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Abstract

Obesity exhibits a correlation with metabolic inflammation and endoplasmic reticulum stress, promoting the
progression of metabolic disease such as diabetes, hyperlipidemia, hyperuricemia and so on. Adipose tissue
macrophages (ATMs) are central players in obesity-associated inflammation and metabolic diseases. Macrophages
are involved in lipid and energy metabolism and mitochondrial function in adipocytes. Macrophage polarization is
accompanied by metabolic shifting between glycolysis and mitochondrial oxidative phosphorylation. Here, this
review focuses on macrophage metabolism linked to functional phenotypes with an emphasis on macrophage
polarization in adipose tissue physiological and pathophysiological processes. In particular, the interplay between
ATMs and adipocytes in energy metabolism, glycolysis, OXPHOS, iron handing and even interactions with the
nervous system have been reviewed. Overall, the understanding of protective and pathogenic roles of ATMs in
adipose tissue can potentially provide strategies to prevent and treat obesity-related metabolic disorders.
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Introduction
Adipose tissue can be divided into white adipose tissue
(WAT) and brown adipose tissue (BAT); the percentage
of WAT is up to 5 to 50% of body weight including sub-
cutaneous adipose tissue (SAT) and visceral adipose tis-
sue (VAT), and the percentage of BAT decreases with
age [1]. Adipose tissue is not only the body’s energy res-
ervoir to insulate against the cold and protect vital or-
gans but also an essential endocrine organ, especially
white adipose tissue, which is the main source of endo-
crine signals [2].

Macrophages are heterogeneous, and their phenotype
and functions are regulated by the surrounding micro-
environment [3]. Classically activated M1 or proinflam-
matory macrophages produce proinflammatory
cytokines such as interleukin-1β (IL-1β), IL-6, IL-12, IL-
23, and TNF-α, in response to infection and stress. On
the other hand, alternatively activated M2 or anti-
inflammatory and immunoregulatory macrophages pro-
duce anti-inflammatory cytokines such as IL-10 and
TGF-β, contribute to tissue repair, remodeling, and vas-
culogenesis, and maintain homeostasis [4, 5]. Macro-
phages exploit protective and pathogenic roles in anti-
infection defense, antitumor immunity, metabolic dis-
ease development, and even obesity [6].
Adipose tissue macrophages (ATMs) are pivotal

players in obesity-associated inflammation and metabolic
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diseases [7]. Macrophages are key modulators of energy
metabolism and mitochondrial function in adipocytes
[8]. It seems that ATMs develop from circulating mono-
cytes accumulating in adipose tissue, self-renew from
various tissue-resident macrophages [9], or proliferate in
situ driven by monocyte chemotactic protein 1 (MCP-1),
which is an important process for macrophages accumu-
lating in VAT in obesity [10]. The number of tissue-
infiltrating macrophages is higher in superficial adipose
tissue than deep adipose tissue, suggesting accessibility
to skin microorganisms might promote macrophage in-
filtration in SAT [11]. Resident ATMs have lower levels
of apoptosis and rapid proliferation during early phases
of WAT expansion with a high-fat diet (HFD) [12, 13].
Lipid-rich CD11c+ ATMs appear earlier in VAT than
SAT in response to ectopic lipid accumulation as adipo-
cytes reach maximal lipid storage capacity [13].
The quantity and activation state as well as metabolic

phenotype of ATMs impact the development of obesity-
induced metabolic diseases. Herein, it is reviewed how
ATMs are involved in adipose tissue physiological and
pathophysiological processes (Fig. 1).

