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Abstract: Heart and respiration rates represent important vital signs for the assessment of a person’s
health condition. To estimate these vital signs accurately, we propose a multitask Siamese network
model (MTS) that combines the advantages of the Siamese network and the multitask learning
architecture. The MTS model was trained by the images of the cheek including nose and mouth and
forehead areas while sharing the same parameters between the Siamese networks, in order to extract
the features about the heart and respiratory information. The proposed model was constructed with
a small number of parameters and was able to yield a high vital-sign-prediction accuracy, comparable
to that obtained from the single-task learning model; furthermore, the proposed model outperformed
the conventional multitask learning model. As a result, we can simultaneously predict the heart and
respiratory signals with the MTS model, while the number of parameters was reduced by 16 times
with the mean average errors of heart and respiration rates being 2.84 and 4.21. Owing to its light
weight, it would be advantageous to implement the vital-sign-monitoring model in an edge device
such as a mobile phone or small-sized portable devices.

Keywords: heart rate; respiration rate; contactless technique; deep learning; Siamese network;
multitasking

1. Introduction

In 2020, the coronavirus disease 2019 (COVID-19) pandemic introduced many changes
in our lives. Given its very high infection rate, the number of infected people increases
rapidly, and hospital accommodation facilities often become insufficient. Thus, patients are
often required to be self-quarantined at home and monitor their conditions. Some patients
suffer from a lack of knowledge regarding these self-checks. Therefore, the importance
of non-face-to-face healthcare monitoring has also been emphasized [1,2], and heart rate
(HR) and respiration rate (RR) are vital signs that could allow for the monitoring of post-
COVID-19 infections. In an experiment which involved 2745 subjects with COVID-19,
the HR and RR abruptly increased when the disease symptoms began to appear [3]. This
study confirmed that HR and RR could be early indicators of the development of COVID-
19 [1,4]. Furthermore, HR is used to detect heart disease. According to the World Health
Organization (WHO) 2019 report on human deaths caused by diseases worldwide, heart
diseases rank first and chronic obstructive pulmonary disease (COPD) ranks third [3].
Heart diseases with high mortality rates are even more dangerous because they rarely
have symptoms and are not treated in a timely manner. This strengthens the importance
of the constant monitoring of heart signals [5]. Respiration rate could be also used as an
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indicator of serious illness since an abnormal RR is often found in several diseases such as
the hypercarbia, hypoxia and hypoxemia [6]. The body attempts to correct these disorders
by increasing the tidal volume and respiratory rate. Monitoring both the HR and RR could
be helpful to scoring sleep stages and diagnosing sleep disorders such as sleep apnea [7,8].
In addition, mental stress can be detected through heart and respiratory signals based on
deep neural networks [9].

Among the heart-signal-monitoring approaches, photoplethysmography (PPG) is a
method used to detect the amount of blood flow using light sources based on the detection
of the amount of blood volume through peripheral blood vessels [10]. PPG signals could
be utilized to calculate HR by detecting and counting their peaks over a minute, since a
PPG signal peak corresponds to the heartbeat. The respiratory rate (RR) is the frequency
of breathing, that is, the number of breaths in a minute. Along with the HR, RR is also a
critical vital sign to monitor the health condition, in particular the lung condition, which is
affected by infectious diseases such as the flu and COVID-19 [10]. Respiratory signals are
recorded during the inhalation and exhalation respiratory phases, and the respiratory rate
is calculated using the period of the respiratory signal. This respiratory rate can also be
estimated from the PPG signal, as reported in previous studies [11,12]. Thus, this study
attempts to simultaneously estimate both the HR and RR through predicting the rPPG
signal from facial images. This respiratory rate could also be estimated using the PPG
signal, as reported in previous studies [11,12]. So, we decided to use both the PPG and
respiratory signals.

Most of the sensors used to measure heart activity contact the body on the finger,
wrist, or earlobe [13–15]. Respiratory signals can be measured from chest movements
using chest-strap equipment [16]. However, the existing sensor systems require additional
(costly) devices and are inconvenient to carry in daily life if continuous health monitoring
is necessary. Therefore, this study suggests a deep-learning model for a remote PPG and
respiratory-monitoring system using an off-the-shelf camera.

