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Abstract: Indeed, the body articulation units, commonly referred to as body joints, play 
significant roles in the musculoskeletal system, enabling body flexibility. Nevertheless, these 
articulation units suffer from several pathological conditions, such as osteoarthritis (OA), 
rheumatoid arthritis (RA), ankylosing spondylitis, gout, and psoriatic arthritis. There exist 
several treatment modalities based on the utilization of anti-inflammatory and analgesic 
drugs, which can reduce or control the pathophysiological symptoms. Despite the success, 
these treatment modalities suffer from major shortcomings of enormous cost and poor 
recovery, limiting their applicability and requiring promising strategies. To address these 
limitations, several engineering strategies have been emerged as promising solutions in 
fabricating the body articulation as unit models towards local articulation repair for tissue 
regeneration and high-throughput screening for drug development. In this article, we present 
challenges related to the selection of biomaterials (natural and synthetic sources), construc-
tion of 3D articulation models (scaffold-free, scaffold-based, and organ-on-a-chip), architec-
tural designs (microfluidics, bioprinting, electrospinning, and biomineralization), and the 
type of culture conditions (growth factors and active peptides). Then, we emphasize the 
applicability of these articulation units for emerging biomedical applications of drug screen-
ing and tissue repair/regeneration. In conclusion, we put forward the challenges and diffi-
culties for the further clinical application of the in vitro 3D articulation unit models in terms 
of the long-term high activity of the models. 
Keywords: 3D models, articulation disease, drug screening, bioprinting, tissue regeneration

Introduction
Indeed, the body articulation units, commonly referred to as joints (both movable 
and immovable), are the connections between two bones in the musculoskeletal 
system, enabling body flexibility and mobility. In general, these articulation units 
anatomically comprise different components, such as bone, ligaments, cartilage, 
tendons, bursas, synovial fluid, membrane, and meniscus. Several pathological 
conditions include osteoarthritis (OA), rheumatoid arthritis (RA), ankylosing spon-
dylitis, gout, and psoriatic arthritis. Among them, arthritis is a common, chronic, 
and degenerative disease due to the obsessive changes in articular cartilage, joint 
capsule, and meniscus, manifested by inflammation, pain, stiffness, infectious 
degradation, and trauma.1,2 A variety of human cancers from prostate, breast, and 
lung tends to transfer to the bone articulation in later stages, resulting in further 
complications.3,4 Notably, about 10% of men and 18% of women over 60 years of 
age suffer from arthritis due to autoimmune reactions, infections, metabolic dis-
orders, trauma, and degenerative diseases.3,5 Several treatment methods include 
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surgical procedures and the utilization of traditional ster-
oids and non-steroidal anti-inflammatory drugs (NSAIDs). 
On the one hand, the surgical treatments are often limited 
due to their huge cost and poor recovery. On the other 
hand, the utilization of chemotherapeutic drugs and mini-
mally invasive surgeries are often adopted to cure diseases 
in articulation units due to high security and low cost, 
which, however, lack specificity.

Apart from the conventional therapeutic strategies, 
engineering of the joints as unit models has been emerged 
as a promising solution towards addressing the shortcom-
ings of the aforementioned conventional therapies. In this 
regard, the fabrication of the articulation units at the 
microscale provides not only the detailed exploration of 
complex joint diseases within the unit and at the interface 
between different units but also offers excellent prospects 
for the precise treatment of articulation diseases. These 3D 
models can simulate various physiological structures of 
articulation units, which can be applied for surgical repla-
cement, tissue regeneration, and drug screening. In this 

framework, different architectural designs include porous 
microspheres (PMs), composite structures, and organ-on- 
chips, which are of specific interest for various biomedical 
applications, such as drug screening towards drug devel-
opment, and tissue regeneration. However, there still exist 
many limitations in the clinical application of 3D models. 
For example, 3D bioprinting technology is not yet fully 
capable of producing functional substitutes equivalent to 
the human vascular system. In this regard, the survival of 
the designed joint unit substitutes cannot survive for a long 
time due to the lack of the corresponding vascular system. 
Moreover, it is impossible to prepare a fine structural net-
work to replace the intraosseous capillary network due to 
a high bone density and covered capillary network. In 
addition, the application of 3D models faces immunologi-
cal challenges, usually resulting in the damaged matrix 
and invigorating cells. Thereby, depriving new tissues of 
homeostasis, remodeling, and integration hinders the 
further development for their application in regenerative 
medicine. In this review, we emphasize the selection of 
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materials (natural materials, dECM, and synthetic materi-
als) and biologically active substances (BMP-2, OGP, and 
some other active proteins) in joint unit tissue engineering. 
Further, various micro-tissue engineering strategies 
(microfluidics, bioprinting, electrospinning, biomineraliza-
tion) employed in the fabrication of these unit models are 
explained, highlighting their pros and cons and effects of 
various processing parameters. Finally, we systematically 
emphasize the aspects of engineered 3D joint models for 
various biomedical applications of drug screening and 
tissue regeneration (Table 1).

Construction of 3D Articulation 
Models
The development of 3D models has garnered enormous 
attentiveness towards the treatment of articulation-based 
diseases and other multiple biomedical applications, such 
as drug screening and articulation repair. These 3D models 
can be precisely designed by harboring cells of interest (for 
instance, tumor cells and vascular cells) to develop a highly 
functionalized biomimetic tissue with appropriate vascula-
ture for gaseous exchange and waste removal. In addition, 
various required signal molecules can be incorporated with 
controlled release to guide tumor cell metastasis. 
Importantly, these simulating articulation disease models 
can be used for screening of chemotherapeutic drugs for 
various articulation-based diseases. In general, articulation 
diseases often cause local tissue damage, in which cartilage 
defects are predominant. In view of engineering these mod-
els units with unique structures, these 3D cell adhesion 
scaffolds can be embedded with chemotherapeutic drugs or 
cell growth factors to further promote articulation repair. In 
this section, we explicitly introduce various fabricated 
designs for the construction of 3D cell adhesion scaffolds, 
including scaffold-free, scaffold-based, and organ-on-a-chip.

Scaffold-Free Systems
The scaffold-free cellularized system is a classic model 
composed of suspended cells with different proliferation 
rates. The outermost layer of cells offers high proliferation 
efficacy due to excessive nutrient supply, while the inner 
compact cell mass possesses relatively lesser proliferating 
efficacy due to the lack of sufficient nutrient supply.6–8 

The spatial arrangement of cells in the scaffold-free sys-
tems simulates the internal physiological structure of 
articulation tumors.9–11 These considerations have sub-
stantially made them suitable for basic research on 

physiological metabolism, tumor biology, and toxicology, 
as well as fabricating cellularized scaffolds. The cellular 
spheroids simulate a tumor mass and invade the surround-
ing matrix to form an invasive branch. By measuring the 
area of the spheroid and the length of invasion, the ability 
of each cell type to invade different cells can be evaluated 
(Figure 1).12 By harboring different types of cells and 
intervening with them to simulate the microenvironment 
of specific diseases, these models are cheaper and more 
reproducible than animal models. Briefly, the 3D cellular 
constructs are generally fabricated in a facile way, in 
which the centrifuged cells are initially stored in conical 
tubes or multi-well plates in pellets by centrifugation, 
forming a spherical culture system. Compared with mono-
layer and typical culture methods, suspension droplet cul-
ture promotes the aggregation of spheroids in the form of 
cells and improves the expression of Sox9 mRNA. It was 
also shown that the suspension drop culture caused an 
increase in proteoglycan 4 (Prd4) mRNA levels, thereby 
providing lubrication to articulation.13 In another instance, 
the experimental results showed that the expressions of 
Sox9 and Col2a1, as well as aggrecan mRNA in cartilage 
culture, significantly improved the ability of sediment 
culture cells.14,15 In addition to suspension drop culture 
of cell alone, some cellularized spheres embedded in agar 
and collagen have been fabricated, in which these 3D 
models further simulated the physiological interactions, 
metabolism, growth, and metastasis of cells,16 for instance, 
breast carcinoma12 and lung cancer.17

