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Abstract: Background. Up to now, an accurate nomogram to predict the lung metastasis probability
in Ewing sarcoma (ES) at initial diagnosis is lacking. Our objective was to construct and validate a
nomogram for the prediction of lung metastasis in ES patients. Methods. A total of 1157 patients
with ES from the Surveillance, Epidemiology, and End Results (SEER) database were retrospectively
collected. The predictors of lung metastasis were identified via the least absolute shrinkage and
selection operator (LASSO) and multivariate logistic analysis. The discrimination and calibration of
the nomogram were validated by receiver operating characteristic (ROC) curve and calibration curve.
Decision curve analysis (DCA) was used to evaluate the clinical usefulness and net benefits of the
prediction model. Results. Factors including age, tumor size, primary site, tumor extension, and other
site metastasis were identified as the ultimate predictors for the nomogram. The calibration curves for
the training and validation cohorts both revealed good agreement, and the Hosmer-Lemeshow test
identified that the model was well fitted (p > 0.05). In addition, the area under the ROC curve (AUC)
values in the training and validation cohorts were 0.732 (95% confidence interval, CI: 0.607-0.808) and
0.741 (95% CI: 0.602-0.856), respectively, indicating good predictive discrimination. The DCA showed
that when the predictive metastasis probability was between 1% and 90%, the nomogram could
provide clinical usefulness and net benefit. Conclusion. The nomogram constructed and validated
by us could provide a convenient and effective tool for clinicians that can improve prediction of the
probability of lung metastasis in patients with ES at initial diagnosis.
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1. Introduction

Ewing sarcoma (ES) is the second most common malignant primary osseous neoplasm, accounting
for 8% of all cases in children and adolescents [1,2]. With the development of multidisciplinary therapy,
the 5-year overall survival (OS) of ES has gradually improved from 10% to 75% [3]. Despite the proven
effectiveness of the treatment of localized disease, the 5-year OS of ES patients with metastasis is below
30%, suggesting that these patients still fare poorly [4]. It is worth noting that most patients already
have micrometastases at initial diagnosis [5]; however, only 20-28% of patients present with metastasis
at initial diagnosis, and the most common site is the lung (50%) [4,6]. Although patients with lung
metastasis alone have better survival than those with metastases at other sites, their mortality at 5 years
is still approximately 60-70% [7-10]. The survival outcomes of patients with multiple metastases within
the lung are even worse [11]. The early and accurate diagnosis of metastasis is of great significance for
the targeted treatment of ES [12]. Nevertheless, because of the characteristics of micrometastases and
the insufficient ability of current radiological techniques (multidetector row CT) to detect small lung
nodules [13,14], improving the accuracy in detecting lung metastasis at initial diagnosis is necessary.
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Some studies have investigated potential risk factors for metastasis to facilitate early
diagnosis [11,15]. However, these studies analyzed only as single factor to evaluate metastasis
in patients with ES. A predictive tool such as a nomogram, which can integrate multiple significant risk
features to comprehensively predict lung metastasis probability, is urgently needed. Nomograms have
been confirmed to provide superior individual disease risk estimation and enable accurate treatment
decisions [16].

We analyzed the Surveillance, Epidemiology, and End Results (SEER) database, which collects
data from seventeen geographically variable cancer registries and represents approximately 26% of the
U.S. population [17], to identify independent risk factors for lung metastasis in ES at initial diagnosis;
in addition, we constructed and validated a nomogram to predict lung metastasis probability.

2. Materials and Methods

2.1. Patient Cohort

The inclusion criteria were as follows: (1) diagnosed as ES of the bones with ICD-O-3/WHO
2008 morphology codes 9260 after 2010 from the SEER database; (2) microscopically confirmed,
positive histology confirmed or positive exfoliative cytology confirmed.

The exclusion criteria were as follows: (1) unknown metastasis status; (2) unknown race;
(3) unknown tumor size.

The clinicopathological features of the patients were categorized as follows: (1) age (<20 years old,
20 to 50 years old and >50 years old), sex (male or female), race (white, black, or other
(Native American/Alaskan Native or Asian/Pacific Islander)); (2) tumor size (<5 cm, 5 to 10 cm,
or >10 c¢cm), tumor extension (inside the periosteum or beyond the periosteum), primary site
(extremity (long or short bones of the upper or lower extremities), axial (skull, pelvis, spine, or ribs)
or other locations), and metastasis (lung metastasis or other site metastasis).

No personal identifying information was used in the study. Hence, we did not require Institutional
Review Board approval or patient informed consent. Informed consent was not required because of
the retrospective nature of the study.

