed knowledge
about the disease transmission mechanisms; and the common
assumption of equating generation times (intervals between the
acquisition of a primary infection and acquisition of an ensuing
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secondary infection) with serial times (intervals between the onset
of symptoms in primary and secondary infections). Despite these
drawbacks, the conclusions drawn from early analyses are deemed
valuable [4], whether provided by data analysis or via data-verified
model studies e.g. Refs. [16,17,20e32].

This paper aims at a comparative study determining the range of
outputs produced by various methods and covert or overt as-
sumptions incurred in computing Rt : Specifically, our attention is
concentrated on the distribution of the generation interval of the
disease (t GÞ. If tG were without exception a single value, equal for
example to 6 days, Rt would be determined exactly by the ratio of
new infections at current time t divided by the number of new
infections at time t� tG. Therefore, the index Rt would represent
exactly the instantaneous proliferation rate of an infection. In this
case, Rt >1 indicates an exponential growth in the number of in-
fections [13] and, Rt < 1 indicates a recessive epidemic phase.
However, in reality the generation period is a random variable
[27,32e34], described by a probability distribution function typi-
cally having a humped shape and with tG being the mean value. In
this more general case the set bounds for Rt are 1þ r tG � Rt �
expðr tGÞ, where r,is the instantaneous growth rate [T�1] of the
number of new infections (Supplementary Material, section SM1).
Wallinga and Lipsitch [13] proposed a detailed theoretical analysis
on the impact of different distributions of the generation period,
especially showing that Rt ¼ expðr tGÞ when approximating the
distribution as a Dirac delta with center tG, dtG ðtÞ ¼ dðt � tGÞ. We
explore the impact of such an approximation on the results of the
kind of epidemiological models typically used to analyze the dy-
namics of an unfolding epidemic. The use of simple models may be
motivated by a number of factors: immediacy, the lack of detailed
information about the spatial structure of the disease spread and
the related data needs, counting on the fact that neglecting com-
plications, e.g. population structure, when making inference in
emerging outbreaks may have little effect [12]. This is the basic
factor behind our choice of making inference from two diverse
datasets and using two epidemiological models: the Swiss COVID-
19 data [22] simulated through a SEIR-based stochastic model, and
the Italian case [25,28] where Rt is estimated through a renewal
equation. These models are meant to reproduce a broad range of
possible conditions for practical inference, therefore making this
analysis a comparative study of interest.

This paper is organized as follows. The Methods section is aimed
at recapping the major tools and the range of assumptions adopted
in the study. The Results section is organized around the study of
the effect of various assumptions concerning the generation/serial
intervals on the computation of the reproduction number evolving
in time via drastically different approaches. A discussion on the
effective variation produced on Rt estimates closes then the paper.

2. Methods

2.1. SEIR-based compartmental model

Epidemiological models are fundamental tools not only to
simulate the epidemic dynamics, but also to infer the temporal
variations of Rt . Here we consider the stochastic compartmental
model used by Lemaitre et al. [22] to simulate the first months of
the COVID-19 transmission in Switzerland. The model assumes that
the population is divided into compartments that represent disease
stages (see Fig. 1). After exposure to the virus by an infectious in-
dividual I, a susceptible individual S goes through a latent/incuba-
tion period in compartment E, then becomes infectious, I.
Depending on the clinical outcome, and if health care is sought, the
individual either directly recovers (R), or develops severe symp-
toms, Is (followed by death or recovery) or else gets hospitalized, H.
254
Hospitalized individual progress to discharge (R), Intensive Care
Units (ICU, U) or death (D), and those in the ICU can either be
discharged or die (the model equations are presented in section
SM2). Note that we implement a compartment Ih to describe the
delay from severe symptom onset to hospitalization. Owing to the
data at our disposal at the time of the study [22], we may pinpoint
different residence times in the various stages of H and U
depending on the final outcome, thus justifying the presence of
further delay compartments Hs, Hd, Hu, Us;,and Ud.