A remote PPG (rPPG) method can be used to monitor cardiac activity, which is a non-
obtrusive measurement that can be obtained using a webcam without any additional sensor
device [17]. Because the camera can capture the reflection of the light response to blood-
flow changes from the skin, the rPPG signal can be obtained from a facial video [18,19].
Remote respiratory measurements can also be implemented by monitoring the movements
of the head and chest in a video stream [20].

Research about the non-contact measurements of the heart and respiration rates has
been conducted for several years [21–23]. The existing non-contact method mainly detects
the skin-color changes in order to estimate HR, and for the prediction of RR, the head and
chest movements are monitored, or it is extracted from the rPPG estimation. For these, the
forehead and cheek areas are set as the regions of interest (ROIs) for the PPG estimation,
and the nose or mouth are set for the prediction of respiration by investigating the warm
or cool air flow through them [24]. A deep-learning study has also been conducted to
extract the rPPG information from facial video streams. The Siamese rPPG network [25]
was designed from the original Siamese network structure and comprises the same two
convolutional neural networks (CNNs) with equal weights for two different inputs. The
input is divided into two parts fed in the two networks; thus, even if one cannot be used, it
can be replaced by another one, thus resulting in model stability and high performance.
The input data to the proposed Siamese rPPG are from the forehead and cheek (with nose
and mouse) areas of facial video streams, which could contain information on the heart
and respiratory rates.

Multitask learning is a learning paradigm that can improve the overall performance
of multiple tasks, while simultaneously learning multiple related tasks in the same model.
Compared with the conventional single-task learning model, this multitask learning pro-
cess could take advantage of the previous learning experiences for the associated task, thus
allowing us to update the model parameters. For biomedical applications, the multitask
temporal shift convolutional attention network (MTTS-CAN) is a deep-learning model
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that implements on-device, contactless, vital measurements and simultaneously predicts
the rPPG and respiratory signals [26]. The MTTS-CAN model is associated with compli-
cated preprocessing. However, our proposed multitask Siamese (MTS) model has fewer
parameters than the MTTS-CAN and is associated with simpler preprocessing.

We propose a multi-task Siamese (MTS) model, which can simultaneously estimate
the remote PPG and respiratory signals using the same input image for the single-task
Siamese network. The MTS model, which combines the advantages of the MTTS-CAN
and Siamese network models to improve its performance during the execution of multiple
tasks with high efficiency. Using the suggested model, rPPG and respiratory signals are
simultaneously estimated with higher accuracy and fewer parameters compared with the
conventional multitask learning model. The proposed MTS model is computationally
lightweight due to the reduced the model parameters, which could be advantageous to
implementing on-device learning and testing in a small edge device such as a mobile
phone or a portable device [25–27]. This could realize the continuous and convenient HR-
and RR-monitoring system in our daily lives and can be expected to improve the health
conditions of patients with cardiac and respiratory disorders.

Section 2 addresses the overall architecture of the MTS model with a detailed descrip-
tion, and Section 3 describes the experimental method used to evaluate the performance
of the MTS model. In Section 4, the experimental results of the MTS model are compared
with those of other remote PPG and respiratory models. In Section 5, we discuss why
the performance of the MTS model is better than that of the single-task model (Siamese
network with the convolutional block attention module (CBAM)). Finally, the conclusions
are presented in Section 6.

2. Algorithm

Inspired by the Siamese rPPG network [25,28] and the MTTS-CAN [25], we propose
the MTS, whose overall flowchart is illustrated in Figure 1. The structure of the MTTS-
CAN could implement the multitask learning process to learn more than one task at the
same time, that is, the simultaneous prediction of the PPG and respiratory signals. In
the original MTTS-CAN architecture, the input image of the current and the previous
frames should be provided together for its training, and the attention networks are also
included, which is a complicated pretreatment process causing computational burden.
On the contrary, Siamese networks require a simpler image-preprocessing process, for
which the original Siamese rPPG network comprises a simple image-preprocessing step
with low-computational complexity. In addition, the accuracy and stability of the rPPG
prediction is improved owing to the weight sharing between the two branches of the
Siamese networks. The MTS model is designed based on the structures of the Siamese rPPG
network and the MTTS-CAN model and is expected to possess the advantages of both
models. A major disadvantage of the conventional Siamese networks is the requirement
of longer training time than the typical deep neural networks. Siamese networks are
relatively slow to be trained, since two pairs of networks should be created during the
learning process. Therefore, the implementation of the multitask learning model for the
slow Siamese networks could be a solution for the long training issue due to simultaneously
learning two tasks over a similar duration as the single-task model. In addition, it has a
great advantage of reducing the number of model parameters by the simultaneous learning
process of two tasks.

