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Modeling As a Tool in Drug Development
Overview
This tutorial serves as an introduction to model (and simulation)-
based approaches for drug development for novice modelers 
and for those who, while not being modelers themselves, nev-
ertheless use the approach and want to increase their under-
standing of the process. The tutorial provides some history, 
describes modeling and simulation (e.g., pharmacometrics) 
with emphasis on population modeling and simulation, and 
discusses some regulatory, project management, and infor-
mation technology issues. This is the first in a series of articles 
aimed at providing basic information on pharmacometrics.

Brief history
Atkinson and Lalonde1 stated that “dose selection and dose 
regimen design are essential for converting drugs from poisons 
to therapeutically useful agents.” Modeling and simulation have 
emerged as important tools for integrating data, knowledge, 
and mechanisms to aid in arriving at rational decisions regard-
ing drug use and development. Figure 1 presents a brief outline 
of some areas in which modeling and simulation are commonly 
employed during drug development. Appropriate models can 
provide a framework for predicting the time course of exposure 
and response for different dose regimens. Central to this evolu-
tion has been the widespread adoption of population modeling 
methods that provide a framework for quantitating and explain-
ing variability in drug exposure and response.

All drugs exhibit between-subject variability (BSV) in 
exposure and response, and many studies performed dur-
ing drug development are aimed at identifying and quantify-
ing this variability. A sound understanding of the influence 
of factors such as body weight, age, genotype, renal/hepatic 
function, and concomitant medications on drug exposure and 
response is important for refining dosage recommendations, 
thereby improving the safety and efficacy of a drug agent by 
appropriately controlling variability in drug exposure.

Population modeling is a tool to identify and describe rela-
tionships between a subject’s physiologic characteristics and 
observed drug exposure or response. Population pharmacoki-
netics (PK) modeling is not a new concept; it was first intro-
duced in 1972 by Sheiner et al.2 Although this approach was 
initially developed to deal with sparse PK data collected during 
therapeutic drug monitoring,3 it was soon expanded to include 
models linking drug concentration to response (e.g., pharma-
codynamics (PD)).4 Thereafter, modeling has grown to become 
an important tool in drug development.

Population parameters were originally estimated either by fit-
ting the combined data from all the individuals, ignoring individ-
ual differences (the “naive pooled approach”), or by fitting each 
individual’s data separately and combining individual param-
eter estimates to generate mean (population) parameters (the 
“two-stage approach”). Both methods have inherent problems, 
which become worse when deficiencies such as dosing com-
pliance, missing samples, and other data errors are present,5 
resulting in biased parameter estimates. The approach devel-
oped by Sheiner et al. addressed the problems associated with 
both the earlier methods and allowed pooling of sparse data 
from many subjects to estimate population mean parameters, 
BSV, and the covariate effects that quantitate and explain vari-
ability in drug exposure. This approach also allowed a measure 
of parameter precision by generation of SE.

At first glance, the term “population PK” suggests that the 
individual patient is ignored; however, the importance of the 
individual in population models is highlighted by the description 
of variability, with data from each individual contributing to the 
identification of trends such as changes in drug exposure with 
changing age or weight, and the subsequent estimation of the 
population characteristics. Pharmacometrics can be used to 
improve our understanding of mechanisms (e.g., linear or sat-
urable metabolism), inform the initial selection of doses to test, 
modify or personalize dosage for subpopulations of patients, 
and evaluate the the appropriateness of study designs.6
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What Are Models?

In the broadest sense, models are representations of a 
“system” designed to provide knowledge or understanding of 
the system. Models are usually simplified representations of 
systems, and it is the simplification that can make them useful. 
The nature of the simplification is related to the intended use 
of the model. Models are therefore better judged by their 
“fitness for purpose” rather than for being “right” or “true.” For 
example, one scale model of an airplane may be made for 
testing its aerodynamics in a wind tunnel, while another may 
be made for visualizing and choosing the exterior colors. Nei-
ther of the models is meant to do the job of the real airplane. 
Furthermore, neither is a “true” model, but each may be fit for 
its intended purpose. This idea was famously articulated by 
George Box who stated: “Essentially, all models are wrong, 
but some are useful.”7 Fitness for purpose implies “credibil-
ity” and “fidelity.” Credibility implies that the model conforms 
to accepted principles and mechanisms that can be justi-
fied and defended. Credible models are ones for which the 
assumptions made in the construction are understood and 
clearly stated. Fidelity is gauged by comparing the model to 
components of the system (reality) that are considered impor-
tant (note that fidelity does not always imply credibility). Model 
development can therefore be envisaged as ranking credible 
models according to a range of metrics that distil their “fitness 
for purpose,” preferably including considerations of timeliness 
and economy.

Models can be physical objects as in the airplane example 
mentioned earlier, or abstract representations; this is also 
true of pharmacometrics models. It is possible to represent 
PK models as analog electric circuits or hydraulic systems.8,9 
However, in PK it is more convenient to consider concep-
tual models—models that define a collection of mathematical 
relationships. Like all mathematical concepts, these exist as 
ideas that can be represented in various terminologies and 
through different physical media (from a piece of paper, to a 
spreadsheet to programming language).

Models provide a basis for describing and understanding 
the time-course of drug exposure and response after the 
administration of different doses or formulations of a drug to 
individuals, and provide a means for estimating the associ-
ated parameters such as clearance and volume of distribution 
of a drug. Population models can be developed using rela-
tively few observations from each subject, and the resulting 
parameter estimates can be compared to previous assess-
ments to determine consistency between studies or patient 
populations. The data can also be compared with those relat-
ing to other drugs in the same therapeutic class, as a means 
of evaluating the development potential of a new therapeutic 
agent. Consequently, one of the primary objectives of any 
population modeling evaluation is to develop a mathematical 
function that can describe the pharmacologic time course of 
a drug over the range of doses evaluated in clinical trials.

Types of Models
PK models
PK models describe the relationship between drug 
concentration(s) and time. The building block of many PK 
models is a “compartment”—a region of the body in which 
the drug is well mixed and kinetically homogenous (and can 
therefore be described in terms of a single representative con-
centration at any time point10). Compartments have proven to 
be ubiquitous and fundamental building blocks of PK models, 
with differences between models often being defined by the 
way the compartments are connected. Mammillary models 
generally have a central compartment representing plasma 
with one or two peripheral compartments linked to the central 
compartment by rate constants (e.g., k12 and k21).

11 Compart-
ments in mammillary models can sometimes be real physi-
ologic spaces in the body (such as the blood or extravascular 
fluid), but are more typically abstract concepts that do not 
necessarily represent any particular region of the body.