Scaffold-Based Systems
Indeed, the tissue engineering field aims at fabricating the 
biomimetic constructs to simulate the anatomical and phy-
siological features of tissue microenvironment for diverse 
biomedical applications, such as biodegradable hydrogels 
and polymeric microarchitectures. These scaffolding sys-
tems can be constructed to mimic the 3D structure of articu-
lation by designing various materials with adjustable 
porosity, permeability, and surface chemistry. Several 
efforts have been dedicated to fabricating various biomi-
metic scaffolding systems towards treating bone joint dis-
orders. For example, the cell type and matrix between the 
two connecting parts of the joint (cartilage and subchondral 
bone) were simulated by two well-combined and adjusta-
ble-shaped hydrogels to guide the duration of the inducer 
and the specific release of the defect site.18 Then, the site- 
specific stem cells differentiated into cartilage and osteo-
blasts for joint repair. This strategy opened up a new 
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Table 1 Examples of Various Cellularized Polymeric Architectural Designs Fabricated Using Various Microengineering Strategies for 
Medical Applications

3D Models Materials Microengineering 
Strategies

Cell Type Applications References

Scaffold- 
free

Matrigel Drop culture BMSCs Articular cartilage repair [9–11]

Alginate Embedding sphere Chondrocytes OA model [65]

Scaffold- 
based

PU-PCL/dECM 3D cell-printing BMSCs Meniscus regeneration [76]

Hydrogels Ionic crosslinking/Bioprinting BMSCs Articular cartilage repair [153]

PEG/GelMA Photo-crosslinking/Bioprinting BMSCs Articular cartilage repair [154]

PEG/Hydrogels Electrowritten BMSCs Articular cartilage repair [113]

ECM/GelMA 3D Printing BMSCs OA therapeutics [155]

PLGA/TCP Bioprinting BMSCs/ECs Repair bone defects [156]

HAP/PLLA 3D printing OB/ECs Repair bone defects [157]

Silk fibroin Photo-crosslinking/Bioprinting BMSCs Articular cartilage repair [158]

Alginate Suspension bioprinting Chondrocytes Simulate cartilage’s pericellular matrix [116]

Chitosan Bioprinting MCTS Multi-tumor articulation metastasis model [82]

GelMA/HA Photo-crosslinking/Bioprinting MFC Repair damaged meniscal [159]

Silk fibroin Freeze-dry/Bioprinting BMSCs Cartilage regeneration [115]

Chitosan/silk fibroin Bioprinting Chondrocytes Cell proliferation and migration model [85,115,160]

Gelatin/Collagen Biomimetic mineralization OB/BMSCs Osteogenesis regeneration [63]

PLGA/GelMA/dECM/ Co-axial microfluidics Photo- 

crosslinking

OB/PC Prostate cancer Articulation bone metastasis [55]

Collagen/PLGA/GelMA Coaxial microfluidics/Photo- 

crosslinking

OB/BMSCs Bone regeneration [55,161]

PEG-based Collagen Electrospinning Bone cancer cells Simulating bone cancer [96]

ZIF-8 (MOF)/PEG-based 

hydrogels

Electrospinning BMSCs Simulated artificial periosteum [128]

GelMA/ Collagen Bioprinting BMSCs Articulation osteochondral repair [83,128]

GelMA/dECM-ZIF-8 

(MOF)

Bioprinting BMSCs Articulation osteogenesis repair [123]

Organ-on 
-a-chip

Collagen/GelMA Microfluidics BMSCs Organ model for drug screening [35]

PCL Microfluidics Breast cancer cell/ 

BMSCs

Breast cancer metastases to articulation bone [162]

PDMS Microfluidics Breast cancer cell/ 

BMSCs

Breast cancer metastases to articulation bone [64]

PCL/PDMS Microfluidics OB/BMSCs Study the gene expression profile in 

osteoarthritis.

[42]

PDMS Microfluidics Chondrocytes Study the characteristics of articulation and 

react to injuries

[163]

Abbreviations: PU, polyurethane; PCL, polycaprolactone; dECM, decellularized extracellular matrix; MCTS, multicellular tumor spheroids; MFC, meniscal fibrochondro-
cyte; OA, osteoarthritis; BMSCs, bone mesenchymal stem cells; PC, prostate cancer cells; PEG, polyethylene glycol; GelMA, methacrylate gelatin; PLGA, Poly(lactic-co- 
glycolic acid); HA, hyaluronic acid; MOF, metal-organic framework; PDMS, polydimethylsiloxane; TCP, tricalcium phosphate; Ecs, endothelial cells; HAP, incorporation of 
hydroxyapatite; PLLA, poly-L-lactic acid; OB, osteoblast.
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chemical method for biomaterials with stage-specific drug 
release for tissue repair. The hydrogel was fabricated by 
concurrently polymerizing two different layers using 
a facile one-pot synthesis method, resulting in the upper 
cartilage based on gelatin methacryloyl and lower subchon-
dral bone-based on polydopamine hydrogels. The in situ 
mineralization of hydroxyapatite by polydopamine 
occurred in the lower layer to simulate the structural fea-
tures of subchondral bone. Notably, the double-layer hydro-
gel exhibited excellent mechanical properties in terms of the 
combined effects of covalent and non-covalent linkages and 
the nano-reinforcement of mineralized hydroxyapatite.19 In 
addition to designing the optimal biomimetic scaffolds, it is 
essential to employ various inflammatory factors in explor-
ing the pathological mechanism and treating the common 
joint disease, arthritis.20–23 This section focuses on a brief 
emphasis on the scaffolding system containing a variety of 
inflammatory factors that could help in understanding the 
pathophysiological mechanisms of arthritis towards drug 
screening. Fibroblast-like synoviocyte (FLS) is a crucial 
medium driven by articulation damage and inflammatory 
processes in arthritis. In addition to FLS, several reports 
indicated that the pro-inflammatory cytokines (for instance, 

tumor necrosis factor-alpha, TNF-α, and interferon-gamma, 
IFN-γ) influenced the remodeling of articulation interstitial 
tissue.24 IFN invasive potential promoted the FLS gamma 
through Janus activation kinase (JAK), while TNF induced 
FLS apparent gathered themselves together, suggesting that 
these two factors affected the synovial tissue remodeling. 
The expression of IFN mediated inflammatory cascade 
reaction is the most important regulatory factor, confirmed 
by the TNF-mediated articulation model.25 A 3D synovial 
model made from a suspension of human primary synovial 
cells or a mixture of primary fibroblast-like synovial cells 
and CD14(+) monocytes were analyzed by immunohisto-
chemical staining and flow cytometry. The composition of 
mature micelles reflected the naive synovium in the body. 
Exposing the micelles to the TNF-α results in the amplified 
expression and generation of pro-inflammatory cytokines, 
leading to membrane proliferation, which mimics the 
affected synovium in rheumatoid arthritis. Moreover, the 
exposure of the micelles to transforming growth factor β 
(TGF-β) resulted in fibrosis-like changes, such as augmen-
ted α-smooth muscle actin (α-SMA) and amplified expres-
sions of fibrosis-related genes, COL1A1 and PLOD2.26 

Remarkably, the macrophages in the micelles showed 

Figure 1 Schematics of 3D spheroids encapsulation to study cell spheroid invasiveness. Spheroids are formed into round-bottom ultralow attachment plates during 3 d. The 
PLMA precursor solution is obtained solubilizing lyophilized PLMA in a photoinitiator solution for UV photopolymerization. Generated spheroids are encapsulated into 
PLMA hydrogels at three different concentrations (10, 15, and 20% (w/v)), poly(ethylene glycol) diacrylate (PEGDA) at 10% (w/v), and Matrigel. Over the time of culture, the 
encapsulated cells start to invade the surrounding ECM-mimicking matrix, developing the named invasive branches. Throughout the 14 d of culture, the spheroid area and 
invasion length are measured to evaluate the invasiveness ability of each cell type into the different biomaterials and stiffnesses. Reproduced with permission from Monteiro 
CF, Santos SC, Custódio CA, et al. Human plateletlysates-based hydrogels: a novel personalized 3D platform forspheroid invasion assessment. Adv Sci. 2020;7(7):1902398. © 
2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article distributed under the terms of the Creative Commons 
CC BY license.12
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phenotypic plasticity, because persistent TNF-α or TGF-β 
stimulation intensely reduced the incidence of CD163 M2- 
like macrophages. Moreover, these consequences demon-
strated the plasticity of micelles as a synovial model for 
studying the pathology of RA and OA, suggesting that the 
synovial lining micelle system could be an excellent sub-
stitute for drug screening.27