The MTS model in Figure 1 predicts cardiac (PPG) and respiratory signals using
facial video streams, whereby two regions of interest (ROIs) of the forehead and cheek
are separately selected as the inputs to the Siamese network. The cheek and forehead are
the optimal areas used for capturing blood-flow changes and have often been used for
rPPG predictions [27]. In particular, blood-volume pulses are usually obtained from the
cheeks and forehead [25]. The proposed MTS model has multi-input and multi-output
structures, whereby two different inputs from the cheeks and forehead separately enter the
two branches of the Siamese networks. After the process of the CNN layers is completed,
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the outputs of the forehead and cheek streams are finally merged into one in the Add layer.
The output of the Add layer yields a predicted PPG signal, and the respiratory signal can
be obtained through the addition of a dense layer, as shown in Figure 2. The dense layer
was not added after the PPG output because the performance was degraded by adding
them. Additionally, a dropout layer was applied to reduce the probability of overfitting [29].
The activation function is the leaky rectified linear unit (Leaky ReLU) [30], formulated
in Equation (1). Alpha is the slope of the leaky ReLU function, and α generally has a
value of 0.01.
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Figure 1. Multitask Siamese (MTS) network architecture. The forehead and cheeks are extracted as
regions of interest (ROIs) from the facial image, which enter the weighted networks as forehead and
cheek streams, respectively. Cardiac (photoplethysmography (PPG)) signals can be obtained based
on the value from the last layer of the Siamese network, and the respiratory signal is estimated after
an additional dense layer in the last part of the Siamese network.

The ReLU function outputs 0 or 1 when it is less or greater than a predefined threshold
value. This greatly reduces the multiplication, thereby reducing the probability of vanishing,
exploding problems. Unlike the ReLU function, if all the differentiated values in any layer
are 0, then learning does not proceed in any layer thereafter. The leaky ReLU has an output
of the input value multiplied by 0.01 to prevent the knockout problem [30]. As shown in
Figure 3, for learning negative data, the input value lower than the threshold is multiplied
by 0.01.

LeakyReLU(x) =
{

x, i f x ≥ 0
0.01x, i f x < 0

(1)

where x ∈ [−∞, ∞].

The CBAM [31] is an attention module used in image classification and object-
recognition models. The CBAM has shown significant improvements in classification
performance with few parameters. The CBAM effectively highlights and suppresses inter-
mediate features using channel attention and a spatial attention module, respectively [31].
The CBAM has been applied to estimate PPG and respiratory signals from facial video
streams, thus highlighting the significant features of the images, which increases the learn-
ing effect with few parameters.

We added a 1× 1 convolution layer used in GoogLeNet for each convolution layer [32].
The 1 × 1 convolution layer adjusts the number of dimensions in order to design deep
networks with fewer computations and time resources. The MTS model effectively reduces
the parameters and makes a more lightweight model using the 1 × 1 convolution layer,
making it available in various environments.
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3. Methods

We compared the proposed MTS model with the MTTS-CAN, the original single-task
Siamese rPPG Network [25], the Siamese network with CBAM, and 1× 1 convolution layer.
The results of the MTTS-CAN and Siamese networks with CBAM were produced using
the COHFACE dataset, and those of the original Siamese rPPG network were obtained
from [25], which also used the same COHFACE dataset.