In contrast, physiology-based PK models (PBPK) use one or 
more compartments to represent a defined organ of the body, 
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Figure 1  Modeling and simulation during drug development.
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with a number of such organ models connected by vascular 
transport (blood flow) as determined by anatomic consider-
ations.12 Mammillary PK models can generally be informed 
by blood or plasma concentrations alone whereas, with 
PBPK models, tissue and plasma concentrations are typically 
required, or parameters may have to be set according to values 
mentioned in the literature. This makes it complicated to apply 
PBPK models to clinical data; on the other hand, it provides a 
greater scope to understand the effect of physiologic perturba-
tions and disease on drug disposition, and often improves the 
ability to translate findings from preclinical to clinical settings.

PKPD models
PK/PD (PKPD) models include a measure of drug effect (PD). 
They have been the focus of considerable attention because 
they are vital for linking PK information to measures of activ-
ity and clinical outcomes.13 Models describing continuous 
PD metrics often represent the concentration–effect relation-
ship as a continuous function (e.g., linear, Emax, or sigmoid 
Emax). The concentration that “drives” the PD model can be 
either the “direct” central compartment (plasma) drug con-
centration, or an “indirect” effect wherein the PD response 
lags behind the plasma drug concentration. Models describ-
ing discrete PD effects (e.g., treatment failure/success, or the 
grade of an adverse event) often use logistic equations to 
convert the effect to a probability within a cohort of subjects. 
This probability can be related to a PK model. Exposure–
response models are a class of PKPD models wherein the 
independent variable is not time, but rather, a metric describ-
ing drug exposure at steady-state (e.g., dose, area under the 
curve (AUC), or peak plasma concentration (Cmax)).

Disease progression models
Disease progression models were first used in 1992 to 
describe the time course of a disease metric (e.g., ADASC in 
Alzheimer’s disease14). Such models also capture the inter-
subject variability in disease progression, and the manner in 
which the time course is influenced by covariates or by treat-
ment.15 They can be linked to a concurrent PK model and used 
to determine whether a drug exhibits symptomatic activity or 
affects progression.16 Models of disease progress in placebo 
groups are crucial for understanding the time course of the 
disease in treated groups, as well as for predicting the likely 
response in a placebo group in a clinical trial.17

Meta-models and Bayesian averaging
Meta-analyses means “the analysis of analyses.”18 They are pro-
spectively planned analyses of aggregate (e.g., mean) results 
from many individual studies to integrate findings and gener-
ate summary estimates. Meta-models are used to compare the 
efficacy or safety of new treatments with other treatments for 
which individual data are not available, such as comparisons 
with competitors’ products. They can also be used to re-evalu-
ate data in situations involving mixed results (e.g., some stud-
ies showed an effect and others did not).19 Meta-models can 
describe PD or disease progression,20 and are now frequently 
used to underwrite go/no go decisions during drug develop-
ment. There are several important factors to consider in relation 
to meta-analysis: (i) the objectives and goals should be clearly 
defined before initiating any work; (ii) the data incorporated 

in the analysis must be complete, compatible, and unbiased 
(e.g., not limiting data only to those from successful trials); (iii) 
between-study and between-treatment-arms variability should 
be accounted for; and (iv) combining individual data with aggre-
gate data must be done carefully, the method of combination 
depending partly on the structure of the model.21

The practice of selecting one model from a series of pro-
posed models and making inferences on the basis of the 
selected model ignores model uncertainty. This could impair 
predictive performance and overlook features that other 
models may have captured better. Bayesian model averag-
ing combines models and accounts for model uncertainty.22 
A typical application of this Bayesian approach is where sev-
eral models for a drug exist in the literature and it is not clear 
which model should be used for simulating a new study. It is 
certainly possible to fit the predictions of the available models 
and develop a single model that incorporates the contribu-
tions of multiple models. However, the Bayesian method of 
model averaging allows all existing models to contribute to a 
simulation, with the input being weighted on the basis of pre-
specified criteria such as the quality of the data or the model, 
or other factors. This approach, therefore, incorporates the 
uncertainty inherent in each contributing model.

The Components of Population Models

Population modeling requires accurate information on dosing, 
measurements, and covariates. Population models are com-
prised of several components: structural models, stochastic 
models, and covariate models. Structural models are func-
tions that describe the time course of a measured response, 
and can be represented as algebraic or differential equations. 
Stochastic models describe the variability or random effects 
in the observed data, and covariate models describe the 
influence of factors such as demographics or disease on the 
individual time course of the response. These components 
are described in detail later in this article.

Data and database preparation
It is axiomatic that models are only as good as the data they 
are based on. Databases used for modeling are frequently 
complex, requiring accurate information on timing, dates, and 
amounts of the drug administered, sample collection, and 
associated demographic and laboratory information. In addi-
tion, because data are collated in a unique fashion (so that 
patient factors are recorded together for each patient, rather 
than as separate listings which is the more traditional method 
of presenting demographic and laboratory data), errors can 
sometimes be found that would not ordinarily be noted. For 
example, an 80-year-old female subject weighing 40 kg, with 
an estimated creatinine clearance of 120 ml/min, would seem 
unlikely to be included in a model database; however, when 
considered individually, each of the records would not have 
been thought to be problematic during routine data checks. 
Units for all values must be consistent throughout the data-
base, and this requirement can make it more difficult to pool 
data from several studies. Establishing quality assurance of 
both the merged database and the final results is more inten-
sive, and generally requires special training.
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Structural models as algebraic equations
The simplest representation of a PK model is an algebraic 
equation such as the one representing a one-compartment 
model, the drug being administered as a single intravenous 
bolus dose:

(1)

This model states the relationship between the indepen-
dent variable, time (t), and the dependent variable, concen-
tration (C). The notation C(t) suggests that C depends on t. 
Dose, clearance (CL), and distribution volume (V) are param-
eters (constants); they do not change with different values of 
t. Note the differences in the uses of the terms “variable” and 
“parameter.” The dependent and independent variables are 
chosen merely to extract information from the equation. In 
PK, time is often the independent variable. However, Equa-
tion (1) could be rearranged such that CL is the independent 
variable and time is a constant (this may be done for sensitiv-
ity analysis for example).