As mentioned earlier, the articular cartilage is one of 
the essential components of an articulation unit, which is 
commonly used for exploring the pathophysiological 
changes and treatment efficacy in articulation diseases. 
The human cartilage is mostly translucent avascular tissue 
with a relatively small number of cells.28 In general, the 
articulation cartilage consists of different layers (surface 
cut, excessive, radial), which can absorb mechanical load 
and force within the articulation unit. Notably, the carti-
lage cells are the only group of ECM constituents that 
produce and maintain a high degree of organization, con-
sisting mainly of Type I, Type IX and Type XI. The 
inflammatory process is activated when a 3D tubular tissue 
model based on alginate is stimulated with the supernatant 
of RA synovial fibroblasts, leading to accelerated 
catabolism.29 Bold and coworkers developed an in vitro 
3D cartilage model of RA for high-throughput drug 
screening through interactive co-cultivation of porcine 
cartilage and RA synovial fibroblast cell line. Introducing 
cell seeding automation and evaluation of cartilage- 
specific ECM formation improved the cell culture 
quality.30

Organ-on-a-Chip
Microfluidic technology offers several advantages of high- 
speed, parallel collection, and analysis of individual bio-
logical information. It is a crucial processing platform in 
modern biological sciences, providing a reliable technical 
support and operation platform for life research.31–34 This 
approach enables microfluidic chip-scale integration, 
micro-scale heat and mass transfer effects, controllable 
fluid flows, and similar bionic space microstructures. The 
resultant end products of the microfluidic chip technology 
can be applied to disease diagnosis and treatment by 
obtaining disease sample cells from lesion tissue and 
expanding them in vitro through specific culture condi-
tions. Furthermore, the patient’s exosomes can be col-
lected to achieve individualized and precise disease 
diagnosis and drug screening.35

In general, articulation is a multi-tissue organ with 
different kinds of cells, in which the joint-on-A-chip 

can be generated by inoculating cells of interest, for 
instance, chondrocytes, into the chip and cultured for 
two weeks. The articulation units contain various cell 
types, such as stem cells, osteoblasts, osteoclasts, chon-
drocytes, and mature immune cells.36–38 Bone mesench-
ymal stem cells (BMSCs) are primarily used for 
articulation models owing to their differentiation ability 
into various cells.36,39 Osteoblasts and osteoclasts work 
together to maintain the dynamic balance of bones in 
osteoblasts. In this vein, the articular cartilage is an 
elastic weight-bearing structure that constitutes the articu-
lation surface of a movable articulation. It should be 
noted that the articulation disease often leads to degen-
eration of articular cartilage.40 For instance, in synovial 
articulation, cells are subjected to high mechanical stress, 
which is through weight-bearing and the shear force 
generated by the movement of synovial fluid during 
exercise.41 In a case, after repeated pressure, the articular 
cartilage-on-the-chip was artificially overloaded, resulting 
in the appearance of arthritis symptoms. The genomic 
analysis results showed that the chip could simulate the 
cartilage tissue of articulation inflammation for OA 
treatment.42 In this work, an animal-free in vitro OA 
model was established by mixing in inflammatory cyto-
kines, mimicking the essential characteristics of natural 
cartilage, and responding to biochemical damage. The 
appearance of the chip showed six individually addressa-
ble circular chambers, which could be realized by the 
experiment of culturing various types of cells to construct 
micro-tissues. A PDMS plate with a glass slide as the top 
layer and a microstructure as the bottom layer was fab-
ricated, in which the hydrogel with cells could be loaded 
in the top chamber through the tip of a pipette, exploring 
the pathophysiology of OA in human and veterinary 
patients provides a new foundation.43 By interconnecting 
bioreactors with other compressed bioreactors, combina-
torial screening of 3D cell behavior was performed 
(Figure 2A). The authors employed the changes in the 
diameter to control the pressure to simulate the compres-
sion strain experiment and data (Figure 2B–D). 
Moreover, the altered parameters and their effects on 
the proliferation and osteogenic differentiation of human 
mesenchymal stem cells (hMSCs) in 3D gelatin metha-
cryloyl (GelMA hydrogel) were studied (Figure 2E and 
F). The multi-chamber structure could simulate the extent 
of articulation damage when the articulation were sub-
jected to different sizes, directions, and types of 
pressures.63
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Materials
Natural Sources
In general, polymers derived from animals or microorgan-
isms are widely used in developing in vitro models due to 
their excellent biocompatibility (natural enzymes- 
metabolized degradation) and complex biologically active 
sites.44,45 Several classic examples of these natural poly-
mers include hyaluronic acid (HA), collagen, and alginate, 
among others. HA is a glycosaminoglycan generally 
regarded as an inflammation regulator for tissue repair. 
HA is increasingly recognized as a promising material 
for fabricating articulation models due to its good 

biocompatibility and anti-inflammatory properties. In addi-
tion, HA plays a crucial role in forming dendritic cells, 
T cell proliferation, and the resultant immune synapses 
contributed to adaptive immunity and homeostasis of the 
tissues.46,47 In addition to generating 3D models, the injec-
tion of HA can lubricate and nourish articulation to effec-
tively inhibit arthritis pain, enhance bone density, repair, 
and replenish cartilage tissues. To this end, chitosan is 
a partial deacetyl-based derivative of chitin, which is the 
main component of crustaceans. Due to the low antigen 
resistance, the natural polysaccharide chitosan and chon-
droitin sulfate are employed to generate 3D porous 

Figure 2 Dynamic compression bioreactors for the combinatorial screening of 3D cellular behaviors. (A) Schematic illustration of the interconnectable bioreactor 
fabrication process. Photographs of a (B) single and (C) interconnected bioreactor. Scale bar = 2 cm. (D) Vertical displacement of posts depends on the pressure chamber 
diameter and amount of applied N2 pressure. Scale bar = 5 mm. (E) Experimental and simulation data of compressive strains with 450 μm PDMS membrane with different 
pressure chamber diameters and applied N2 pressures. (F) Stability test of the dynamic compression bioreactor over 30,000 cycles of compression with 14 kPa N2 pressure 
and an 8 mm pressure chamber diameter. Reproduced with permission from Seo J, Shin J-Y, Leijten J, et al. Interconnectable dynamic compressionbioreactors for 
combinatorial screening of cell mechanobiologyin three dimensions. ACS Appl Mater Interfaces. 2018;10(16):13293–13303.63 Copyright © 2018 American Chemical Society.
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models. Further, these models are modified with an HA 
coating to enhance cell response and effectively deliver 
bone morphogenetic protein (BMP)-2.48 Chitosan-based 
materials have been proven to be ideal bioactive materials 
because of their outstanding properties, such as the ability 
to form different structures and the processability that can 
be modified with various bioactive materials, as well as 
their excellent biocompatibility and biodegradability.49,50 

So chitosan has been widely applied in generating these 
articulation-based models, such as blood anticoagulant,51 

articulation nerves,52–54 articulation bone.55

Collagen is widely applied for engineering blood 
vessels,53 bones,54 cartilage,56 tendons,57,58 ligaments,59 

and skin.60,61 The hMSCs encapsulated collagen hydrogel 
was prepared to promote protein-induced collagen fiber 
mineralization.62 By adding soluble Ca2+, PO4