2.2. Statistical Analysis

We randomly divided all patients (n = 1157) into a training cohort (n = 812) and a validation
cohort (n = 345). The baseline clinicopathological features were compared via the chi-square test
between the two groups. To select the initial factors and prevent overfitting of the multifactor models,
least absolute shrinkage, and selection operator (LASSO) regression was performed [18]. Furthermore,
we used multivariate logistic regression to identify the ultimate predictive factors for the nomogram.

Using the training and validation cohorts, we validated the nomogram internally and externally.
The predictive discrimination of the nomogram was assessed via a receiver operating characteristic
(ROC) curve and the area under the curve (AUC), and the concordance of the nomogram was validated
with a calibration plot and the Hosmer-Lemeshow test. Moreover, we utilized decision curve analysis
(DCA) to assess the clinical usefulness and net benefits of the nomogram [19,20].

The chi-square test was performed via SPSS statistics software version 22.0 (IBM Corporation,
Armonk, NY, USA), and the remaining statistical analyses were performed and the graphics generated
by R software (3.6.3) and R studio software (1.2.5033). A two-sided p value < 0.05 was considered to
have statistical significance.

3. Results

According to the inclusion and exclusion criteria, a total of 1157 ES patients, which were assigned
to the training cohort (n = 812, for the construction and internal validation of the nomogram) or the
validation cohort (n = 345, for the external validation of the nomogram), were identified. Most of
the patients were below 20 years old, and the total proportion of patients with lung metastasis at
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initial diagnosis was 10.2% (Table 1). The chi-square test showed no significant differences between the
two cohorts in lung metastasis, age, sex, race, tumor size, tumor extension, primary site, or other site
metastasis (Table 1, p > 0.05).

Table 1. Distribution of demographic and clinical information.

Total Population Training Cohort Validation Cohort

Variables (N =1157;100.0%) (N = 812; 70.1%) (N = 345;29.9%)  P-Value
N % N % N %
Lung Metastasis 0.616
No 1039 89.8 716 88.2 308 89.3
Yes 118 10.2 96 11.8 37 10.7
Age (years) 0.376
20 751 64.9 537 66.1 214 62.0
20-50 336 29.0 229 28.2 107 31.0
50 70 6.1 46 5.7 24 7.0
Race 0.619
White 1029 88.9 726 89.4 303 87.8
Black 44 3.8 31 3.8 13 3.8
Other 84 7.3 55 6.8 29 8.4
Sex 0.719
Male 722 62.4 504 62.1 218 63.2
Female 435 37.6 308 37.9 127 36.8
Primary Site 0.893
Axial 406 35.1 287 35.3 119 34.5
Extremity 506 43.7 356 43.8 150 435
Other 245 21.2 169 20.8 76 22.0
Tumor Size(cm) 0.088
<5 176 15.2 113 13.9 63 18.3
5-10 410 35.4 284 35.0 126 36.5
>10 571 494 415 51.1 156 45.2
Tumor Extension 0.160
Inside periosteum 397 34.3 289 35.6 108 31.3
Beyond periosteum 760 65.7 523 64.4 237 68.7
Other Sites Metastases 0.233
No 991 85.7 702 86.5 289 83.8
Yes 166 14.3 110 135 56 16.2

Chi-square test: these values are statistically significant at a p value of < 0.05.

To avoid overfitting, the LASSO regression selected six features with nonzero coefficients when lung
metastasis was the endpoint, including age, race, tumor size, tumor extension, other site metastasis and
primary site in the training cohort (Figure 1). The multivariate logistic regression analysis demonstrated
that age (>50 years old, OR = 2.059, 95% CI = 1.459-4.886, p = 0.003), tumor size (5-10 cm, OR = 2.620,
95% CI = 1.494-4.823, p = 0.003; >10 cm, OR = 1.478, 95% CI = 0.814-2.800, p = 0.000), primary site
(Axial, OR = 1.535, 95% CI = 1.064-2.218, p = 0.022), tumor extension (beyond periosteum, OR = 0.398,
95% CI = 0.269-0.581, p = 0.000) and other site metastasis (yes, OR = 2.610, 95% CI = 1.677-4.072,
p = 0.000) were independent risk factors for lung metastasis in patients with ES (Table 2).
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Figure 1. The results of the least absolute shrinkage and selection operator (LASSO) regression.

Table 2. Multivariate logistic regression for analyzing the metastasis associated factors in the
training cohort.

Training Cohort

Variables (N =812)
OR (95% CI) p-Value
Age
20 1 (reference)
20-50 1.852 (0.944-5.320) 0.068
50 2.059 (1.459-4.886) 0.003 *
Race
White 1 (reference)
Black 0.352 (0.120-1.013) 0.075
Other 0.640 (0.288-1.463) 0.053
Tumor Size(cm)
5 1 (reference)
5-10 2.620 (1.494-4.823) 0.001 *
10 1.478 (0.814-2.800) 0.000 *
Primary Site
Other 1 (reference)
Extremity 0.798 (0.496-1.267) 0.344
Axial 1.535 (1.064-2.218) 0.022 *
Tumor Extension
Inside periosteum 1 (reference)
Beyond periosteum 0.398 (0.269-0.581) 0.000 *
Other Sites Metastases
No 1 (reference)
Yes 2.610 (1.677-4.072) 0.000 *

Multivariate logistic regression: these values are statistically significant (*) at a p value of < 0.05.