Linearity and superposition
Equation (1) produces an exponential curve of concentration 
vs. time. Fitting Equation (1) to the data is therefore known as 
nonlinear regression. Unfortunately, the term “linearity” can 
be used to describe distinctly different properties of equations 
in pharmacometrics. Despite the nonlinear time course that it 
produces, Equation (1) is linear with respect to its parameters 
(i.e., a plot of C vs. CL or C vs. V produces a straight line), 
which has useful properties. The concentration–time curve 
for any one dose can be added to that for another dose, and 
the sum will produce a curve that is the same as that for the 
two doses given together. This principle of “superposition”23 
also applies if there are temporal differences in the timings 
of the doses, and can be exploited to model the outcome of 
complex dose regimens simply by summing the results for 
each of the single doses as defined by their corresponding 
algebraic equations.

Structural models as differential equations
Some complex pharmacometrics systems cannot be stated 
as algebraic equations. However, they can be stated as dif-
ferential equations. Rewriting Equation (1) as a differential 
equation:

(2)

A differential equation describes the rate of change of a 
variable. In this example, dC/dt is the notation for the rate 
of change of concentration with respect to time (sometimes 
abbreviated as C′). Note that differential equations require 
specification of the initial value of the dependent variables. 
Here, the value of C at time zero (C0) is Dose/V.

Numerical methods are needed to solve systems of differ-
ential equations. Euler’s method is a simple example and can 
be easily coded. Numerically solving Equation (2) requires 
approximating the value of the variable (C2) after an incre-
ment in time (t2 – t1) based on the previous value (C1) and the 
implied rate of change (–CL/V*C1):

(3)

An initial value is needed for this process (to give the first 
value for C1, see Equation (2)). Computational errors are 
minimized by keeping the time increments very small. There 
has been extensive development of algorithms to solve dif-
ferential equations numerically, and in most contexts the dif-
ference between an analytical solution and the approximate 
numerical solution is inconsequential. However, solving a 
system of equations is computationally intensive and, even 
with automated, rapid processors, there is a time penalty for 
using differential equations to describe a model. Generally, 
algebraic equations and superposition are exploited unless 
the model is complex or nonlinear with respect to its param-
eters (e.g., saturable metabolism), in which case differential 
equations are necessary.

Stochastic models for random effects
Population models provide a means of characterizing the 
extent of between-subject (e.g., the differences in exposure 
between one patient and another) and between-occasion vari-
ability (e.g., the differences in the same patient from one dose 
to the next) that a drug exhibits for a specific dose regimen in a 
particular patient population. Variability is an important concept 
in the development of safe and efficacious dosing; if a drug has 
a relatively narrow therapeutic window but extensive variability, 
then the probability of both subtherapeutic and/or toxic expo-
sure may be higher,24 making the quantitation of variability an 
important objective for population modeling.

In classical linear regression, there is only one level of unex-
plained variability, namely, the difference between a particular 
observation and the model-predicted value for that observation 
(residual unexplained variability (RUV)). In contrast, population 
models often partition unexplained variability into two or more 
levels (sometimes called hierarchies). Commonly, the first level 
is variability between parameter values for a particular subject 
and the population value of the parameters (random BSV). 
The second level is the unexplained residual variability (RUV), 
common to standard linear regression.

A proper understanding of population models requires an 
understanding of some of the key concepts and terminology 
relating to these different levels of variability. As an example, 
consider a PK study involving four subjects (Figure 2) to each 
of whom an intravenous bolus dose of a drug was given, with 
the kinetics of the drug being capable of being described in 
terms of a one-compartment model (Equation (1)). Each sub-
ject’s data can be described by the same structural model 
described in Equation (1), but each subject is described by 
unique parameter values for CL and V (Table 1). The model 
may have either a “fixed” parameter (no BSV) or a “random-
effect” parameter (including BSV). Confusingly, the term 
“fixed” is also used in modeling to indicate a parameter that 
is not estimated from the data; however, the different uses of 
the term “fixed” can usually be inferred from the context. In 
the example cited, CL is a random-effect parameter and V 
is a fixed-effect parameter. Fixed effects are represented by 
parameters (THETA) that have the same value for every sub-
ject. THETA is typically estimated from the data (e.g., “V was 
estimated to be 13.6 l in the population”). Random effects 
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are represented as a quantity (ETA) reflecting the difference 
between an individual’s parameter value and the population 
value. ETA is assumed to be normally or log-normally dis-
tributed across the population being evaluated, is centered 
around zero, and is summarized by its variance (or SD), often 
termed as OMEGA. OMEGA describes the distribution of BSV 
for the parameter across the population being studied (e.g., 
Figure 3c). Typically, both THETA and OMEGA are estimated 
from the data (e.g., “CL was estimated to be 2.1 l/min with a 
BSV of 28%”). Population models usually have fixed effect as 
well as random-effect parameters, and are therefore called 
“mixed-effect” models.

Population models need to include a description of RUV. 
RUV is defined by a quantity (EPS) reflecting the difference 
between the observed data for an individual and the model’s 
prediction (the residual). EPS is assumed to be normally 

distributed and centered around zero, and is summarized by 
its variance (or SD), often termed as SIGMA. SIGMA is esti-
mated from the data (e.g., “RUV was estimated to be 18%”). 
There are four estimated parameters in the model that have 
been described as an example: THETA1, THETA2, OMEGA, 
and SIGMA. The relationships between parameter values and 
variables in the example model are summarized in Table 2.

Covariate models for fixed effects
The identification of covariates that explain variability is an 
important objective of any population modeling evaluation. 
During drug development, questions such as “how much does 
drug exposure vary with age?” are often answered by the 
results of clinical trials in healthy young and elderly subjects. 
However, such information can also be garnered through pop-
ulation modeling. Population modeling develops quantitative 
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relationships between covariates (such as age) and param-
eters, accounting for “explainable” BSV by incorporating the 
influence of covariates on THETA. Figure 3a shows a hypo-
thetical range of concentration–time profiles arising from an 
intravenous bolus of identical doses of a test drug to elderly and 
young patients. Taken together, without introducing a covariate 
into the population model, the range of clearance (and there-
fore AUC) values is quite wide (Figure 3b). However, when a 
covariate effect (age) is introduced into the model, character-
izing the difference in clearance between young and elderly 
subjects (Figure 3b), the overall BSV in the AUC is reduced 
(Figure 3d). In this example, if dosing were adjusted to allow 
different doses for young and elderly patients, the range of 
exposures that patients experience in a clinical trial or in clini-
cal use would be more consistent. In the example shown in 
Table 1, both CL and V scale linearly with body weight (WT), 
reflecting the explainable variability in these parameters attrib-
utable to body size. WT is normalized to a value of 70 kg, so 
that subjects with a weight of 70 kg take the typical popula-
tion value. Mandema et al.25 describe several well recognized 
approaches that have been used to evaluate the effects of 
covariates on population models. In general, however, graphi-
cal evaluations of the data are usually the best place to start.