Macrophage polarization in adipose tissues
Classically activated M1 macrophage polarization
The classically activated M1 macrophages are critical
players in the initiation and maintenance of adipose
tissue inflammation and progression of insulin resist-
ance in the whole body. Fatty acids and LPS as obe-
sogenic factors activate macrophage inositol-
requiring enzyme 1α (IRE1α), which represses M2
while enhancing M1 polarization. The development
of obesity and metabolic syndrome is enhanced by
the macrophage IRE1α pathway by impairing BAT
activity and WAT browning [14]. Excess glucose dir-
ectly affects macrophage activation via the ROCK/
JNK and ROCK/ERK pathways, which induce human
monocytes and macrophages to undergo M1
polarization upon exposure to high levels of glucose
[15]. miR-30 is downregulated in HFD-induced obes-
ity via DNA methylation, thereby inducing Notch1
signaling in ATMs and promoting M1 macrophage
polarization [16].
Bone-marrow-derived macrophages isolated from

Nfatc3−/− mice treated with IFN-γ and lipopolysacchar-
ide resulted in a reduction in M1 inflammatory markers
in vitro, suggesting that Nuclear factors of activated T
cells (NFAT) c3 promoted M1 polarization in a cell-
autonomous way [17]. Fibronectin type III domain-
containing protein 5 (FNDC5), a novel myokine secreted
by contracting skeletal muscle, can attenuate inflamma-
tion and insulin resistance through AMPK-mediated
macrophage polarization in HFD-induced obesity [18].

Alternatively activated M2 macrophage polarization
The alternatively activated M2 macrophages are the pre-
dominant macrophage phenotype responsible for anti-
inflammation in lean animals. M2 macrophages in adi-
pose tissue inhibited adipocyte progenitor proliferation
in the CD206/TGF-β signaling pathway to modulate sys-
temic glucose homeostasis [19]. Deficiency of TLR4 in-
duces the M2-macrophage phenotype and adipose tissue
fibrosis [20]. ATMs express NPFFR2, a receptor for the
appetite-reducing neuropeptide FF (NPFF), whose
plasma levels decrease in obesity, and NPFFR2 deficiency
in ATMs abolished both M2 activation and ATM prolif-
eration [21].
It has been indicated that IL-25 stimulates alternatively

activated macrophages and their interaction with adipo-
cytes but promotes energy metabolism, enhances mito-
chondrial functions and attenuates lipid accumulation in
the liver and adipose tissues [22]. In addition, cannabin-
oid receptor 1 (CB1) blockade resulted in downregula-
tion of miR-466 family and miR-762 in ATMs, which
promote M2 polarization and macrophage egress from
adipose tissue [23]. Empagliflozin, a sodium-glucose
cotransporter (SGLT) 2 inhibitor, repressed weight gain
by enhancing browning of adipocytes and alleviated
obesity-induced inflammation and insulin resistance by
polarizing M2 macrophages in WAT and the liver [24].
Similarly, Telmisartan, a well-known antihypertensive
drug, was reported to promote the browning of fully dif-
ferentiated white adipocytes partly through PPAR-
mediated M2 polarization [25].
Intriguingly, helminth infection significantly alleviated

obesity along with significantly increased Th2/Treg re-
sponses and M2 macrophage polarization [26]. Adoptive
transfer of helminth-stimulated M2 cells to mice without
H. polygyrus infection conferred an obvious improve-
ment of HFD-induced obesity and adipose tissue brown-
ing [26]. In some cases, an intracellular glucocorticoid
reactivating enzyme 11β-HSD1 was found to be in the
process of switching ATMs from M2 to mixed M1/M2
polarization [27].

Adipocytes impact macrophages polarization
Adipocytes exert effects on ATM phenotypes via a var-
iety of mechanisms. HFD upregulates the ER stress path-
way downstream component CHOP, a transcription
factor C/EBP homologous protein, thereby altering
WAT microenvironmental conditions including de-
creased Th2 cytokine and M1 polarization, resulting in
insulin resistance and glucose intolerance [28]. Adipo-
cytes release lipid-laden exosomes (AdExos) that deliver
triacylglyceride (TAG) locally to macrophages and are
able to induce in vitro differentiation of bone marrow
precursors into ATMs [29]. It appears that miR-34a ex-
pression is elevated in obesity in part through
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suppression of the browning activators fibroblast growth
factor 21 (FGF21) and SIRT1 to inhibit fat browning [30].
AdExos carried miR-34a into adipose resident macro-
phages, resulting in repression of the expression of Krüp-
pel-like factor 4 (Klf4) to control M2 polarization [31].
miR-155-bearing adipocyte-derived microvesicles (ADM)
can regulate M1 macrophage polarization [32, 33]. How-
ever, exosomes derived from adipose-derived stem cells
(ADSCs) transactivate argininase-1 to drive M2 macro-
phage polarization. M2 macrophages further favor the