3.1. Dataset

COHFACE is a remote photoplethysmography dataset. It is a dataset presented to
evaluate the proposed algorithm in a standard and principled manner [33]. Compared to
some other datasets, more realistic conditions are included. So, the experimental dataset is
COHFACE, which includes 160 videos from 40 subjects recorded at 20 FPS with a resolution
of 640 × 480 pixels. Each video was acquired for approximately 1 min using a Logitech HD
C525 camera, and the subject’s face and upper body are shown. In addition, the PPG and
respiration signals were synchronized with the video, and a Thought Technology device
and BioGraph Infiniti software (Thought Technology, Ltd., Montreal, QC, Canada) were
used for the analysis [25,34]. Among the four video streams obtained for each subject,
light evenly entered the screen to clarify the facial images in two streams, while light was
naturally exposed, and their faces were captured in a relatively dark environment in the
other two streams [22]. The training, validation, and test datasets were divided at a ratio of
3:1:1 for the cross-validation of the model.

3.2. Pre/Postprocessing

To fix the input size of the model, the cheek and forehead images of the subjects in the
dataset were extracted using the dlib’s face recognition library [35]. As shown in Figure 4,
the forehead area was determined from the top of the head to the eyebrows and the cheek
area from the tip of the nose to the chin. The areas were set in the first frame of the video
and fixed throughout the entire 600 frames. Considering the ambient noise in the beginning
frames of the video, 600 frames were extracted from the middle of the video streams.
The true PPG and respiratory signals corresponding to each frame were obtained from
the dataset.
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library of “dlib”. The forehead and cheeks of the subject are detected by the green and red areas
shown above.

After the estimation of the PPG and respiration signals using the deep-learning models,
HR was calculated from the PPG signal using the fourth-order Butterworth bandpass filter,
while RR was estimated from the respiration signal using the second-order Butterworth
bandpass filter. The cutoff frequencies of the filters were (0.66 Hz, 3.3 Hz) for HR and
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(0.1 Hz, 0.4 Hz) for RR. HR (or RR) may be extracted from the distance between peak
points. To derive the final HR and RR, the peaks of the filtered PPG and respiratory signals
were detected, and the means of the intervals between the peaks were calculated using
Equation (2) [5].

HR or RR =
60

∑N
i=2 (pi − pi−1)/N − 1

(2)

where p denotes the ith time instance of a peak in the PPG or respiratory signal, and N is
the total number of peaks.

3.3. Environment and Evaluation

We used an NVIDIA GeForce RTX 2060 graphics processing unit to train the model,
which was implemented in the TensorFlow framework [36]. The loss function used to train
the model was the Pearson correlation coefficient expressed by Equation (3).

r(x, y) =
∑N

i=1(xi − x)
(

yi − y
)

√
∑N

i=1(xi − x)2
√

∑N
i=1

(
yi − y′

)2
(3)

where xi and yi are the ground truth and predicted values with size N, and x and y are their
mean values. The Pearson correlation r(x, y) has a value between −1 and 1. The optimizer
for the model training was Adam with a learning rate of 0.0001, β1 = 0.9, and β2 = 0.999
(β1, β2 are exponential decay rates for the moment estimates) [37]. The loss function in
Equation (4) was applied to train the deep-learning models.

Loss = 1− r(x, y) (4)

To evaluate the performance of the models, the metrics of the Pearson correlation
coefficient (R), mean absolute error (MAE), and root-mean-square error (RMSE) were
calculated, as described in Equations (5)–(7).

R =
∑N

i=1(Xi − X)
(
X′i − X′

)√
∑N

i=1(Xi − X)2
√

∑N
i=1
(
X′i − X′

)2
(5)

MAE =
∑N

i=1
∣∣ Xi − X′i

∣∣
N

(6)

RMSE =
∑N

i=1
(
Xi − X′i

)2

N
(7)

where Xi denotes the HR (or RR) estimated from the predicted PPG (or respiration) signal,
and X′i is the HR (RR) obtained from the ground-truth PPG (or respiration) signal. X and
X′ are the averages of the predicted and real heart rate or respiratory rate (real HRs or RRs),
respectively. We trained the MTS model within 250 epochs with a batch size of one and
dropout rates of 0.25, 0.5, and 0.6. The single-task Siamese network was also trained under
the same conditions as the MTS. The MTTS-CAN was trained for 30 epochs with a batch
size of two. This is because the test results were the best when learning was implemented
in this manner.