3-, and 
nucleic inhibitor-bone bridge protein, the hydrogel simu-
lated the inner and outer nano-mineralization profiles of 
natural bone, indicating that the fabricated microenviron-
ment with natural polymer could substantially stimulate 
bone differentiation. Bersini and coworkers prepared col-
lagen hydrogels containing bone cells on microflow con-
trol devices.63 Compared with cell-free collagen 
hydrogels, the CXCL5/CXCR2 system could effectively 
invade human mammary MDA-MB-231 cancer cells.64 

Alginate, a natural dialdehyde acid, is often extracted 
from the cell wall of brown seaweed or kelp.59 Galuzzi 
et al developed in vitro alginate-based 3D OA model, 
demonstrating that the nasal cartilage cells encased in 
alginate beads could produce increased levels of glycosa-
minoglycans (GAGs).65

Decellularized Matrix
In addition to the extracted natural polymers, the decellu-
larized extracellular matrix (dECM) of tissues and organs 
can support the microenvironment required by multiple 
cells in articulation and provide an environment for multi- 
cell synergy. Compared with other tissues, the fabrication 
of articulation units has requirements on sufficient 
mechanical properties (hardness and yield stress) and spe-
cific physicochemical properties of the materials.66,67 

However, the application of tissue engineering still has 
certain limitations, such as uncontrollable degradation 
and insufficient mechanical properties. The current meth-
ods for preparing dECM include various physical and 
chemical methods. In the physical methods, the applied 
mechanical force may destroy the inherent structure of 

bone and cartilage acellular structures during the fabrica-
tion. Therefore, the fidelity of the shape and the affinity to 
the cell are usually complementary to each other, becom-
ing a significant challenge for the model design. The use 
of surfactants in the chemical methods may easily bind to 
some proteins, in which improper usage and in large 
residual doses may affect the cell growth. In recent 
years, there have been a variety of chemical modifications 
to overcome this difficulty. From this point-of-view, the 
articulation models made of dECM provided a perfect 
microenvironment for multiple cells.68,69 An essential dif-
ference between dECM and other materials is its diversity 
in offering distinctive spatial distribution of functional and 
structural constituents. The dECM can be vividly called 
the physiological reservoir of various biomolecules,regu-
lating the adhesion, proliferation, migration, and differen-
tiation of cells.70 In general, the ECM comprises two types 
of secretory macromolecules, fibrin, and glycoproteins, 
such as proteoglycan, fibronectin, and laminin.71,72 These 
cell-related proteins play an essential role in providing 
strength and space-filling functions, regulating protein 
complexes, participating in cell signal transduction, bind-
ing growth factors, and promoting cell adhesion. dECM 
synthesizes natural tissues, which can retain the nutrients 
required by cells to the greatest extent.73 Decellular sub-
strates take automatic object extracellular substrates. The 
unique mesh-like structure of ECM provides a primary 
microenvironment for cell growth and development 
through cell proliferation, differentiation, migration, and 
intercellular communication. Notably, the dECM prepared 
after extraction offers no signs of immunogenicity74 and 
can be applied among different animals to introduce multi- 
cellular substrates into hydrogels to significantly improve 
the models’ biosafety.75 Notably, the deposited cells in 
dECM resulted in an improved survival rate. They possess 
a more robust ability to induce the cartilage differentiation 
of BMSCs fibers and produce a fiber with dECM bio-ink 
over other treatment groups.76 An ECM derived from 
acellular periosteum tissue was prepared by the Voytik- 
Harbin method and evaluated its immunomodulatory 
effect at different stages in bone repair, discovering the 
recruitment of BMSCs by dECM.77

Artificial Sources
An ideal material for joint unit tissue engineering should 
possess the following features of definite biocompatibility 
with minimal toxic responses, promoting biological activ-
ity, excellent mechanical and degradation properties to 
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avoid stress shielding phenomenon, and interconnected 
porous structure conducive to cell proliferation, blood 
vessel formation, and nerve innervation. With the advance-
ment of materials science, diverse materials and their 
composites have been developed for bone tissue engineer-
ing and related applications. In general, the most com-
monly employed biomaterials include bioceramics and 
polymers and their composites.78–80 Although the materi-
als from natural sources are safe, they suffer from certain 
limitations in terms of immunogenicity, homogeneity, and 
availability. Several efforts have been dedicated to synthe-
sizing various materials mimicking them concerning the 
structure and function to solve these problems. Numerous 
materials from synthetic sources offer the advantages of 
controllable properties, high stiffness, and augmented per-
formance. For example, synthetic hydrogels possess simi-
lar functionalities as biologically derived gels. Synthetic 
materials for 3D modeling have attracted much attention 
due to their better mechanical properties, strong plasticity, 
controllable degradation rate, and diversified production. 
Nevertheless, the corresponding disadvantages include 
relatively poor biocompatibility, reduced cell affinity, and 
the toxicity of the degradation products of the 3D model to 
a considerable extent.

Considering these aspects and facts, it is imperative to 
choose the suitable synthetic material as the articulation 
has a certain degree of hardness compared with other 
tissues. Poly(lactic-co-glycolic acid) (PLGA) is often gen-
erated by the random polymerization of two monomers, 
lactic acid, and glycolic acid, resulting in the highly func-
tional degradable organic compound. Owing to excellent 
biocompatibility, cyst-forming, and membrane-forming 
properties, PLGA offers excellent prospects in the articu-
lation 3D articulation model. However, PLGA with crys-
tallinity, weak hydrophilicity, and low water absorption 
often results in a slow degradation rate and is not condu-
cive to the colonization and growth of cells, requiring 
some surface modification. Water-in-oil-in-water (W/O/ 
W) emulsion-assisted gelatin-based PLGA microspheres 
are often used for creating 3D models by the double 
emulsion method.81 Notably, the average particle size 
and the pore diameter of the designed PLGA microspheres 
are often determined by the injection rate and the volume 
of the gelatin concentration. The resultant PLGA micro-
spheres possess spherical-shaped structures with porous 
architectures and interconnecting windows, promoting 
cell penetration and nutrient exchange.82 

Polycaprolactone (PCL) is a white opaque solid with 

certain rigidity, and strength, as well as typical resin char-
acteristics. PCL has good compatibility with polymer 
materials and adapts to the stiffness of cartilage that can 
be used as a modifier to improve some other polymers. 
The bioprinted PCL scaffold simulates the circumferential 
and radial collagen orientation in the natural meniscus. 
This cell-free model shows excellent biocompatibility 
and produces good biomechanical capabilities very close 
to the natural meniscus. β-calcium phosphate modified 
PCL promotes alkaline phosphatase activity and minerali-
zation determination for bone defects.

Previous studies indicated that the synthetic PEG 
dimethacrylate hydrogel could be used in a mechanical 
loading system. The external mechanical stimulation was 
an effective modulator of the differentiation of hMSCs to 
chondrocyte phenotype.83 The system included multiple 
cell types in the development of OA. However, it is sig-
nificant to study the interactions between cells at the 
molecular level during the development of OA. In addi-
tion, a large amount of water in the hydrogel may impact 
the structural integrity of the gel anchoring the substrate. 
The appearance of biological hydrogel supports the pro-
liferation of chondrocytes and the production of ECM and 
contributes to the growth and mineralization of osteo-
blasts, providing a potential model for studying the activ-
ity of the cartilage interface.84,85 To this end, polyvinyl 
alcohol (PVA) with good biocompatibility has been used 
in fabricating articulation units owing to its equivalence in 
terms of the viscoelasticity of articular cartilage and 
meniscus.78 However, the applicability is often non- 
conducive to cell colonization and growth because of its 
weak protein adsorption capacity. In a case, the LTi-DA- 
PVA composite hydrogel with the hydrophilic surface was 
compounded with Ti6Al4V alloy, resulting in excellent 
dual-phase lubrication and synergistic effects. The friction 
coefficient of the LTi-DA-PVA sample could be as low as 
0.01, which was as low as the friction of natural cartilage. 
Similar coefficients provided an effective method for the 
surface wettability and tribological properties of artificial 
articulation.86