proliferation of ADSC and the browning of adipose tissue
by releasing catecholamine, forming a positive feedback
loop [34]. The molecular and epigenetic factors that influ-
ence macrophages polarization in both physiologic and
pathologic wound healing have been reviewed in [35].

Adipose tissue macrophage subsets with potential
functions
Scavenging of adipocyte debris is a crucial function of
ATMs in obese individuals. Due to their inability to

Fig. 1 The adipose tissue macrophage (ATM) population is a compound system of embryonic and infiltrating monocyte-derived macrophages
with the ability of self-renewal. Under physiological conditions, ATMs with different phenotypes perform a variety of physiological functions. ATMs
adopt a metabolically activated (MMe) phenotype to promote dead adipocyte clearance through lysosomal exocytosis. Ly6c ATMs support
normal adipose physiology upon adoptive transfer by inducing genes related to cholesterol and lipid biosynthesis. Alternatively activated MFehi

ATMs display elevated cellular iron content along with an anti-inflammatory and iron-recycling gene expression profile. M2 macrophages induce
increased UCP1 levels in adipocytes and promote browning by mimicking the sympathetic signaling pathway. The interplay between ATMs and
adipocytes in energy metabolism, glycolysis, OXPHOS, iron handing and even interactions with the nervous system. In obesity, the
microenvironment of adipose tissue changes dramatically, and lipotoxicity, hypoxia, unfolded protein responses (UPRs), oxidative stress and other
harmful pathological changes occur in succession. Under these conditions, ATMs undergo changes in numbers, phenotype, and metabolic state
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engulf adipocytes debris in one step, macrophages infil-
trate and aggregate in WAT to form a crown-like struc-
ture (CLS) that envelopes and ingests the moribund
adipocyte at sites of adipocyte death [36]. The tissues are
protected from hypoxia and ectopic accumulation from
remnant lipid droplet through CLS, which is of extracel-
lular lysosomal compartments [36]. ATMs exert lyso-
somal activity through two vesicles of different pH. One
is a neutral lipid vesicle and the other is an acidic-ringed
secondary lysosome involved in lipid catabolism, which
is formed by fusion of the first vesicle with the primary
lysosome [8]. ATMs localize to CLS with various pheno-
types. Moreover, MFe ATMs and antioxidant macro-
phages (Mox) ATMs are essential to iron and oxidative
stress handing, respectively. Furthermore, macrophages
polarize in both VAT and subcutaneous abdominal adi-
pose tissue. Hence, multiple ATM phenotypes with po-
tential functions have been reviewed in [Table 1].

Macrophages in a crown-like structure of adipose tissues
ATMs adopt a metabolically activated (MMe) phenotype
to eliminate dead adipocytes in the way of lysosomal
exocytosis [49]. In contrast to classically activated mac-
rophages expressing cell surface markers such as CD38,
CD319, and CD274, MMe macrophages specifically
overexpress ABCA1, CD36, and PLIN2 regulated by p62
and PPARγ [37]. Recently, it has been revealed that
MMe macrophages release IL-6 in an NADPH oxidase 2
(NOX2)-dependent manner, which signals through
glycoprotein 130 (GP130) on triple-negative breast can-
cer (TNBC) cells to promote stem-like properties includ-
ing tumor formation [38]. MMe macrophages exhibit a
pleiotropic effect on tissue environmental homeostasis,
which can cause corresponding pathophysiological
changes to vary with the progression of obesity. NADPH
oxidase 2 (NOX2) has been identified as a driver of the
inflammatory and adipocyte-clearing properties of MMe
macrophages. Nox2−/− mice show mildly improved glu-
cose tolerance in early diet-induced obesity (DIO) com-
pared with wild-type mice due to decreased secretion of
inflammatory factors [38]. However, when advanced to
late DIO, inactivation of the lysosomal exocytosis func-
tion would result in tissue damage due to from severe
lipid accumulation [38].
CD9+ ATMs, which are lipid-laden and localized to