4. Results

To evaluate the performance of the proposed MTS model, its performance was com-
pared with those of the existing Siamese rPPG network [25], the Siamese network with
CBAM, and the MTTS-CAN [26]. The Siamese network with the CBAM includes the
CBAM attention mechanism with the existing Siamese rPPG network and reduces the
model parameters by adding a 1 × 1 convolution layer [32]. Inspired by MobileNet, which
was successfully made to be lightweight in order to use deep learning on edge devices, with
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1 × 1 Conv, it has an advantage in the computation over the standard convolutional layer,
resulting in the lightening of the model [34]. These Siamese network models are single-task
learning models for only one task. As a benchmark test model for multitask learning, the
MTTS-CAN was compared, which was trained within 30 epochs using a batch size of two.

Table 1 lists the benchmark test results, including the proposed model, the Siamese
network with the CBAM, and the other conventional single learning models. The Siamese
network with the CBAM of Table 1 was used to extract the HR as a single-task model
improved through CBAM and 1 × 1 conduction layer, etc., referring to the Siamese rPPG
network [25]. Given that the Siamese network with the CBAM is a single-task model,
learning the HR and RR was attempted. Unfortunately, the Siamese network-based models
could not learn the respiratory signals owing to their original designs for the PPG signals;
thus, their results could not be included in the table. We will talk about this later in
discussion. Table 2 lists the performance measurement of each HR and RR by comparing
the multitask model with our proposed model, the MTS. Table 3 lists the number of
parameters of the benchmarking models. The MTS model could yield a comparable HR
performance with fewer parameters compared with the single-task models. In particular,
the R value of the MTS was higher than that of the original Siamese network, even though
the number of parameters was 16 times lower. The Siamese network with the CBAM
produced a performance similar to that of the MTS with a considerably reduced number of
parameters compared with the original model. The number of parameters of the Siamese
network with the CBAM was slightly smaller than that of the MTS, but this is because the
Siamese network with the CBAM is a single-task model. In addition, the multitask learning
model, the MTTS-CAN, was also outperformed by the MTS model for the predictions of
HR and RR, which required smaller numbers of parameters.

Table 1. Benchmark test results comparing our single-task model with the latest research results
within five years. Heart rates (HR) are calculated in beats per minute (BPM), and the model perfor-
mances are evaluated using the metrics of Pearson correlation coefficient (R), mean average error
(MAE), and root-mean-squared error (RMSE).

Model
HR (BPM)

R MAE RMSE

Siamese rPPG network [25] 0.73 0.70 1.29

Model by Z.-K. Wang et al. [38] 0.40 8.09 9.96

ETA-rPPGNet [39] 0.77 4.67 6.65

Model by Y.-Y. Tsou et al. [40] 0.72 0.68 1.65

Siamese network with
convolution block attention
module (CBAM) (proposed)

0.97 2.31 3.29

Table 2. Benchmark test results comparing multitask Siamese network model (MTS) with other
multitask models. Heart rates (HR) and respiration rates (RR) are calculated in beats per minute
(BPM) and respiration per minute (RPM), and the model performances are evaluated using the
metrics of Pearson correlation coefficient (R), mean average error (MAE), and root-mean-squared
error (RMSE).

Model
HR (BPM) RR (RPM)

R MAE RMSE MAE RMSE

Multitask temporal shift
convolutional attention network
(MTTS-CAN) [26]

0.20 7.97 10.38 9.0 9.50

Multitask Siamese network
(MTS, proposed) 0.97 2.84 3.52 4.21 4.83
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Table 3. The number of parameters of the multitask Siamese network model (MTS) compared with
the other models for the predictions of the heart rates and respiration rates.