The variability often encountered in the metrics of expo-
sure, such as in AUC or peak or trough concentrations, can 
be thought of as a continuous distribution of values that is 

comprised of subpopulations arising from different demo-
graphic, laboratory, and pathological factors, as shown in Fig-
ure 3e. Identification and quantification of these differences 
can support dose recommendations for special populations 
of patients; conversely, they can show that dose adjustments 
are not warranted. Such recommendations are often derived 
through the use of simulation.

Concepts of Estimation and Simulation

The processes of estimation of parameters for models from 
data, and simulation of new data from models are fundamen-
tal to pharmacometrics. These topics are discussed further 
in this paper.

Estimation methods
The concept of estimating the “best parameters” for a model 
is central to the modeling endeavor. There are clear analogies 
to linear regression, wherein the slope and intercept param-
eters of a line are estimated from the data. Linear regres-
sion is based on “least squares” minimization. The difference 
between each pair of observed (e.g., C

obs) and predicted 
(e.g., “ Ĉ ”) values for the dependent variables is calculated, 
yielding the residual (Cobs – Ĉ ). The best parameters achieve 
the lowest value of the sum of the squares of the residuals 
(which is used so that positive and negative residuals do not 
cancel each other out). The “sum of squares” term can be 
thought of as an “objective function.” It has a given value for 
each unique pair of slope and intercept parameters, and is 
lowest for the line of best fit.

Most pharmacometric models need some extensions to 
this least squares concept for estimating the parameters. The 
first extension is needed because the least squares objective 
function is dependent on the magnitude of the data (i.e., high 
data points can be given more “weight” than low data points) 
and, because there is often a subjective component to the 
choice of weights, it is best to avoid this situation. Maximum 
likelihood estimation is commonly used because it avoids the 
need for data weighting. For a given pair of observed and 
predicted data values, Ĉ  is considered to have a possible 
range of values described by a normal distribution, with a 
mean of Ĉ  and a SD given by the estimate of sigma (see 
Table 1). The likelihood of the observed data (closely associ-
ated with probability) is a metric summarizing the deviation of 
the observed data (Cobs) from the center of this distribution. 
For ease of computation, the maximum likelihood estima-
tion objective function is usually expressed as the negative 
sum of the log of the likelihoods, yielding a single number—
the maximum likelihood estimation objective function value 
(OFV). The minimum value of the OFV for a particular model 
and data set is associated with the “best fit” parameter val-
ues, but the absolute value of the OFV is not important. It is 
used within a model for comparing parameter values, and is 
compared between models for ranking them in order of good-
ness of fit for the same dataset. The OFV also offers some 
advantages. It allows simultaneous fitting of random effects 
and residual error (crucial to population models) and has a 
distribution (approximately χ2) that facilitates the use of statis-
tical tests to make comparisons between models.

Table 1  Equations for a simple population pharmacokinetic model

CLPOP = THETA1 Population value for clearance. The same for all 
subjects.

VPOP = THETA2 Population value for distribution volume. The same 
for all subjects.

CLGRP = CLPOP × WT/70 The group value for clearance adjusts CLPOP for 
the covariate body weight (WT). The same for all 
subjects in the same weight group.

VGRP = VPOP × WT/70 The group value for distribution volume adjusts 
VPOP for the covariate body weight (WT). The same 
for all subjects in the same weight group.

CLI = CLGRP+ETA1 The individual predicted value for clearance adjusts 
CLGRP with a random effect (ETA). Different values 
for each subject. ETA is normally distributed with a 
variance of OMEGA and a mean of 0.

VI = VGRP No random effects for V, making VI the same as VGRP.

CPRED = AMT/VGRP 
× EXP(–1 × CLGRP/VGRP 
× TIME)

The model equation is used to calculate the 
population predicted concentration. Accounts for 
explainable between-subject variability (e.g., dose 
and covariates).

CIPRED = AMT/VI × EXP(–1 
× CLI/VI × TIME)

The model equation is used to calculate the 
individual predicted concentration. Has additional 
unexplainable between-subject variability (e.g., 
due to CLI).

CDV = CIPRED + EPS The observed data (DV) can be thought of as the 
model prediction with added residual unexplained 
variability (EPS). EPS has a different value for each 
observation. EPS is normally distributed with a 
variance of SIGMA and a mean of 0.

A simple population pharmacokinetic model for describing the data shown 
in Figure 2 written in model “pseudo-code” with comments. The model has 
additive between-subject variability on CL, and additive residual unexplained 
variability. See Table 2 for the variables and parameters for this model when 
fitted to the data shown in Figure 2.
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The second extension arises from the fact that, unlike lin-
ear models, most PK models are too complex to solve for 
the minimum value of the OFV by means of algebraic meth-
ods. Optimization approaches are used, involving searching 
for combinations of parameter values that produce the low-
est value of the OFV. When two parameters are fitted, it is 
possible to show the OFV as a three-dimensional surface 
(Figure 2b). There are many optimization algorithms (“esti-
mation methods”) for finding the minimum value of this OFV 
surface. The simplest of these is the “gradient method.” Start-
ing at one point on the surface, the parameters are evaluated 
to determine the direction in which the OFV decreases the 
most. The next set of parameters is chosen to take a “step” in 
this direction, and the process is repeated until the minimum 
OFV is found. There are some key features of optimization 
processes, regardless of the actual algorithm used (the algo-
rithm is usually chosen on the basis of accuracy, robustness, 
and speed). First is the need to specify initial parameter val-
ues (essentially telling the search algorithm where to start 
on the OFV surface). Second is the concept of local minima 
on the OFV surface. There is a risk that the search algo-
rithm will find a local minimum rather than the lower global 

minimum. Local minima arise for some combinations of mod-
els and data when there are two sets of parameter values 
that, although different, provide similar fits to the data. Appro-
priate choice of initial values helps reduce the risk of finding 
a local minimum in estimation (for instance, by starting the 
search nearer the global minimum). Finally, as can be seen 
in Figure 2b, the minimum of the OFV sits in a “trough” on 
the OFV surface. The shape of this trough provides impor-
tant information about the uncertainty in the parameter esti-
mates. For a steep sided trough, there are a limited range of 
parameter values that can describe the data for this model. 
In contrast, a broad, shallow trough implies that a greater 
range of parameter values can describe the data for this 
model (i.e., uncertain/imprecise parameter estimates). This 
uncertainty in parameter estimates can be quantified from 
the shape of the “trough” on the OFV surface, and is usually 
reported either as SE of the parameter estimate or as con-
fidence intervals for the parameter. For example, the state-
ment “V was estimated to be 13.6 l with a SE of 11%” means 
that, given the model and data, there is a high certainty in the 
prediction of V. Precise parameter estimates are a desirable 
feature of a model, particularly when the parameter value is 
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crucial in making inferences from the model. Over-parame-
terized models generally have one or more parameters with 
high imprecision (i.e., there is not enough information in the 
data to estimate the parameter) and may therefore benefit 
from simplification.