CLSs, are responsible for the inflammatory signature of
obese adipose tissue, and adoptive transfer of CD9+

ATMs induces obese-associated inflammation in lean
mice [40]. CD9+ ATMs express higher levels of the sur-
face markers CD16 and CD206 than CD9− ATMs and
are enriched for transcription factors AP-1 and NF-κB
with associated genes such as Ccl2, Il1a, Il18, and Tnf
[40]. In contrast to CD9 ATMs with a signature of meta-
bolic activation, Ly6c ATMs express genes related to

angiogenesis and tissue organization. Ly6c ATMs pro-
vide normal adipose physiology upon adoptive transfer
by inducing genes related to cholesterol and lipid bio-
synthesis [40].
Recently, a novel and conserved macrophage named

lipid-associated macrophage (LAM) with high levels of
the lipid receptor Trem2 has been proven to be the pre-
dominantly expanded immune cell subset in adipose tis-
sue in multiple obesity-related mouse models [50]. The
formation of LAM cells in CLS in adipose tissue is
driven by Trem2 signaling, and knockout of Trem2 in
bone marrow cells deteriorated the metabolic outcomes
of obesity, suggesting that Trem2+ LAM cells are crucial
for the prevention of metabolic disorders upon loss of
adipose tissue homeostasis [50].

Iron-rich macrophages in adipose tissues
A study describes a novel population of alternatively ac-
tivated iron-rich ATMs named MFehi, which display an
anti-inflammatory and iron-recycling gene expression
profile [42]. MFehi ATMs are capable of storing excess
iron from dietary and intraperitoneal supplements
mainly through MFelo ATM incorporation to expand
the MFehi pool [43]. The impaired iron handling in
MFehi ATMs has impacted iron distribution, causing
adipocyte iron overload and AT dysfunction in obesity
[42]. Compared with LFD-fed mice, HFD-feeding in-
creased Itgax, Ccr7, Tnfα and Il1β expression and de-
creased M2 marker expression of Stab1 and Clec10a in
MFehi ATMs [42].

Antioxidant macrophages in adipose tissues
Oxidized phospholipids (OxPLs) have been identified as
endogenous danger associated molecular patterns
(DAMPs) with characteristics of oxidative damage to tis-
sues. Macrophages have the capacity to translate tissue
oxidation status into either antioxidant or inflammatory
responses by sensing OxPLs [46]. Antioxidant macro-
phages (Mox) respond to OxPLs by upregulating Nrf2-
dependent antioxidant enzymes [45] and producing the
antioxidant glutathione to suppress regular energy me-
tabolism [46]. A unique population of CX3CR1neg/F4/
80low ATMs that resemble the Mox phenotype
(Txnrd1+HO1+) has been demonstrated to be the pre-
dominant ATMs in lean adipose tissue [44].

Macrophages in visceral adipose tissues and
subcutaneous adipose tissues
Macrophage polarization in human visceral adipose tis-
sue is related to fatty acid metabolism, cell membrane
composition, and diet. CD11c+CD163+ ATMs have been
confirmed to accumulate in both VAT and SAT of obese
individuals and were found to be clearly correlated with
body mass index and production of reactive oxygen
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species [27]. Proinflammatory and anti-inflammatory
macrophages from human VAT have been determined
by flow cytometry as CD14+CD16+CD36high and
CD14+CD16−CD163+, respectively [48]. Macrophages in
obese adipose tissue are CD11c+CD206+, interpreted to
be hybrid M1/M2 macrophages [47].