Model # of Parameters

Siamese rPPG network [25] 11.80 M

Multitask temporal shift convolutional
attention network (MTTS-CAN) [26] 0.93 M

Siamese network with convolution block
attention module (CBAM) (proposed) 0.69 M

Multitask Siamese network (MTS, proposed) 0.72 M

The correlations between the predictions and their ground truths (real HR) obtained
using the proposed MTS and the conventional multitask model MTTS-CAN are displayed
as scatter plots in Figure 5. Figure 5a shows that the predicted HR using the MTS produced
a high correlation coefficient with the real HR (R2 = 0.94). Conversely, Figure 5b shows the
correlation results of the HR for the MTTS-CAN model, whereby the R2 value of the HR
was 0.08. This means that the MTS describes HR data much better than the MTTS-CAN.
These results demonstrate that the proposed MTS model overwhelmingly outperforms
the conventional multitask learning model MTTS-CAN. Although the R2 value of the
respiratory rate was lower than that of the HR, the MTS model was able to significantly
reduce the MAE and RMSE of the predicted respiratory signals, compared with those of
the MTTS-CAN.
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Figure 5. The HR correlation results. (a) HR correlation results predicted using the proposed MTS
model. (b) HR correlation results predicted using the MTTS-CAN model. Scatter plots display the
relationship between the HR predictions and their true labels for the proposed MTS model and the
other conventional models. MTS produced relatively comparable or even higher correlations for the
predictions of HR compared with the other models.

Figure 6 illustrates the predicted PPG and respiratory signals of the four subjects
with their ground truths (PPG and respiratory signals). Although the predictions of the
PPG signals appear more accurate than those of the respiratory signals, the similar peak
patterns of their predictions are noticeable in all figures, thus resulting in reasonable
predictions of HR and RR. The results in Figures 4 and 5 demonstrate that the proposed
MTS model could produce a similar performance to that of the original Siamese rPPG
network with an extremely small number of parameters. It is also noted that the MTS
model could simultaneously yield reasonable predictions of the RR and HR through its
multitask learning architecture, while only the HR could be estimated using the original
Siamese rPPG network.
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Figure 6. Examples of the predicted PPG and respiratory signals. (a) An example of the predicted
PPG signal. (b) An example of the predicted respiratory signal. Predicted PPG and respiratory signals
are plotted in red lines and their true labels in blue lines. Note the high similarity of the MTS model’s
predictions to the true labels.

It has been demonstrated that the proposed MTS model outperforms the single-task
Siamese networks with the CBAM. For a more rigorous investigation of the MTS and single-
task Siamese network model’s learning processes, their learning curves were generated and
are illustrated with their loss values in Figure 7. As can be seen in Figure 7c, the MTS has
only one learning curve for the predictions of both PPG and respiratory signals owing to
its multitask learning architecture. Similar to the results in Table 1, the single-task Siamese
network model continuously produced an increasing validation loss as the epoch increased
(see the blue line in Figure 7b). Because the single-task model is only designed for the
prediction of the PPG signal, the networks may need to be completely redesigned to learn
the respiratory signal. Conversely, the MTS was successful in simultaneously learning the
respiratory signal as well as the PPG signal with a small number of parameters.
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curve of the Siamese network with CBAM for the prediction of the respiratory signal. (c) Learning
curve of MTS for the predictions of both PPG and respiratory signals. Learning curves (shown as
loss) of the Siamese network with CBAM and MTS for the predictions of PPG and respiratory signals
are displayed over a span of 250 epochs.

5. Discussion

Previous studies on the estimation of RR using video cameras mainly relied on the
monitoring of the abdomen or chest movements [41,42]. This approach requires an ad-
ditional camera for the application, where both HR and RR need to be simultaneously
monitored using noncontact visual sensors. The proposed multi-task learning model could
reduce the additional equipment, as well as the additional model that only estimates the
RR since it deals with completely different areas of the body compared with those for the
HR estimation.

The proposed MTS model was successfully trained using the facial videos together
with the PPG and respiratory signals, yielding the accurate estimation of the HR and RR.
Previous studies [11,12] have reported that PPG signals could contain respiratory informa-
tion, and Nakajima et al. [43] also demonstrated the extraction of respiratory rates from
PPG signals. Thus, the accurate estimation of rPPG using the proposed model from the
facial videos could include the respiratory feature as well as the heartbeat information. Ad-
ditionally, the MTS model was trained using the facial videos together with the respiratory
signals recorded from the chest, in order to monitor the movement of facial parts such as
the nostrils to extract the respiratory information. For future research, we will try to look
into the relationship between the movement of a specific facial part and the respiration in
order to check this.