Hydrogel is a common synthetic hydrated material 
based on different polymers, mimicking the ECM-like 
environment in terms of controllability, biodegradability, 
porosity, biosafety, and low immunogenicity.87 These 
hydrogel-based 3D models provide the ability to alter 
biochemistry,88 matrix elasticity, microstructure pore size, 
and pore interconnectivity, affecting cell vitality and its 
ability to secrete ECM.84 Similar to other polymeric 
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constructs, these synthetic hydrogels have enhanced key 
cartilage markers, promoting cartilage formation, such as 
type I collagen and non-collagen.89–91 Moreover, the syn-
thetic hydrogel can be fine-tuned by various chemical 
modifications that promote cartilage production through 
augmenting cartilage transforming growth factor-β3 
(TGF-β3) and the expression of type II collagen and 
GAGs.54,92 Undoubtedly, the choice of scaffolding mate-
rial leads to a new path in developing the 3D articulation 
models. Hydrogel derived from alginate, hyaluronic acid, 
gelatin, chitin can promote cartilage activity and accelerate 
value-added while enhancing the expression of type-I col-
lagen, aggregate protein polysaccharides, and Sox9.93–96 

In several instances, such hydrogels have been manufac-
tured using bioprinting to improve feasibility and reducing 
the need for multi-step manufacturing processes and cross- 
linking with potentially toxic constituents.97 Gelatin 
methacrylate (GelMA) is photosensitive hydrogel material, 
in which the visible light stimulates the curing reaction to 
form a 3D structure with a certain strength for the growth 
and differentiation of the incorporated cells. In a case, 
Shi et al created a new type of ultraviolet radiation- 
assisted osteogenic peptide hydrogel based on GelMA 
and osteogenic growth peptide (OGP).98 GelMA could 
form a light atomized OGP hydrogel with good photome-
chanical properties and promote bone regeneration. In 
another case, Weitz and coworkers used microfluidics to 
prepare photo-crosslinked microspheres, which provided 
a suitable microenvironment for the growth of bone mar-
row stromal cells to achieve the regeneration of injectable 
bone tissue.99 In many other instances, GelMA-based 
bioink was developed as a personalized treatment strategy 
for bone regeneration.100

Microengineering Strategies
Microfluidics
The microfluidic technology has garnered enormous inter-
est from researchers in fabricating various 3D architec-
tures by precisely controlling the fluids at the microscale, 
for instance, polymer microspheres with good dispersion, 
as well as controlled particle size, and shapes that could be 
applied for encapsulating the biological entities such as 
cells.101 Recently, several efforts have been dedicated to 
utilizing single-phase and bipolar methods to prepare PMs. 
In addition to being simpler and more feasible, the single- 
phase method offers another advantage of avoiding the 
damage to cells caused by later bipolar multiphase 

residues. The two-phase method creates microspheres 
with 3D and highly complex internal porous structures, 
simulating the physiological microenvironment. By adjust-
ing various processing (flow rate and ultrasonic power) 
and formulation parameters (porogen and initial precursor 
concentrations), the diameter of the microsphere and the 
size of the pores can be adjusted while fabricating 
microspheres.

The microfluidics-based culturing approaches typically 
generate the micro-sized platforms that reflect the physiol-
ogy of articulation structures, such as simulating the 
articulation bone, the cartilage part, and the sliding mem-
brane, along with the characteristics of spatial stride and 
mechanical load.43,102 The stringent control over the flui-
dic flows offers inherent flexibility in the architectural 
design, allowing the associated concentration gradient 
and cell space structure to be controlled.103 In this vein, 
the microfluidic technology can generate various 3D 
designs, such as spherical, tubular, and chip models, 
which provide infinite possibilities for bionic complex 
and diverse articulation unit models.

Depending on the porosity and morphology attributes, 
these microspheres generated from the microfluidic technol-
ogy have been applied in different biomedical applications. 
For instance, microspheres with small diameters and small 
apertures are primarily used as drug carriers for sustained 
release effects. In contrast, the large-sized PMs as in vitro 
models are mainly used to load large biomolecules (for 
instance, proteins) and cells for minimally invasive tissue 
engineering and drug screening.104,105 In this case, 
a microbot system with an average diameter of 150–200 μm 
was designed for encapsulating human fat MSCs and effi-
ciently delivering them using magnetic-driven technology. 
Different polymerization methods were employed to produce 
hydrogel particles with different uniformities towards encap-
sulating cells (Figure 3A and B). It could be observed that 
different polymerization methods resulted in the difference in 
the uniformity and size distribution of hydrogel particles 
(Figure 3C and D). However, the SEM observations of the 
particles prepared in different oil phases using Novec 7500 
showed uniform-sized particles (Figure 3E).99 In recent times, 
the microspheres cultured with cartilage cells as scaffolding 
systems have begun to be widely used. For instance, the gel- 
based 3D microspheres as cell models are expected to be 
applied for exploring the mechanistic elucidations of drug 
penetration and performance efficacy. The prepared gel micro-
sphere models can be transferred to 96 or 384 well plates, 
providing the possibility for high-throughput drug screening. 
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Microspheres controlled by optical cross-linking microfluidics 
provide an excellent microenvironment for the growth of bone 
marrow matrix stem cells to achieve injectable bone tissue 
regeneration and drug screening.

Interestingly, the concept of microfluidics can also be used 
to create tubular porous structures, to mainly construct biomi-
metic blood vessels. At the same time, for the design of 
microflux control channels, changes in the size of microchan-
nels in the equipment, geometry, and solution viscosity can be 
further applied to prepare bipolar blood vessels and other 
multi-stage structures. In a case, Jusoh et al proposed 
a network of 3D microvascular vessels in the ECM with 
hydroxyapatite (HA) to design and manipulate vascular bone 
tissue models in microflow control devices. In detail, the 
gelatin modified seaweed acid was applied as an injectable 
short rod stent structure evenly wrapped with human umbilical 
vein endothelial cells (HUVECs). These biocompatible hol-
low structures with HUVECs were fabricated using the citric 
acid as a crosslinker for seaweed gel, in varying degrees of 
fixation, thus successfully inducing HUVECs within the scaf-
fold to migrate outwards forming a tube cell layer to simulate 
articulation vascular system.106 The osteoblasts are cultured 
together with vascular microorganisms to form an articulation 

unit, adding inflammatory factors for high fluoride screening 
of the drug to verify the effectiveness and safety.

The concept and principles of the microfluidic technol-
ogy have been employed to assist in organ-on-chip perfu-
sion approach. A complex 3D channel simulates a more 
complex physiological micro-environment, and the control 
over the micro-flow accurately monitors the performance, 
ensuring the normal operation of the whole system. With 
the assistance of digital control, the microfluidic chips can 
be used for high-throughput drug screening and bio- 
separation. In an instance, Gao et al designed a dynamic, 
low-key discharge-type tibia femur model by integrating 
microflow control technology.107 The concentration gradi-
ent between tissue was the key to cell metabolism, and the 
ordinary model could not cope with complex physiological 
changes. The use of microfluidic chips to culture horse 
chondrocytes established a physiological nutrient diffusion 
gradient simulation mechanism and quickly and efficiently 
formed knee cartilage tissue.