As for the model parametrization, in this retrospective study we
keep the same setup presented in Ref. [22], corresponding to the
evidence provided by data as of May 13, 2020. The model is
implemented as a Hidden Markov Model (HMM) using the POMP
package in R [35], and it is calibrated against data on current hos-
pitalizations and incidence deaths through a maximum likelihood
inference (see section SM3 for more details). In particular, the in-
fectious rate bðtÞ, which governs the force of infection and, thus, the
number of the new exposed individuals, is initialized as a random
walk with unknown variance, and it is calibrated via an appropriate
filter. Then, the effective reproduction number Rt is directly
computed by the relation Rt ¼ bðtÞ SðtÞ=rI , where 1= rI, is the mean
residence time of an individual in the infectious stage.

Here, we focus on the sensitivity of the estimated Rt under
possible different assumptions in modeling stages E and I. The
mean residence times in these compartments are determined by
assuming a mean generation time of 5.2 days [27], and an exposed
and non-infectious duration of 1=rE ¼ 2:9 days [36], hence a mean
duration of 1=rI ¼ 4:6 days in the infectious compartments (i.e.
5.2 ¼ 2.9 þ 4.6/2). Then, E and I are subdivided in nE and nI com-
partments, respectively, to better represent the possible humped
shape of the residence times in those stages. nE ¼ nI ¼ 1means that
the residence times are exponentially distributed with mean 1=rE
and 1=rI, respectively. Increasing nE and nI leads to gamma distri-
butions more concentrated around the mean values, tending to the
limit of a deterministic residence time spent in the two compart-
ments (two Dirac delta distributions). Although this latter
assumption is unrealistic (it would mean that all individuals have
the same incubation period and period of infectiousness), it rep-
resents a drastically easier model, simplifying the two distributions
of residence times to atoms of probability at their means. The
analysis in Ref. [22] highlighted that nE ¼ 1 and nI ¼ 3 character-
ized the best model setup, corresponding to an exponentially
distributed time in the exposed compartment and a gamma of
shape factor 3 for I. Here we test the sensitivity of the estimated Rt
under three model formulations characterized by different number
of compartments nE and nI:

M1: nE ¼ 1 and nI ¼ 3 (reference scenario);
M2:,nE ¼ 9 and nI ¼ 14, as an intermediate scenario depicting

two humped shaped gamma distributions;
M3:,nE ¼ 70 and nI ¼ 100, where the gamma distributions are

almost collapsed on the mean value;
M4: nE/∞, nI/∞, where the residence times in E and I are

deterministically imposed (Dirac delta distribution).
For each of these different formulations we performed the

calibration of the model parameters and the temporal estimation of
Rt as in Ref. [22].

Note that the mean residence times in E and I are the same
across the formulations, as only the shape of the distributions
varies (Fig. 1). The generation times associated to each of these
formulations have a complicated structure [37] that, in the limit
case, tends to a uniform distribution during the period of infection,
Uð2:9; ,7:5Þ (Figure SM1). It is important to underline that, if the
distribution of the generation times is available (e.g. by approxi-
mation with the serial interval) the integro-differential model
considering the age of the infection is themost suitable approach to



Fig. 1. Schematic diagram of COVID-19 transmission and hospitalization processes. There are two sinks: death D and recovered R. Stages E and I are implemented with nE and nI
compartments respectively, to better represent the residence times in those compartments. The two inserts show the residence time distributions in compartments E and I in the
for model considered, M1-M4.
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preserve the generation times (see section SM1). As an alternative,
if the generation time is well approximated by an Erlang distribu-
tion with parameter n and scale 1=r, the proposed SEIR model can
replicate this distribution by imposing nE ¼ n� 1 and nI ¼ 1 and
the same rate in each sub-compartment equal to nr. For example,
the serial interval estimated in the early stage of the pandemic in
Italy was modelled as a gamma distribution of shape factor 1.87,
and a rate of 0.28 d�1 [38], which is well approximated by an Erlang
distribution with n ¼ 2 and r ¼ 0:3 d�1. This corresponds to the
considered SEIR model with nE ¼ 1 and nI ¼ 1 and rates rE ¼ 0:3
d�1 and rI ¼ 0:3 d�1.