Simulation methods
Using models to simulate data is an important component 
of pharmacometric model evaluation and inference. For the 
purpose of evaluation, the model may be used to simulate 
data that are suitable for direct comparison with the index 
data. This can be done either by using a subset of the origi-
nal database used in deriving the model (internal validation) 
or a new data set (external validation). For the purpose of 
inference, the model is generally used to simulate data other 
than observed data. Interpolation involves simulation of non-
observed data that lie within the bounds of the original data 
(e.g., simulating AUC for a 25 mg dose when the observed 
data used in building the model was for 20 and 30 mg doses). 
Extrapolation involves simulation of nonobserved data that 
lie outside the bounds of the original data (e.g., simulating 
AUC for a 100 mg dose when the observed data was for  

20 and 30 mg doses). Extrapolation requires confidence in the 
assumptions of the underlying model. In this example, if the 
model has been designed with the assumption of dose linear-
ity, and if the drug has saturable metabolism, the model pre-
dictions may be erroneous. Simulations should therefore be 
interpreted with a clear understanding of the limitations and 
assumptions inherent in the model. Nevertheless, using mod-
els to frame mechanisms and hypotheses, and for extrapolat-
ing and experimentally testing the model predictions, is part 
of the “Learn and Confirm” paradigm of model building.

Simulating from models with fixed-effect and random-
effect parameters (i.e., stochastic simulation with population 
models) is more complex than non-stochastic simulation 
from simple fixed-effect models. Random-effect parameters 
account for unexplained variability in the data that must be 
recreated during simulation. This is done by using a random 
number generator to sample parameter values from a distri-
bution, with the mean and SD of the distribution of random 
effects as found from the estimation process. Most modeling 
software has random number generators for a variety of dis-
tributions (e.g., uniform, normal, log-normal, binomial, etc.) 
as appropriate for a given model.

Table 2  Parameter and variable values for a simple population model

ID AMT TIME CLpop Vpop CLgrp Vgrp WT CLi Vi ETAcl ETAv PRED IPRED EPSa DV

1 100 0 2 10 2 10 70 2 10 0 0 10 10 –0.03 9.97

1 1 2 10 2 10 70 2 10 0 0 8.19 8.19 –0.09 8.1

1 2 2 10 2 10 70 2 10 0 0 6.7 6.7 0.11 6.81

1 4 2 10 2 10 70 2 10 0 0 4.49 4.49 0.02 4.51

1 8 2 10 2 10 70 2 10 0 0 2.02 2.02 0.28 2.3

2 100 0 2 10 2 10 70 2.5 10 0.5 0 10 10 0.23 10.23

2 1 2 10 2 10 70 2.5 10 0.5 0 8.19 7.79 –0.22 7.57

2 2 2 10 2 10 70 2.5 10 0.5 0 6.7 6.07 –0.26 5.81

2 4 2 10 2 10 70 2.5 10 0.5 0 4.49 3.68 0.26 3.94

2 8 2 10 2 10 70 2.5 10 0.5 0 2.02 1.35 0.39 1.74

3 100 0 2 10 3 15 105 2.25 15 –0.75 0 6.67 6.67 –0.38 6.28

3 1 2 10 3 15 105 2.25 15 –0.75 0 5.46 5.74 –0.51 5.23

3 2 2 10 3 15 105 2.25 15 –0.75 0 4.47 4.94 0.53 5.46

3 4 2 10 3 15 105 2.25 15 –0.75 0 3 3.66 0.14 3.8

3 8 2 10 3 15 105 2.25 15 –0.75 0 1.35 2.01 –0.09 1.92

4 200 0 2 10 2 10 70 2.75 10 0.75 0 20 20 0.01 20.01

4 1 2 10 2 10 70 2.75 10 0.75 0 16.37 15.19 –0.47 14.72

4 2 2 10 2 10 70 2.75 10 0.75 0 13.41 11.54 –0.67 10.87

4 4 2 10 2 10 70 2.75 10 0.75 0 8.99 6.66 0.31 6.97

4 8 2 10 2 10 70 2.75 10 0.75 0 4.04 2.22 0.38 2.6

Omega 
(var)

0.44 0 Sigma 
(var)

0.11

Omega 
(SD)

0.66 0 Sigma 
(SD)

0.33

See Table 1 for the model equations and Figure 2 for plots of observed and fitted data. The table is laid out in a common format for population modeling software 
with a column for each variable or parameter, and subjects (ID) and the independent variable (TIME) stacked by rows. AMT is the dose and DV is the observed data. 
For all subjects, CL is a random effects parameter and V is a fixed effects parameter. Subject 1 has population values for CL, V, and WT. Subject 2 has a randomly 
different CL value to subject 1. Subject 3 has a randomly different CL value to subject 1 but also a covariate effect for WT on CL. Subject 4 has a randomly different 
CL value to subject 1 but also a higher dose (AMT). Check the equations in Table 1, and use a calculator to see how they describe the relationships between 
columns.
aEPS is the individual predicted residual in this example. In practice there are a number of different types of residuals based on PRED and IPRED, and weighted 
residuals are most used for model diagnostics.
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For stochastic simulations, the model needs to be simu-
lated repeatedly so that the distribution of the simulated 
output can be summarized (e.g., mean values and SD). In 
theory, more simulation replicates are better, but the number 
that are actually performed is often limited by considerations 
of time and data size. A common “rule of thumb” is that at 
least 200 simulations are needed when summarizing simu-
lated data as mean values, and at least 1,000 are needed 
when summarizing as confidence intervals. When simulating 
stochastic models with more than one random effect parame-
ter, it is important to understand potential correlations among 
the parameters, and to account for this factor during simula-
tion so as to avoid implausible combinations of parameters in 
individual subjects.