Bioprinting
In recent times, bioprinting has garnered enormous atten-
tiveness from researchers owing to its ability to conveni-
ently manufacture various types of versatile multi-tissue 

Figure 3 Cell encapsulation in bulk (A) and in a cross-flow microfluidic channel (B). Uniformity (C) and size distribution (D) of hydrogel microparticles produced using 
different polymerization methods. (E) Images of microparticles obtained through different methods and oil phases: in bulk and in device using Novec 7500 and mineral oil. 
Reproduced with permission from Xia B, Krutkramelis K, Oakey J. Oxygen-purged microfluidicdevice to enhance cell viability in photopolymerized PEG hydrogelmicro-
particles. Biomacromolecules. 2016;17(7):2459–2465.99 Copyright © 2016 American Chemical Society.
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constructs with high accuracy and repeatability.108–110 

Combined with computer-assisted modeling, bioprinting 
can be employed to generate complex (multi-layer) articu-
lation parts in multiple dimensions with great potential for 
joint repair (cartilage defects), inducing bone regeneration, 
and drug screening for exploiting the pathological 
conditions.32,111 Notably, several hierarchical articulation 
models have been fabricated using bioprinting include 
multi-functional layered scaffolds, tubular stents.112 For 
example, three layers were created using near-field direct 
writing techniques: surface cartilage (S), deep cartilage 
(D), and lower sternum (B), in which the PCEC stratified 
3D modeling (Figure 4A and B), filled with interstitial 
stem cell GelMA hydrogels and region-specific growth 
factors (Figure 4C).113

By applying the composite 3D modeling, bioprinting 
can regenerate both cartilage and bone composite in vitro, 
proving that the bionic structures that mimic natural osteo-
porosis tissue can enhance the regenerative feasibility of 

osteoporosis tissue. In a case, Ozbolat et al applied com-
posite bioprinting using cartilage cells different from 
human fat stem cells to prepare tissue beams as bioprinted 
inks. Moreover, the authors constructed the regional stra-
tification of artificial cartilage to improve the mechanical 
properties and anatomical structure, providing a closed- 
loop strategy for cartilage repair.114 Using bioprinting 
technology, a series of optimized bracket manufacturing 
strategies were studied to precisely control the structure, 
degradation rate, and mechanics, providing a new type of 
natural biodegradable bracket regeneration.115 Cartilage- 
like tissue was printed with the cell microspheres bio- 
ink, which contributed to the further clinical development 
of cartilage replacement and regeneration.116,117

In this vein, coaxial bioprinting can be applied to 
fabricating bionic tubular structures. However, the applic-
ability of this coaxial-based printing is challenging in 
achieving the long-term culture due to the lack of blood 
vessels in the printed articulation bone tissue.118–122 

Figure 4 Schematic diagram showing the preparation process and application scenario of the tri-layered fiber-reinforced and GF-loaded hydrogel constructs: (A) Fiber 
networks for the S, D, and B layers were fabricated by melt-electrowriting (the high voltage was removed when fabricating the B layer 3D model); (B) The integrated tri- 
layered composite was constructed using the UV-assisted, stepwise infiltration and crosslinking procedures. As shown, with the assistance of UV-crosslinking, the cell and 
growth factor-laden GelMA hydrogel precursor solution of the respective layer was successively infused into the fiber networks for the B, D, and S layers to construct the 
tri-layered fiber-reinforced hydrogel composite; (C) Schematic illustration for application of the tri-layered composite 3D model in layer-specific osteochondral tissue 
induction and regeneration. The combined effect of layer-specific fiber arrangement and GF delivery enabled the layer-specific induction of BMSCs to exhibit zonal cell 
phenotypes and ECM compositions resembling those of native osteochondral tissue. Additionally, the inclusion of the S layer could impart the regenerated cartilage with 
a more lubricating and wear-resistant surface, which is a 3D model for functional osteochondral regeneration. Reproduced with permission from Qiao Z, Lian M, Han Y, et 
al. Bioinspired stratified electrowrittenfiber-reinforced hydrogel constructs with layer-specific inductioncapacity for functional osteochondral regeneration. Biomaterials. 
15402021;266(6338):120385.113 © Copyright 2020, Elsevier.

https://doi.org/10.2147/DDDT.S344036                                                                                                                                                                                                                               

DovePress                                                                                                                                     

Drug Design, Development and Therapy 2022:16 224

Chen et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Scientists continue to develop new biomaterials and print-
ing techniques to build networks of blood vessels within 
bioprinting structures.112 However, the vascular networks 
produced by other traditional and indirect methods are 
often larger than 100 μm in diameter, making it challen-
ging to reconstruct fine capillary networks. Moreover, the 
post-printing process, including the removal of sacrificial 
materials and hollow endothelial networks, is complex and 
time-consuming. In contrast, direct bioprinting of tubular 
networks can be more promising and an effective alter-
native over the other indirect methods. In this regard, due 
to biocompatibility, several natural biopolymers have been 
applied in vascular bioprinting, such as fibrin, collagen, 
gelatin, and cell-matrix. However, the complex matrix 
properties of protein-derived biological materials compli-
cate the fine regulation of their vascular characteristics. In 
addition, the composition of these materials is often 
affected by batch changes. These challenges have guided 
the possibilities and feasibility for further developing 
in vitro articulation unit models. Integrating hydrogels, 
ceramics, and polymer materials to mimic calcium phos-
phate (CaP) in the mineral stage of skeletal muscles by 
near-field direct writing and extrusion printing technology 
has resulted in innovative hierarchical composites. In this 
case, the near-field direct writing was applied to prepare 
polymer meshes, repair in ceramic inks, and embed 
GelMA tubular loading cells as capillaries.123 Based on 
DLP printing technology, several researchers have suc-
cessfully prepared a bionic bone 3D model with 
a complete layer of bone structure and induced osteoporo-
sis, angiogenesis, and neurogenic differentiation of in vitro 
analog articulation tissue. The bionic bone model with 
complete stratified haver’s bone structure has been suc-
cessfully prepared. By changing the parameters of haver’s 
bone-like structure, better control of the pressure strength 
and porosity of the bracket was achieved, providing gaps 
for new blood vessels and nerve growth and differentiation 
and promoting blood vessel growth and new bone forma-
tion in the body.117

Electrospinning
Electrospinning is often applied for manufacturing fiber 
supports in the range of micron-sized scaffolds to nano- 
sized networks. In general, the electrospinning equipment 
is facile, consisting of three parts: a high-voltage power 
supply unit, a syringe/coaxial with a metal needle, and 
a ground metal collector.124 The morphology of the resul-
tant fibers can be adjusted or simulated by controlling 

various processing parameters, such as solution conditions, 
distance between tip and plate, electric field strength, 
nozzle size, and methods for collecting sample plate and 
rotating Mandrel and collection speed.125,126 Typically, the 
electrospraying-based 3D modeling results in random por-
ous nanofibrous membranes. Electrostatic spinning pos-
sesses broad prospects in applying membrane and 
microtubule structure and is mainly used in the joint cap-
sule, half-moon plate, vascular nerve, and other models. 
The nanofibrous material produced by electrospinning 
technology mimics the microstructure of the 3D modeling 
outside the bone cells due to its natural porous structure.127 

This section summarizes the typical applications of elec-
trostatic spinning in fabricating the articulation unit mod-
els of fiber membranes and tubular brackets.

As mentioned earlier, electrospinning is often utilized 
as a small-scale manufacturing method of 3D fibrous 
materials that mimic the structural characteristics of nat-
ural ECM and deliver cell and other bioactive 
molecules.128 By combining electrostatic spinning with 
self-assembly technology, a composite structure of bionic 
bone membrane was constructed for slowly releasing vas-
cular endothelial growth factors. The SEM observations 
indicated that the resultant PLGA fibers were thinner and 
formed more nodes. The periosteum obtained could repair 
articulation bone tissue unit by this method. Chen et al 
prepared a 3D model based on SF/CS/nHAP loaded with 
BMP-2 by the electrospinning, which could be 
a promising framework for bone tissue engineering 
(Figure 5).129 The bionic meniscus prepared by the wet 
electrospinning method was used to construct a suitable 
pore size and sufficient mechanical support through a cell- 
free 3D electrospinning using PCL/silk fibroin/Sr2+ 3D 
model, protecting cartilage and delaying the development 
of OA. Several reports demonstrated the modification of 
the surface of PCL nanofibers with gelatin, then tested 
their biocompatibility with nanotube cells, indicating that 
nanofibrous membranes replaced with gelatin significantly 
promoted the migration and proliferation of embryonic 
cells towards vascular tissue engineering.130 To produce 
vascular models, the resultant fibrous materials by the 
electrospinning technology can be loaded with endothelial 
cells. In this vein, several reports demonstrated the fabri-
cation of a composite bionic bone mold that could release 
VEGF slowly, providing a new way of thinking for articu-
lation simulation.131 These vascular 3D models could be 
cellularized for angiogenesis or mature human body 
mixtures.
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Biomineralization
In general, the 3D models for bone tissue engineering are 
fabricated by simply imitating the chemical composition 
of natural bone and recreating the hierarchical structure of 
natural bone tissues. The biomimetic mineralization 
approach is one of the biomimetic fabrication strategies 
committed to synthesizing the natural bone-like substitute 
on the nano level to obtain articulation models.132,133 