The single-task Siamese rPPG network produced superior results of HR estimation
in terms of MAE and RMSE compared with those using the proposed MTS model. Their
performance difference could be understandable owing to it being designed only for
HR estimation. However, the MAE and RMSE of the MTS would be comparable with
meaningful levels of less than 5, which can be found in Table 4 showing the benchmark
results of the various rPPG-prediction models using the COHFACE dataset. In addition,
its correlation coefficient was higher than that of the Siamese rPPG network. Considering
the number of parameters of the models shown in Table 3, the size of the MTS model
was 16 times smaller than that of the single-task learning model, which is a significant
advantage of using the proposed multitask learning model, especially for edge devices
when conducting multiple tasks. In addition, the MTTS-CAN is also designed to reduce the
model size; as can be seen in Table 3, it is 12 times smaller than the Siamese rPPG network.
Despite this, the proposed MTS model contains a smaller number of parameters than that
of the MTTS-CAN, and significantly improves the estimation performance of HR and RR,
as demonstrated in Table 2.

Table 4. Benchmark performance of the various rPPG-prediction models on the COHFACE
dataset [25]. 2SR, CHROME, and LiCVPR are the traditional signal processing-based methods,
while HR-CNN and Two stream are data-driven and machine learning-based algorithms.

Method MAE RMSE

2SR [44] 20.98 25.84

CHROME [45] 7.80 12.45

LiCVPR [46] 19.98 25.59

HR-CNN [47] 8.10 10.78

Two stream [48] 8.09 9.96

The proposed model selects regions of interest (ROIs) in the facial image before the
training process, for which the cheeks and forehead were chosen as the ROIs. Recently,
a study compared the results using selected ROIs and the entire face areas for the rPPG
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model training, which reported that the model trained using the entire areas outperformed
the other [45]. They demonstrated that skin-color changes in all facial areas would be
helpful to yielding accurate rPPG signals. For future work, this model will be trained using
the full facial images, and we will try to decrease the model size while dealing with the
increased input data size.

Through the Siamese network, heart rate and respiratory rate were successfully pre-
dicted. The heart-rate information has a significant effect on the prediction of respiratory
rate, which helps improve accuracy [11,12]. However, there is a lack of evidence that
information on respiratory rate helps predict heart rate.

We applied the ROI detection method from the facial area to train the model. The
cheek and forehead areas were extracted as the areas of interest, which were used for the
training dataset. A recent study has investigated the performance of the rPPG estimation
corresponding to different areas of the face including the entire face [49]. It reported that the
more areas of the face the model learns, the better the rPPG-prediction performance it could
produce owing to the sufficient information on the skin-color changes and movements
of the subjects. Therefore, further investigation is needed to confirm the optimal areas of
the face for the rPPG prediction. It has been said that using as many areas as possible to
learn skin-color change and movement is advantageous for learning. There is a need for
further research on whether it is better to use the entire face or to extract and use a specific
part [50].

The COHFACE dataset is an open dataset with a well-refined environment. The
experiment was conducted with the subject’s movement or ambient noise as controlled
as possible. However, what we want is to predict heart rates well in our daily lives. In
future studies, it is necessary to analyze noisy data. Previous studies have shown that
NIR cameras are strong in color change and movement [51,52]. In future research, we may
consider combining the NIR camera with our MTS model.

6. Conclusions

We proposed a multitask Siamese network model that simultaneously estimates
the PPG and respiratory signals from human facial video streams with only the use of
a camera. We applied the Siamese network and the CBAM to the multitask learning
architecture with a 1× 1 convolution layer to considerably reduce the number of parameters
in the model, while concurrently increasing its performance. It was demonstrated that the
proposed model outperformed the single-task model as well as the conventional multitask
learning model for RR estimation and exhibited comparable HR-prediction performance
to that of the single-task model without increasing the number of model parameters.
The MTS is a light model with a few parameters and could be suitable for on-device
learning architectures.
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