Clinical trial simulation is an important application of the 
simulation method. It is not a new method; it involves the 
application of old technologies to the problem of maximiz-
ing the information content obtained in earlier trials in order 
to ensure the greatest chance of conducting a new clinical 
trial with the desired outcome. Bonate26 has reviewed appli-
cations for clinical trial simulation, and reported successful 
evaluations by several researchers. Simulation is a useful 
tool for determining key aspects of study design such as the 
appropriate doses for First-in-Humans trials, dose selection 
for proof-of-concept and pivotal studies, study design, sub-
ject numbers, sample numbers, timing, and other factors. 
When designing a clinical trial, it is important to ensure that 
sufficient information to estimate model parameters is col-
lected, while also ensuring that the schedule is not oner-
ous. Although it has been referenced in the Guidance to 
Industry,27 the collection of a single trough value from each 
subject is insufficient to estimate parameters. A process 
referred to as “D-optimization” uses information from previ-
ous models to optimize the numbers and timing of samples 
collected from subjects.28 Potential study designs can then 
be tested using simulations to ensure appropriateness of 
the design.

As described by Miller et al.,29 clinical trial simulation is a 
part of the “Learn and Confirm” cycle of drug development. 
Information from previously conducted studies can be used 
to simulate expected ranges of responses for upcoming trials. 
Subsequently, information gathered in the new trial can be 
used to confirm the model and potentially augment informa-
tion provided by the model. With each cycle, the robustness 
and suitability of the model becomes better established.

A hypothetical example of clinical trial simulation is provided 
in Figure 4. In panel a, the effect of weight on clearance of a 
drug is provided. Based on the narrow confidence intervals 
for this trend, the effect is well estimated and should be robust 
for simulation. A simulation of expected concentration–time 
profiles after a 1-h infusion of a 10 mg/kg dose to neonates, 
infants, young children, older children, adolescents, and 
adults is shown in Figure 4b. With this weight-based dose 
strategy, neonates and infants show a concentration–time 
profile that is substantially lower than expected as compared 
to adults. When the data are summarized into AUC values, 
it can be seen that the overall exposure levels in neonates, 
infants, and young children are markedly different from those 
in adults. In this example, higher doses are required in pedi-
atric patients in order to obtain exposure levels comparable 

to those in adults. Therefore, a study that is designed such 
that all subjects receive the same weight-based (mg/kg) dose 
regardless of age would be unlikely to succeed in younger 
patients, for whom alternative dose recommendations would 
have to be considered. It is common to find that weight-based 
dosing is an inappropriate dose metric for use in children. This 
is because the relationship between weight and clearance is 
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Figure 4  Simulated exposures for different age groups. (a) Relationship 
between clearance and weight. The solid line denotes the mean 
relationship, and the upper and lower broken lines denote the upper and 
lower 95% confidence intervals, respectively. (b) Simulation of mean 
concentration–time profiles after a 1-h infusion of a 10 mg/kg dose to 
neonates (pink line), infants (brown line), young children (blue line), older 
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(c) Box and whisker plots of simulated (area under the curve (AUC)) 
values for neonates (pink), infants (brown), young children (blue), 
older children (purple), adolescents (green), and adults (cyan) after the 
10 mg/kg dose regimen.
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usually not linear, and weight-based dosing does not take 
into account the extent of maturation of organs.30

Regulatory Aspects

The US Food and Drug Administration (FDA), through the 
FDA Modernization Act of 199731 and the FDA “effectiveness” 
guidance of 199832 allowed the use of exposure–response 
information in combination with a single pivotal clinical trial as 
sufficient evidence of effectiveness. Although the use of an 
exposure–response evaluation to replace a pivotal trial is not 
common, population PK modeling and exposure–response 
evaluations are frequently used to support registration deci-
sions and labeling. This is because population PK modeling 
enables the identification of the sources of variability that 
ultimately have an impact on both safety and efficacy. In 
particular, the FDA has acknowledged the use of population 
modeling as being informative in extending information from 
adult indications to pediatric indications.33 In a recent review 
of the impact of population modeling,34 the authors evalu-
ated 198 submissions from January 2000 through December 
2008. The number of submissions wherein pharmacometrics 
analyses were included increased sixfold over 9 years (from 
45 submissions during the 5 years from 2000 to 2004 to 87 
submissions during the 2 years 2007–2008). The impact of 
these analyses on labeling decisions has also increased 
across all sections of the drug label. Among the 198 sub-
missions surveyed, pharmacometrics analyses of 126 sub-
missions (64%) contributed to drug approval decisions, while 
those of 133 submissions (67%) contributed to labeling deci-
sions. Modeling and simulation also play a large role in per-
sonalized medicine.

Modeling and simulation also play a large role in personal-
ized medicine. Personalized medicine aims to provide more 
accurate predictions of individual responses to therapy based 
on the characteristics of the individuals.35 Pharmacogenetics 
tests allow clinicians to individualize treatment, potentially 
improving compliance because the medication and dos-
age are more likely to be safe and effective. The warfarin 
drug label changes made in 2007 and 2010 provide a good 
example. These changes were based, in part, on research 
conducted by the C-Path Institute and others.36 Work by 
Hamberg et al.37 on warfarin exposure and response identi-
fied the CYP2C9 genotype and age as being predictive of 
exposure, and the VKORC1 genotype as being predictive of 
response. The authors showed the importance of CYP2C9 
and VKORC1 genotypes and the patient’s age for arriving at 
strategies to improve the success of warfarin therapy.

In a recent commentary on the impact of population modeling 
on regulatory decision making, Manolis and Herold38 described 
three broad classifications of model-based evaluations: (i) 
those that are generally well accepted, (ii) those that may be 
acceptable if justified, and (iii) those that are controversial.

Examples of the first category are:

•	 Hypothesis generation and learning throughout drug 
development.

•	 The use of modeling and simulation to optimize designs, 
select doses to be further tested in clinical trials, and 
develop minimal sampling schedules.

Examples of the second category are:

•	 The use of modeling and simulation for final 
recommendation of intermediate doses that were 
not specifically tested in phase II/III trials or to bridge 
efficacy data across indications.

•	 Modeling of phase II/III data to support regulatory claims 
(e.g., absence of suspected drug–drug interactions, 
effect of pharmacogenetics on exposure).

Examples of the third category are:

•	 Model-based inference as the “sole” evidence of 
efficacy/safety, or based on simulated data for efficacy 
and safety (notwithstanding exceptional scenarios).