These substitutes with good biocompatibility and bioactiv-
ity provide host cells with a natural microenvironment, 
thereby inducing endogenous bone regeneration.134,135 In 
a case, Bertassoni et al developed a collagen hydrogel 
encapsulated with hMSCs, promoting protein induction 
by adding soluble Ca2+, PO4

3- and nucleation inhibitors - 
bone bridge protein collagen fiber to simulate the osteo-
genesis and cleavage of natural articulation bone. The 
authors demonstrated that the microenvironment was suf-
ficient to stimulate bone differentiation of hMSCs and 
form hMSCs-supported capillaries in the body.63 In 
another case, a new material system was discovered by 
the natural mineralization process in coral reefs and stu-
died the biomineralization properties of cartilage compo-
site photocurable bioinks for a gel 3D model. In this 
system, the piezoelectric bracket was stimulated by 

external mechanical loads to produce a proportional charge 
and using these charges as a signal to induce mineral ions 
in the surrounding medium to mineralize and deposit on 
the 3D model, thereby enhancing the mechanical proper-
ties of the load part for self-hardening.65

Biomedical Applications
Drug Screening
Over the years, similar to other drug evaluation strategies 
in the preclinical stage, researchers have adopted the 2D 
models to study the therapeutic efficacy of various drugs 
for articulation diseases. In this regard, the 2D monolayer 
cell culture models played essential roles in developmental 
biology, histopathology, disease mechanisms, drug discov-
ery, mass protein production, and tissue engineering, as 
well as regenerative medicine. However, these 2D culture 
models suffer from several limitations, such as failing to 
mimic the complex in vivo environment in terms of ana-
tomical and physiological characteristics, resulting in the 
differences while extrapolating their experimental results 
to in vivo. To this end, the in vitro 3D models have 
presented great potential as a preclinical testing platform 
for drug development and addressing the limitations of 2D 
monolayer testing tools.136–139 These 3D models of dense 

Figure 5 Schematic Representation of the Preparation of SCHB2-Thick and SCHB2-Thin NFMs through Coaxial Electrospinning and Their Influence on hMSCs. Reproduced 
with permission from Shalumon KT, Lai GJ, Chen CH, et al. Modulation of Bone-specific tissue regeneration by incorporating bone morphogeneticprotein and controlling the 
shell thickness of silk fibroin/chitosan/nanohydroxyapatite core–shell nanofibrous membranes. ACSAppl Mater Interfaces. 2015;7(38):21170.129 Copyright © 2015 American 
Chemical Society.
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cell masses with reproducible sizes, morphology, and 
necrotic core formation, are typically prepared through 
different tissue engineering strategies to simulate natural 
tumors and show higher invasiveness and drug resistance 
than ordinary 2D culture. Although the 3D models for 
drug screening offer apparent advantages over the tradi-
tional 2D models and animal models, they still suffer from 
certain limitations in terms of morphological and func-
tional attributes. For example, the pore size of a 3D sphere 
must be optimized with interconnecting windows such that 
the cells can grow through the pores to fabricate the cell- 
laden spheroids for drug screening. In addition, the surface 
area plays a key factor in cell colonization.

Moreover, the chondrocytes need to be subjected to 
a certain stress stimulation to maintain their function. 
However, it should be noted that there exist specific difficulties 
in achieving controllable stress stimulation in vitro. 
Furthermore, in vitro drug screening models require 
a complete vasculature to maintain biological activity for 
a long time. The compactness of the structure and organization 
makes it more challenging to construct vascularization in vitro. 
We summarized the studies explored in fabricating such unit 
models in recent years. Based on the inherent physiological 
and drug response differences between osteosarcoma cells and 
3D spherical hydrogels, ECM simulated hydrogel models for 
tumor modeling in vitro and high-throughput assessment of 
anti-cancer agents have been prepared.140 Bioprinting enables 
the production of highly functional tissue architectures that 
simulate the physiological and anatomical properties of the 
native tissues. Notably, the advances in 3D printing technol-
ogy enable the precise control of the architectural designs 
encapsulated with cells of articulation units, such as chondro-
cytes, stromal cells, bone cells, and synovial cells.

Moreover, these approaches integrate growth factors 
delivery, body fluid circulation, physical stimulation, 
including external pressure, oxygen levels, and mobility. 
However, these structures should mimic the specific func-
tionalities of a linear joint: biomechanics, mobility, and 
multi-cellular interactions. MSC-based exosomes substan-
tially promote cartilage regeneration through multifaceted 
mechanisms by synthesizing matrix and attenuating apop-
tosis and modulating immune reactivity. Owing to these 
considerations, these elements are grouped in spatial and 
temporal manners and restructured, mimicking joint 
organs, allowing research on the pathophysiology of rheu-
matism, the development of biomarkers, and the screening 
of new drugs.141 In a case, a 3D model was prepared to 
understand the pathological and physiological mechanisms 

involved in the destruction of cartilage and subchondral 
bone during rheumatoid RA, simulating cytokine-induced 
cell and matrix-related changes and leading to cartilage 
degradation, as well as bone destruction to ultimately 
provide preclinical drug screening tools.136 In vitro toxi-
cological analysis can significantly benefit from the bio-
printing approach as the small molecules (drugs) can be 
assessed with higher efficiency in a drastically shorter 
time. In several instances, researchers applied the bioprint-
ing approach to producing cartilage structures that could 
be used for in vitro drug screening using an expandable 
“tissue chain” bioprinting model.

Tissue Regeneration
In general, stimulating the tissue regeneration ability is an 
effective treatment method for joint diseases. Indeed, the 
human body possesses the repair potential of the bone and 
its surrounding microenvironment (including inflammatory 
cells, endothelial cells, and Schwann cells), thereby restor-
ing the homeostatic functional state and further highlight-
ing the crucial role of bones in mammalian physiology. In 
this vein, several reports have demonstrated that the bal-
ance of regulatory activity between osteoblasts forming 
bone and osteoclasts (main cellular components of bone) 
in terms of dissolving and absorbing bone is responsible 
for the repairing ability. Moreover, the research on the role 
of osteoblasts presented the importance of various mor-
phogenetic components, such as BMP, in the process of 
bone repair and bone development (osteogenesis).

The most commonly employed biomaterials include bio-
ceramics, polymers, and metal-organic framework (MOF).142 

Several composite biomaterials with layered structures have 
emerged as promising materials for bone tissue engineering. In 
a case, a bionic bone with nitrogen-doped graphene- 
hydroxyapatite (NG-HA) mixture and agarose (AG) matrix 
was prepared by simple hydrothermal/crosslinking/freeze- 
drying, which offered a potential application value in bone 
tissue regeneration.143 Some findings highlighted the signifi-
cant prospect of 3D in vitro models for tissue regeneration. 
However, these structural designs still fail to offer a long-term 
effect. However, the 3D articulation unit models loaded with 
cell growth factors are expected to solve the dilemma in tissue 
repair by avoiding complex trauma surgery through these 
minimally invasive models.144–146 Moreover, the injected 
myelin-filled stem cell models induce bone marrow interstitial 
stem cells to accumulate in the wound by playing the function 
of stem cell multi-directional differentiation to repair 
cartilage.147 In articular cartilage, various growth factors or 
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active peptides work synergistically to enhance the healing 
ability of cartilage damage and prevent the occurrence and 
development of degenerative arthritis. Inducing the directional 
differentiation of cartilage requires suitable stimulating factors 
to stimulate and promote cartilage differentiation. It has been 
proved that many cytokines could induce or stimulate chon-
drocyte differentiation. This section mainly introduces the 
application of the in vitro model of loading multiple growth 
factors and active peptides for articulation repair.