Other adipose tissue macrophages
Macrophages exhibit correlations with adipocyte accu-
mulation in human skeletal muscles. IL-1β-polarized
macrophages (M(IL-1β)) drastically reduced fibroadipo-
genic progenitors (FAP) adipogenic potential, while IL-
4-polarized macrophages (M(IL-4)) enhanced FAP adi-
pogenesis [51]. Tissue-resident NRP1+ macrophages can
drive healthy weight gain and maintain glucose

tolerance. Ablation of NRP1 in macrophages compro-
mised lipid uptake in these cells, which reduced sub-
strates for fatty acid β-oxidation and shifted energy
metabolism of these macrophages toward a more inflam-
matory glycolytic metabolism [52].

Macrophages and adipocytes interact in
physiological and pathological events
White adipose tissue serves as an energy-storage organ
and plays a homeostatic role in energy dissipation [53].
Moreover, brown adipose tissue generates heat through
uncoupled respiration, protecting against hypothermia,
hyperglycemia and hyperlipidemia [54, 55]. In addition,
beige adipocytes inducibly express mitochondrial un-
coupling protein UCP1 in response to cold exposure and

Table 1 Summary of ATMs phenotypes with potential functions in adipose tissues

Stimulus transcription
factors

Cell surface markers Cytokines Functions

MMe
macrophages

High levels of
glucose, insulin,
and palmitate
[37]

p62
PPARγ [37]

ABCA1
CD36
PLIN2 [37]

IL-6 (NOX2-
dependent) [38]

Removing dead adipocyte debris [37, 39]

CD9
macrophages

AP-1 subunit
JunB
NF-κB
subunit p65

CD9
CD16
CD206

IL-1α
IL-18
TNF

Filled with lipids, and secret exosomes [40]

Ly6c
macrophages

CTCF [40, 41] CD11b
Ly6c

Factors that support
vascular
development and
organization

Regulating adipogenesis process

MFehi

macrophages
High iron CD163

Tfrc
Hmox1
ferritin light and heavy
chains (Ftl1 and Fth1,
respectively)
ceruloplasmin(Cp)
ferroportin-1(Slc40a1)

IL-10 Iron regulation [42, 43]

Antioxidant
macrophages
(Mox)

• CX3CR1neg F4/
80loHO1+Txnrd1 [44]

Predominant ATMs phenotype in lean adipose
tissue.
Response to oxidized phospholipids (OxPLs) by
upregulating Nrf2-dependent antioxidant enzymes
[45]. Antioxidant macrophages (Mox) require sup-
pression of regular energy metabolism to produce
the antioxidant glutathione [46].

Hybrid M1/
M2
macrophages

• CD11c+CD206+ [47]
• F4/80hiCD11c+CD206+

[44]

ATMs phenotype isolated from obese mice [44].

Macrophages
in human
visceral
adipose

• CD14+CD16+CD36high

[48]
• CD14+CD16−CD163+

Proinflammatory macrophages
Anti-inflammatory macrophages

Macrophages with different phenotypes perform diverse functions in adipose tissue. MMe macrophages are driven by high levels of glucose, insulin, and
palmitate through the p62 and PPARγ pathways, with surface markers such as ABCA1, CD36 and PLIN2. MMe macrophages secrete cytokines such as IL-6 (NOX2-
dependent), performing functions that remove dead adipocyte debris. CD9 macrophages are driven through the AP-1 subunit, JunB, NF-κB and subunit p65
pathways, possess the surface markers CD9, CD16 and CD206, and secrete cytokines such as IL-1α, IL-18 and TNF. Ly6c macrophages are driven through the CTCF
pathway, with their cell surface markers CD11b and Ly6c. Ly6c macrophages perform functions that regulate the adipogenesis process. MFehi macrophages are
driven by high iron, express CD163, Tfrc, Hmox1, ferritin light and heavy chains (Ftl1 and Fth1, respectively), ceruloplasmin (Cp) and ferroportin-1 (Slc40a1). The
cell surface markers of antioxidant macrophages (Mox) are CX3CR1neg and F4/80loHO1+Txnrd1. They are predominant ATM phenotypes in lean adipose tissue and
respond to oxidized phospholipids (OxPLs) by upregulating Nrf2-dependent antioxidant enzymes. The cell surface markers of hybrid M1/M2 macrophages are F4/
80hiCD11c+CD206+. The cell surface markers of macrophages in human visceral adipose are CD14+CD16+CD163high and CD14+CD16−CD163+
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execute a thermogenic and energy-dissipating function
interspersed within white adipose tissue [56].