Reporting requirements
In 1999, Sun et al. published a detailed description of the 
general expectations by regulators for submission of popula-
tion modeling work.39 In addition, there are guidance docu-
ments from FDA27 and the Committee for Medicinal Products 
for Human Use (CHMP) of the European Medicines Agency 
(EMA)40 which should always be considered when conduct-
ing population modeling evaluations. In general, a prespeci-
fied analysis plan is useful and should be included in the 
final report. Because of the importance of the quality of the 
data in determining the modeling results, it is essential to 
spend the necessary time to ensure that the data are of 
good quality, and to describe the methods used for data 
merging and evaluation. Both the analysis plan and the 
report should describe all data editing procedures that have 
been used to detect and correct errors, including the criteria 
used for declaring data unusable (e.g., missing information 
on dates or times of doses or measurements). The rationale 
for declaring a data point to be an outlier needs to be sta-
tistically convincing and should be specified in the analysis 
plan. The methods used for handling concentrations below 
quantitation limits and missing covariate data must also be 
specified.

A final report should be sufficiently descriptive so as to allow 
a reviewer to understand how the conclusions were reached. 
The objectives of the analyses, the hypotheses being investi-
gated, and the assumptions imposed should be clearly stated, 
both in the analysis plan and in the report. The steps taken 
to develop the population model should be clearly described. 
This can be done through the use of flow charts or decision 
trees. The criteria and rationale for the model-building proce-
dures adopted should be specified. Often, one or more tables 
showing the models tested and summaries of the results of 
each evaluation are also included to provide a clear descrip-
tion of the results and decision-making process.

The reliability and robustness of the results can be sup-
ported by generating standard diagnostic plots, key parameter 
estimates and associated SE, and other metrics. A model that 
is appropriate for a specific purpose (e.g., describing data) 
may or may not be appropriate for other purposes (such as 
simulation). The objective of model qualification is to examine 
whether the model is suitable for the proposed applications. 
For example, if the model is to be used for simulation and dos-
age recommendation, the predictive performance of the model 
should be tested.
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Project Management Aspects

Reviews of filings in the United States and Europe made 
between 1991 and 2001 showed that the average success 
rate for all candidate drugs in all therapeutic areas was 
~11%,41 and that the success rate was lower during preclini-
cal development. With the cost of conducting clinical trials 
increasing with each stage in drug development, failure at 
late stages of development is problematic. The costs associ-
ated with drug development are staggeringly high. In 2010, 
the cost of developing a new drug was estimated to be ~$1.2 
billion (costs vary depending on the therapeutic indication).42 
Part of the problem is difficulty in making informed decisions 
at critical junctures during the drug development process.

In 1997, Sheiner43 introduced the concept of “Learn and 
Confirm” as a means to improve decision making by using 
information more effectively. Sheiner outlined a drug develop-
ment process that involved two cycles of learning and con-
firming (Table 3). During the learning phases of each cycle, 
studies should be designed to answer broader questions, 
and require more elaborate evaluations to answer; in con-
trast, during the confirming phases, questions are typically 
of the “yes/no” variety and can be answered using traditional 
statistical approaches. Sheiner advocated the use of model-
ing as a means of addressing the learning questions and of 
improving the information from confirming questions by pro-
viding a basis for explaining the variations in the data and 
increasing the power to detect meaningful clinical results.44

In a report in 2004, the FDA addressed the issue of 
decline in new drug submissions and escalating develop-
ment costs.45 The report indicated a need for applied sci-
entific work to create new and better tools to evaluate the 
safety and effectiveness of new products, in shorter time 
frames, with more certainty, and at lower cost. The FDA has 
advocated model-based drug development as an approach 
to improving knowledge management and decision making 
relating to drug development (in line with the “Learn and 
Confirm” paradigm) and has taken an active role in encour-
aging model development for various therapeutic areas.46 
A recent review on model-based drug development by 
Lalonde et al.47 suggested that prior information is often 
ignored when analyzing and interpreting results from the 
most recent clinical trial. However, modeling allows data 

from different studies to be combined in a logical manner, 
based on an understanding of the drug and the disease. The 
authors suggested that drug development can be viewed as 
a model-building exercise, during which knowledge about a 
new compound is continuously updated and used to inform 
decision making and optimize drug development strategy.

Resources
Modeling and simulation require investments in resources, 
because input is needed from several areas. Input from the 
clinical team is essential for the design of the protocol includ-
ing implementation and monitoring, so as to ensure that the 
necessary data are collected. The creation of population 
modeling databases usually involves assistance from either 
database management staff or statistics staff. Database 
preparation calls for special attention because it is important 
to have the exact times and dates for all doses and measure-
ments/observations. The results of the evaluation should be 
available sufficiently early so that the information can either 
be used in new clinical trials or included in the filing. It may 
be helpful to use preliminary data to meet important time-
lines, but the risks of using data that are not final should be 
weighed and considered.

The generating of a model usually requires the inputs of an 
analyst, and because the science changes continually, ana-
lysts should have their training updated regularly. Interpretation 
of the results may require input from clinical staff. The results of 
any modeling evaluations should also be discussed within the 
project team to ensure that the results are reasonable, under-
standable, and applicable to development decisions.

The report must also be checked for accuracy and com-
pleteness. Depending on the size of the database (the num-
ber of subjects and the number of observations per subject) 
and the complexity of the model, the process of development, 
qualification, and report generation for a model can take 
many weeks to complete.

Software and Modeling Environment

Most modeling programs can be run on any computer. How-
ever, models may take a long time to estimate parameters, 
thereby making it impractical to run models on a laptop com-
puter. Given the large number of models that are usually 

Table 3  Learning vs. confirming by development stage

Phase Objective Mode Design Questions

Cycle 1—Early development

1 Pharmacokinetics/pharmacodynamics Learning Small numbers of subjects, several doses, dense 
sampling

Basic PK/PD relationship?

Tolerance/safety Achieve PD at tolerated doses?

PK changes in special populations?

2A Proof-of-concept/indication of efficacy Confirming Larger numbers of subjects/patients, fewer doses, 
sparse sampling

Evidence of response?

Cycle 2—Late development

2B/3 Optimal use/dose adjustments Learning Larger numbers of subjects, few doses, very sparse 
sampling

Will proposed dose adjustments work? 
PK/PD in patients?

3/4 Safety and efficacy in clinical use = primary 
regulatory responsibility

Confirming Large number of subjects, labeled dose, very few 
samples

Demonstration of safety and efficacy

(Learning)

PD, pharmacodynamics; PK, pharmacokinetics.
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tested during learning evaluations, and the occasionally pro-
tracted run times seen with complex models, investment in 
a dedicated computer system to house modeling software 
should be considered.