In this case, increasing only nE (while preserving the original
mean generation time n=r) leads to a model having a distribution of
the generation times that gets closer to its mean value, until
degenerating in a Dirac delta distribution.
2.2. The renewal equation

The estimation of the generation time from epidemiological
data is a crucial step to evaluate the temporal dynamics of the
reproduction index Rt . Since the early stages of the pandemic in
China (e.g. Refs. [20,21]) and in Italy (e.g. Refs. [38e40]), Rt has been
estimated through a Bayesian approach taking into account an
approximation of the generation time distribution (based on the
serial interval) and the possible delays in the confirmation of a
positive case. The computation is based on the time series of cases
for which the date of symptom onset is known, in the following
indicated with ConðtÞ and the distribution of the generation times,
in the following represented by 4ðtÞ.

The expected value of the number of symptomatic cases on a

certain day, ~C
on
, can then be modelled through the renewal equa-

tion, i.e. by the convolution between the antecedent cases and the
distribution of the generation times, all multiplied by the daily
reproduction index, Rt:
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~C
onðtÞ¼Rt

ðþ∞

s¼0

Conðt� sÞ4ðsÞ ds (1)

Assuming that the data ConðtÞ are random samples from a

Poisson distribution with mean ~C
onðtÞ, one can estimate the pos-

terior probability distribution of Rt through Bayesian approaches,
such as Markov Chain Monte Carlo, aiming to sample from the
likelihood function (see section SM4). It should be noted that a
source of uncertainty in this model is introduced by assuming that
the transmission is driven only by the known symptomatic cases,
thus neglecting transmission due to asymptomatic individuals.

In order to extend the estimation of Rt in eq. (1) to the whole
reported cases in Italy (see Figure SM2), one need to take into
consideration the possible delay between the beginning of infec-
tiousness and the reporting.

A second source of uncertainty is the distribution of the gen-
eration times for COVID-19 (the distribution 4 in eq. (1) which is a
topic largely discussed in the literature. A gamma distribution is
typically fitted to the available data of symptom onset, thus
assimilating the generation times to the serial interval. Cereda et al.
[38] estimated that the distribution of the serial interval for Lom-
bardy (and used for the whole Italy) is gamma of shape 1.87 and
scale 0.28 d�1.

Here we want to assess the impact on the estimated Rt when
using the following distributions for the generation times 4 in Eq.
(1):

G1: the same gamma distribution evaluated in Ref. [38] (refer-
ence results);

G2: a Dirac delta distribution of centre T ¼ 6.67 days corre-
sponding to the mean value of the gamma distribution evaluated in
Ref. [38]. In this case the convolution adopted in the estimation of
Rt simplifies to a simple backward translation of the cases of T days.

G3: a uniform distribution during the period of infectiousness,
Uð2:9; ,7:5Þ, in order tomimic the generation time associated to the
model M4 described in the previous section.
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In order to see the possible impact on the approximation when
considering different data, we repeat the estimation of Rt for the
following datasets (see Figure SM2):

D1: the cases ordered by date of symptoms onset (for the cases
that it is known).

D2: the whole set of reported cases shifted back in time in
accordance with the delay distribution estimated by Ref. [38]
(gamma with shape factor ¼ 1.88, and a rate of 0.26 d�1).

D3: the whole set of reported cases deterministically shifted
back in time using the mean of the gamma distribution (7.23 d).
3. Results

3.1. Compartmental model: the Swiss case study

The inferred posterior distributions of Rt for Switzerland ob-
tained with the different compartmental models show the same
temporal trends under the considered configurations of E and I
(Fig. 2a), implying that the flexibility of the calibration method
adopted yields robust estimates of the parameters. However,
pushing the residence times in E and I towards the Dirac delta
distribution (models M2, M3, M4), results in a faster decrease of Rt
with respect to the reference (model M1) during the first weeks of
the outbreak. The median value of Rt,estimated in M2-M4 has
frequently a negative bias, reaching for many days a relative error of
50% (Fig. 2b). The most evident consequence is the anticipation of
the crossing of the critical threshold Rt ¼ 1, which occurs up to 6
days before M1.