Macrophage-adipocyte interaction in energy metabolism
It has been reported that brown adipocytes release
CXCL14 to promote adaptive thermogenesis via M2
macrophage recruitment, BAT activation and white fat
browning [57]. Likewise, it has been identified that
ATM-generated miR-10a-5p is a potential regulator of
inflammation in ATMs and induces beige adipogenesis
in adipocyte stem cells (ASCs) [58]. Currently, it has
been delineated that alkylglycerol-type ether lipids
(AKGs) such as breast milk-specific lipid species are me-
tabolized by ATMs to platelet-activating factor (PAF),
which ultimately activates IL-6/STAT3 signaling in adi-
pocytes and triggers beige adipose tissue development in
infants [59]. In contrast, the partial depletion of CD206+

M2 macrophages elevates the number of beige progeni-
tors in response to cold in genetically engineered
CD206DTR mice [60]. M1 macrophages may be partially
associated with failure in perigonadal WAT that under-
goes browning, as evidenced by removal of macrophages
enhancing cold-induced UCP1 expression [61].
Additionally, inflammatory macrophages adhere to ad-

ipocytes, mediated by α4 integrin binding to VCAM-1,
inhibiting thermogenic UCP1 expression in an Erk-
dependent way, thereby impairing beige adipogenesis in
obesity [62]. Furthermore, macrophages modulate en-
ergy metabolism of WAT in an activation-dependent
paracrine way, as evidenced by how CD163highCD40low

macrophages activated by IL-10/TGF-β downregulated
the expression of mitochondrial complex III (UQCRC2)
gene/protein and ATP-linked respiration, whereas
CD40highCD163low macrophages activated by LPS/IFN-γ
potentiated adipocyte mitochondrial activity [63].
In addition, JAK2, a key mediator downstream of vari-

ous cytokines and growth factors, which is deficient in
macrophages, improves systemic insulin sensitivity and
reduces inflammation in VAT and liver in response to
metabolic stress [64]. The nuclear lamina is a protein
network structure surrounding the nuclear material that
participates in a number of intranuclear reactions. Lamin
A/C mediates ATM inflammation by activating NF-κB
to promote proinflammatory gene expression, hence
hastening obesity-associated insulin resistance [65].

Macrophage-adipocyte interaction in glycolysis and
OXPHOS
Growing evidence has shown that ATMs adopt a unique
metabolic profile such as glycolysis and oxidative phos-
phorylation (OXPHOS), while fatty acid oxidation, gly-
colysis and glutaminolysis have been reported to
facilitate ATMs to release cytokine in lean adipose tissue
[66]. Inflammatory macrophages (M1) have metabolic

features such as increased succinate-driven Hif1α-
dependent glycolysis [66] and reduced phosphorylation,
as well as a TCA cycle break-point at Idh [67]. On the
other hand, anti-inflammatory macrophages (M2) pos-
sess characteristics such as enhanced OXPHOS, UDP-
GlcNAc biosynthesis and glutamine-related pathway
flows [67]. Cpt2A−/− mice in which mitochondrial long
chain fatty acid β-oxidation was deleted were induced to
undergo loss of BAT and a reduction in UCP1 expres-
sion by administration of β3-adrenergic (CL-316243) or
thyroid hormone (GC-1) agonists, suggesting that adi-
pose fatty acid oxidation is required for the development
of BAT during both activation and quiescence [68].
Release of succinate by adipose tissue is a response to

hypoxia and hyperglycemia. Succinate receptor 1 (SUCN
R1) activation mediates macrophage infiltration and in-
flammation in obesity, as evidenced by how Sucnr1−/−

mice displayed decreased macrophage numbers and in-
creased glucose tolerance [69]. Adipose tissue hypoxia
impact on preadipocytes and ATMs in obesity has been
reviewed in detail in reference [70].