NONMEM was the first software available for population PK 
modeling, but subsequently other packages have been devel-
oped and are in use. After the first version of NONMEM was 
released, a wide range of applications was tested. Thereaf-
ter, improvements were implemented in the related statistical 
and estimation approaches to the methodology, in a series 
of upgrades. Alternatively, they were developed into other 
modeling platforms.48 Table 4 shows timelines in respect of 
several key software packages used for population modeling. 
The selection of a software package for model-based evalu-
ations depends on the experience of the modeling staff, and 
their training and education levels.

However, the selection and installation of the modeling soft-
ware are not the only prerequisites for conducting population 
modeling. In many cases, a supporting programming lan-
guage is necessary to run the modeling package (e.g., NON-
MEM requires Fortran). Because some modeling packages 

do not have user-friendly interfaces, “front-end” software may 
be needed (for example, there are several of these available 
for NONMEM, free of cost or for commercial licensing). Simi-
larly, “back-end” packages for generating graphical outputs of 
modeling results, along with supporting languages, may also 
be necessary. It should also be noted that the analysts them-
selves should have appropriate experience, education and/or 
training. User-written model codes, subroutines, and scripts 
should also be provided for review as part of a regulatory 
submission.

Software validation vs. qualification
The FDA Guidance for Industry: Computerized Systems 
Used in Clinical Trials49 defines “Software Validation” as the 
confirmation by examination and provision of objective evi-
dence that software specifications conform to user needs 
and intended uses, and that the particular requirements 
implemented through the software can be consistently ful-
filled. The document states that purchasers of off-the-shelf 
software should perform functional testing (e.g., with speci-
fied test data sets), adjust for the known limitations of the 
software, detect problems, and correct defects. Documenta-
tion should include software specifications, test plans, and 
test results for the hardware and software used for data man-
agement and modeling, and such documentation should be 
available for inspection. It is crucial that the software used 
for population analysis be adequately supported and main-
tained. Change control should be documented and revalida-
tion should be performed as necessary. In the FDA guidance, 
21 CFR Part 1150 indicates that off-the-shelf software should 
be validated for its intended use. It should be noted that all 
software used in a regulated environment must conform to 
these standards.

While some modeling packages provide validation test kits, 
most do not. Running the same modeling problem in another 
package may or may not be possible, and manual calculation 
of the results to check for accuracy is not feasible for most 
population problems.

The definition of “software defect” is “a variance from a 
desired product attribute.” Two types of defects exist in 
software: variance from product specifications and vari-
ance from customer expectation (such as the wrong func-
tion being implemented). However, such defects have no 
impact unless they affect the user or the system, at which 
time they are classified as failures. Relationships between 
defects and failures are complex; some defects may not 
cause any failures, while others may cause critical failures. 
Critical failures involve one or more of the following: produc-
tion of incorrect results; inability to reconstruct processing; 
inability of the processing to comply with policy or govern-
mental regulation; unreliability of system results; nonport-
able systems; and unacceptable performance level. The 
testing of modeling software to identify defects, failures, and 
critical failures is difficult because of the complexity of the 
software itself. In addition, some modeling packages such 
as NONMEM can produce different results depending on 
the compiler (e.g., Fortran vendor or version) and compiler 
options used. Consequently, system qualification rather than 
the more comprehensive validation is generally performed 
for modeling software. Test kits provided by the vendor are 

Table 4  Timeline for population modeling software development

Year Event Description

1972 Concept of “population 
pharmacokinetics”

The concept was published

1977 The first population 
pharmacokinetic analysis 
conducted

Application to digoxin data

1980 Announcement of NONMEM An IBM-specific software for 
population pharmacokinetics

1984 NONMEM 77 A “portable” version of NONMEM

1989 NONMEM III An improved user-interface with the 
NMTRAN front end. NONMEM Users 
Guide published

1989 BUGS software group forms Different method: Markov chain Monte 
Carlo method

1991 USC*PACK Different method: nonparametric 
population pharmacokinetic modeling 
(NPEM)

1992 NONMEM IV New methods: FOCE

1992 Publication with NPEM First publication using NPEM method

1998 NONMEM V New methods: mixture models

2001 Winbugs publication First publication using Winbugs

2002 Publication with PKBUGs Winbugs application designed for 
pharmacokinetic models

2003 Monolix Group Forms Different method: stochastic 
approximation expectation 
maximization (SAEM)

2003 WinNonMix publication Population modeling software with 
graphical user interface

2006 NONMEM VI New methods: centering, HYBRID, 
nonparametric

2006 Monolix publications First publications using Monolix

2009 Phoenix NLME User-friendly GUI

2010 NONMEM 7 New methods: Bayes, SAEM, and 
others, parallel processing enabled

2012 Monolix 4.1 Full-script version (MLXTRAN, XML) 
and/or user-friendly GUI
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run and compared with vendor-supplied results, and other 
test kits assessing patches and updates are also evaluated. 
Vendors should also provide a log of known problems and 
“work-around” strategies or changes that can be made to the 
software to address known problems.

User training
Modelers have a wide variety of backgrounds, including 
medicine, pharmacy, pharmacology, biophysics, engineering, 
and statistics. Given the complexity of population modeling 
approaches, user training is as important as ensuring soft-
ware functionality. Unfortunately, the method of determining 
whether a user has sufficient education, training, and experi-
ence to conduct these assessments is not clearly defined. 
Many universities have training programs in population mod-
eling, but the curriculum content and hands-on experience 
available to students vary substantially. Similarly, there are 
numerous postgraduate training courses, but these gener-
ally focus on introductory training, and users may require 
further training or mentoring before undertaking an analysis. 
Continuing education through courses, meetings, and other 
forums is important to ensure that analysts are familiar with 
new concepts and approaches.

Conclusions

There is no doubt that the use of model-based approaches 
for drug development and for maximizing the clinical poten-
tial of drugs is a complex and evolving field. The process 
of gaining knowledge in the area is continuous for all par-
ticipants, regardless of their levels of expertise. The inclu-
sion of population modeling in drug development requires 
allotment of adequate resources, sufficient training, and 
clear communication of expectations and results. For one 
who is approaching the field for the first time, it can be 
intimidating and confusing. A wise approach is to break the 
task into manageable pieces (“divide and conquer”). One 
should try to understand one topic or master one piece of 
software at a time, seek literature and training appropriate 
for one’s level and needs and, most importantly seek the 
advice of mentors and develop sources for collaboration 
and support.
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