BMP, a functional protein, belongs to the highly conserva-
tive TGF-β family, which often stimulates DNA synthesis and 
subsequent cell replication, therefore stimulating the osteo-
genic differentiation of mesenchymal cells. The BMP activity 
provided by BMP-2 is necessary for the maturation and main-
tenance of the mouse knee articulation and reveals the unique 
role of BMP-2 in knee biology.148 In addition, the repair of the 
knee articulation requires blood vessels to deliver nutrients. 
The vascular endothelial growth factor (VEGF) can promote 
the growth of cancer cells. By combining microsol electro-
static spinning with collagen self-assembly technology, Cui 
et al developed a composite structure bionic bone membrane 
that slowly releases vascular endothelial growth factor for 
tissue repair.128 Osteogenic growth peptide (OGP) is 
a polypeptide consisting of 14 amino acid residues, 
a promoter of a systematic response to bone marrow damage. 
OGP stimulates the activity of osteoblasts and promotes the 
growth of osteoblasts and fibroblasts. In a case, Lee and cow-
orkers designed a nano clay-organic hydrogel bone sealant that 
integrated multiple physical and chemical elements of bone 
regeneration into the same system.

The assembly of plant compound modified crustal 
polysaccharides and silicon-rich inorganic nano clay 
could be used as biocompatible and bone conduction of 
ECM simulator.149 An asymmetric porous membrane with 
a stacked structure of blades was prepared. The membrane 
was immersed in the BMP-2 solution to improve cell 
differentiation and new bone formation (rat model of cer-
vical disc deformity). It was observed that different 3D 
structure models resulted in different expression levels of 
osteogenic differentiation markers (Figure 6A), and more 
intuitively, through dyeing (Figure 6B).151 In this vein, 
calcitonin gene-related peptide (CGRP), an active peptide, 
presents the main physiological effect of promoting osteo-
blastic function, endorsing the formation of osteoblasts, 
increasing bone activity, and stimulating the proliferation 
and differentiation of bone cells of origin. Neugebauer and 
coworkers modeled on collagen II–induced rat arthritis to 
study the effects of chronic arthritis pain on the expression 

of calcitonin-related peptide genes in sensory and motor 
pathways. In addition, the effects of the glucocorticoid 
drug budesonide on changes in arthritis-induced CGRP 
were examined. It was evident that the concentration of 
articulation fluid is positively correlated with the peptides 
associated with the calcitonin gene by studying the intra- 
articulation temperature of arthritis and the level of articu-
lation fluid associated with CGRP.150

Conclusions
In conclusion, we have summarized the generation of 
articulation unit models for diverse biomedical applica-
tions. Initially, we presented the development of different 
in vitro models, including no scaffold, scaffold-based sys-
tem, and organ-on-a-chip, by applying various materials, 
engineering strategies, and growth factors or active pep-
tides. In this vein, different microengineering strategies 
applied in preparing various models with different struc-
tures are emphasized, such as PMs for minimally invasive 
delivery, fibrous membranous shapes for simulating the 
regeneration of the periosteum, and meniscus, as well as 
the tubular structures to solve the complexity of blood 
vessels and nerves in joint bones.

By simulating the near-physiological microenvironment, 
these 3D models of articulation units have shown their excel-
lent abilities in tissue regeneration and drug screening applica-
tions. However, there still exist some challenges in exploring 
these models for preclinical and clinical applications. First of 
all, the physical and mechanical properties of the models must 
be optimized and precisely controlled on-site. Further, 
research is needed to explore the development of highly 
porous and strong biomaterials with controlled biodegrada-
tion, rate of new bone formation, and ensured cell adhesion 
and growth. Furthermore, the difficulty of vascularization in 
model tissues has always been the bottleneck of these in vitro 
models. Due to the simple integration of the tubular structure 
and the branch vessel network, manufacturing a 3D vessel 
network is still challenging. In fact, the blood vessels with an 
extensive diameter range are distributed throughout the body. 
Therefore, a 3D structure with structural complexity with 
vascularized tissue constructs is still required. Importantly, 
coaxial bioprinting is challenging to achieve the accuracy of 
capillary printing, while electrospinning is difficult to control 
to form a continuous blood vessel structure. It is worth men-
tioning that one way to promote blood vessel formation is to 
generate a porous network with interconnecting windows in 
the scaffold. However, by binding and releasing biologically 
active molecules with controlled kinetics, vascularization can 
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be further improved. Among various growth factors, BMP-2 is 
often considered the most effective osteogenic growth factor. 
However, it should be noted that direct injection can cause 
symptoms such as edema and low blood pressure. A long-term 
and orderly release through the control of micromodels is 
expected to solve this limitation. A composite freeze-dried 

hydrogel scaffold of gelatin/heparin-coated gelatin/chitosan 
was prepared to administer two drugs with different release 
kinetics. VEGF was loaded in the outer layer for the initial 
release of VEGF, which induced angiogenesis in the defect 
area and provided blood supply. In contrast, the inner layer 
was loaded with BMP-4 for sustained release for sustained 

Figure 6 (A) Expression of osteogenic differentiation markers in hPDCs on Top-w/o BMP-2, Bottom-w/o BMP-2, Top-w/BMP-2, and Bottom-w/BMP-2 for 4 weeks. (A) RT- 
PCR analysis of Runx2, type I collagen, osteopontin, and osteocalcin (n = 3; *p < 0.05, **p < 0.01). (B) Immunocytochemical stainings of Runx2 (green color) and osteocalcin 
(red color) expression (blue color, cell nuclei). Reproduced with permission from Kim HY, Park JH, Byun J-H, et al. BMP-2-immobilized porous matrix with leaf-stacked 
structure as a bioactive GBR membrane.ACS Appl Mater Interfaces. 2018;10(36):30115–30124.151 Copyright © 2018 American Chemical Society.
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osteogenesis.152 So far, there is no ideal experimental model to 
satisfy most medical applications of articulation.

We can foresee that precision medicine will become 
a trend in the future, and highly perforated spherical 
models can be used in the bionics of tumor microstruc-
tures. The individual characteristic tumor markers pro-
duced by the acellular matrix of the patient’s lesion 
tissue can be loaded with the seeded cells of the specific 
patient to construct a precise personal joint disease drug 
screening model to achieve precise medical treatment 
for the individual patients. As a result, medicines suita-
ble for patients can be obtained, and individual patients 
can be treated accurately. However, the inability to 
maintain the biological activity of the characteristic 
tumor proteins secreted by cancer cells for a long time 
has become a bottleneck in the research of individua-
lized and precise treatment of cancer patients. In addi-
tion, maintaining the supply of gradient oxygen and the 
delivery of vascularized nutrients are several issues that 
will remain unaddressed. In addition, injection therapy 
to stimulate the autonomous regeneration of cartilage 
will be applied in the joint disease treatment. Notably, 
the autonomous regeneration of cartilage by loading 
BMSCs and related active factors must be considered. 
However, a considerable dilemma is being faced in 
terms of whether it is the tumor markers of the lesion 
or the maintenance of the activity of the factors that 
assist regeneration. To a considerable extent, this pro-
blem has been solved by coating them with polymeric 
hydrogels based on chitosan or other natural polymers, 
which, however, is expecting a more effective way to 
solve the dilemma. The application of fast and efficient 
high-throughput chips in drug screening has become 
a new trend, but it is still a challenge to simulate the 
effects of different pressure stimuli and oxygen gradi-
ents in the body on tumor tissues. With further optimi-
zation, the incessant emergence of various in vitro 
models by considering the advantages and disadvantages 
of the existing strategies and resultant products will 
undoubtedly find their way in the future.
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