Macrophages, adipocytes and nervous system
The interplay between neuroimmunology and immuno-
metabolism is prevalent within adipose tissue, where im-
mune cells and the sympathetic nervous system play a
critical role in metabolic homeostasis and obesity [71].
The interaction between neurons and macrophages has
influenced adipocyte biology and whole-body metabol-
ism [72]. Although alternatively activated macrophages
do not synthesize relevant amounts of catecholamines
[73], a recent study has shown that Irs2LyzM−/− mice are
resistant to obesity upon HFD-feeding via regulation of
sympathetic nerve function and catecholamine availabil-
ity in adipose tissue to activate BAT and beigeing of
WAT [74]. Macrophages deficient in Irs2 express an
anti-inflammatory profile and catecholamine scavenging
associated genes to support adipose tissue sympathetic
innervation [74].
It has been supposed that neuron-associated macro-

phages (SAMs) pathologically accumulate in sympathetic
nervous system (SNS) nerves of obese subjects in an
organ-specific manner, acting as a norepinephrine (NE)
sink and exerting proinflammatory activity [75]. Deletion
of Mecp2 in CX3CR1+ macrophages impeded BAT sym-
pathetic innervation, disrupting NE signaling required
for expression of uncoupling protein 1 (UCP1) and BAT
thermogenesis [76]. The impairment of catecholamine-
induced lipolysis in aging was reversed by alteration of
the expression of NLRP3, growth differentiation factor-
3(GDF3) and monoamine oxidase A (MAOA) in AT
macrophages via regulating the bioavailability of nor-
adrenaline [77].
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Macrophage-adipocyte interactions in other aspects
The adipose tissue microenvironment interrupts late
autophagosome maturation in macrophages, supporting
enhanced lipid-droplet (LD) biogenesis and AT foam cell
(FC) formation, thereby contributing to AT dysfunction
in obesity [78]. Growth/differentiation factor 3 (GDF3) is
an activin receptor-like kinase 7 (ALK7) ligand produced
from CD11c+ macrophages to control lipolysis and dir-
ect ALK7-dependent accumulation of fat in vivo. It has
been clarified that the GDF3-ALK7 axis between macro-
phages and adipocytes is tied to insulin regulation of
both fat metabolism and mass [79]. Antigen presentation
by either ATMs or adipocytes must be preserved in
order to improve systemic glucose metabolism in HFD-
fed mice [80]. Specific loss of APC function in ATMs
yields mice that are more glucose tolerant. APC function
loss in either ATMs or adipocytes, but not both, im-
proves systemic glucose metabolism [80].

Conclusion
ATMs responsible for immune surveillance in adipose
tissue during HFD-induced obesity are reprogrammed to
produce inflammatory and metabolic activated subsets.
In addition to M1 and M2 subsets, ATMs with a variety
of cell phenotypes to perform their roles in clearance of
cellular debris, lipid metabolism, iron storage and energy
metabolism in both physiological and pathological states.
In summary, the current understanding of the character-
istics of the biology and properties of macrophages in
adipose tissues facilitates the elucidation of ATM
polarization, metabolism and regulatory mechanisms.
Fully exploration of ATMs functions in obesity can pro-
vide potential pharmacologic control points to prevent
and treat obesity-related metabolic disorders. Further-
more, the microenvironment of adipose tissues in obes-
ity needs further investigation, especially the epigenetic
and transcriptional regulation of the physiological
changes of adipocytes from the interplay between ATMs
and adipocytes.
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