To analyse the impact of using G1 (gamma), G2 (Dirac) and G3
(uniform) distributions for 4 in eq. (1), we start by considering the
epidemiological data ordered by date of symptom onset (data D1,
Fig. 2. Panel a): temporal dynamics of the median value of Rt for Switzerland inferred
using the four compartmental models M1, M2, M3 and M4. The blue and green areas
represent the 95% C.I. for the distributions associated to M1 and M4, respectively. Panel
b): relative difference with respect the reference value of Rt (median of model M1);
The gray histogram shows the number of hospitalized individuals, data used to fit the
model.
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Figure SM2). When the dates of symptom onset are known, the
estimate of Rt depends only on the distribution of the serial inter-
val. In this case, the replacement of the gamma distribution (G1)
with a Dirac delta of mean T ¼ 6:67 days (G2) or a uniform distri-
bution (G3), marginally impacts the dynamic of the estimated
posterior of Rt (Fig. 3a). Small discrepancies appear in G1 when one
observes a sudden change in the value of the reproduction number,
for example during March (i.e. during the Italian lockdown) and at
the end of the Summer, when the second wave started. The mean
and maximum relative errors during the simulation are 9%, 44% for
G2 and 8%, 42% for G3, respectively (Fig. 3b). For both G2 and G3, in
95% of the days the estimated Rt agrees with G1 in being larger (or
smaller) than the critical threshold.

Similar results are obtained when the estimated Rt are
computed by starting from dataset D2 and D3 (Figures SM3-SM4).
Table SM1 summarizes the analysis on the level of agreement of the
estimated Rt with respect their reference.
4. Discussion

In this paper we have explored the impact of a number of factors
contributing to the estimation of the reproduction index Rt . They
are specifically:

- shape of infectiousness kernels defining the probability distri-
bution of the serial or of the generation intervals;

- use of deterministic or stochastic models.
- delay in case reporting;
- use of symptomatic vs total cases;
- use of detailed hospital data to infer key epidemiological
parameters.
Fig. 3. Panel a): comparison between the time evolution of Rt (median and 95%
confidence interval) estimated using Eq. (1), where the distributions of generation
times are: G1 (gamma distribution, blue), G2 (Dirac distribution, red) or G3 (uniform
distribution, green). The grey bars represent data D1 (SM) used for the estimation of Rt ,
the Italian cases per date of symptoms onset (SM). Panel b): relative differences be-
tween the median values of the reference Rt (model G1) and the other two
distributions.
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Given the broad differences in approach and data, we expect
that our comparative analyses may be reasonably representative of
the spectrum of possible responses, and in particular of the ex-
pected range of variation one would have if lack of detailed
empirical evidence forces to resort to simplifying assumptions.

Our main result is that most assumptions concerning the
simplification of the distribution of generation intervals have a
marginal impact on the range of values of Rt yet quite noteworthy
in terms of timing. This echoes the so-called Kohlberg-Nieman
demystification [41] to explain to laypeople what goes on. Their
basic approximation is that the number of daily new cases is
multiplied by Rt,every tG days. This approximation yields a simple
description of the spread of the virus in terms of these two pa-
rameters, suggesting an elementary method for estimating the
reproduction number from the data on daily new infections.
However, the method cumulates all uncertainties embedded in the
data.

While highly suggestive, the above results are referred to na-
tional data relative to Switzerland and Italy alone, and neglect other
factors like, e.g., age stratification of the relevant demography and
of the connected epidemiological rates, changes in large-scale
mobility patterns, and heterogeneity in contacts by age and set-
tings, and of risks of infection in different employment sectors.
However, the inclusion of these other factors would require a
granularity of data unavailable in most real-life large-scale settings.
Moreover, models that ignore them have proved their worth in
tackling the descriptions required to assess interventions strategies
in the contagion dynamics well after the initial spread into a naïve
population.

We note that in both cases dealt with here a homogeneous
spread model (subsumed by a spatially implicit model) is deemed
appropriate, and the detail of the epidemiological data remarkable.
This is not in contrast with approaches that advocated for the use of
spatially explicit approaches, appropriate as they are to face what
actually happened during the onset that revealed crucial spatial
effects for different communities connected as in the COVID-19
Italian case, long treated as a paradigmatic case of spatial spread
[28]. The neglect of spatial effects is reasonable for epidemics
where local flare-ups have coalesced into a relatively homogeneous
epidemic development.

We thus conclude that, regardless of methodologically subjec-
tive choices or of limited evidence, the prompt communication of
reproduction numbers underlying public statements about
unfolding COVID-19 figures, when public and transparent to scru-
tiny, is generally reliable.
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