The nomogram was constructed and is presented in Figure 2. The calibration curves for the
training (Figure 3a) and (Figure 3b) validation cohorts both revealed good agreement, and the
Hosmer-Lemeshow test identified that the model was well fitted (p > 0.05). In addition, the area
under the ROC curve (AUC) values in the training and validation cohorts were 0.732 (95% CI:
0.607-0.808) and 0.741 (95% CI: 0.602-0.856), respectively (Figure 4a), indicating good predictive
discrimination. The DCA showed that when the predictive metastasis probability was between 1%
and 90%, the nomogram could provide clinical usefulness and net benefit (Figure 4b).
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Figure 2. The nomogram for predicting the probability of lung metastasis.
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Figure 3. Calibration curves for the training (a) and validation (b) cohorts.
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Figure 4. The area under the ROC curve (AUC) values in the training and validation cohorts were
0.732 (95% CI: 0.607-0.808) and 0.741 (95% CI: 0.602-0.856), respectively (a), indicating good predictive
discrimination. The decision curve analysis (DCA) showed that when the predictive metastasis
probability was between 1% and 90%, the nomogram could provide clinical usefulness and net benefit (b).

4. Discussion

73

Lung metastasis in patients with ES can be affected by multiple risk factors [11,15,21-23].

Pathways related to platelet-derived growth factor (PDGF) signaling, Wnt signaling, apoptosis signaling,
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TP53, Notch signaling, and angiogenesis have been found to be of importance for the occurrence
and development of metastasis in ES. Some genes have also been identified to contribute to the lung
metastasis of ES. Na et al. found that CXC-chemokine receptor 6 (CXCR6) and CXC-chemokine ligand
16 (CXCL16) expression in tumor cells significantly correlated with a central location and the occurrence
of lung metastasis [23]. Von et al. reported that chondromodulin 1 (CHM1) expression was increased
in patients with ES lung metastases [22]. However, the clinical risk factors that affect lung metastasis in
patients with ES have not been fully described. Previous clinical studies have mainly investigated all
metastasis rather than lung metastasis at initial diagnosis [11,15]. In addition, previous studies did
not integrate these factors, instead focusing on a single predictive index, which may have a limited
effect on predicting an individual instance of lung metastasis. In recent years, nomograms have been
recognized as efficient tools that can integrate all independent risk factors for diagnosis or survival
outcome [24,25]. However, previous nomograms associated with ES only estimated individual patient
survival outcomes, and a nomogram to predict lung metastasis in patients with ES has not yet been
reported. Thus, we generated a novel nomogram to fulfill this aim. To our knowledge, this is the first
study to describe a nomogram to predict lung metastasis in patients with ES.

In this study, LASSO regression and multivariate logistic regression analyses were performed to
screen for risk factors and to identify independent risk factors. Variables, including age at diagnosis,
tumor size, tumor extension, primary site, and other site metastasis, were independent risk factors for
lung metastasis in patients with ES. As an independent risk factor, the influence of age on metastasis
has been investigated in previous research findings. Ye et al. reported that ES patients between 18
and 59 years old had a high likelihood of metastatic disease at initial diagnosis [11]. Karski et al.
and Ramkumar et al. found that advanced age may increase the metastasis probability of ES [26,27].
Our analyses also demonstrated that age beyond 50 years old was an independent risk factor for lung
metastasis (OR = 2.059, 95% CI = 1.459—-4.886, p = 0.003).

In addition, we also found that large tumor size was an independent predictor for the presentation
of lung metastasis in ES patients at initial diagnosis. Large tumor size has been consistently reported
as a contributor to the poor prognosis of ES patients [7,15,28,29], and it also has a major influence
on metastasis in ES. Hense et al. identified that increased tumor size was positively associated with
metastasis in patients with ES [30]. Ramkumar et al. showed that a tumor size greater than 118 mm
caused the metastasis risk in ES patients to triple [27]. Analogously, tumors larger than 80 mm
were confirmed to be more likely to have metastasis by Ye et al. [11]. Considering that increased
tumor size can increase the difficulty in entirely removing the tumor and acquiring proper margins,
this relationship between large tumors and metastasis seems logical. In addition, we found that tumors
with a primary site in axial bones were more likely to have metastatic diseases at initial diagnosis than
tumors with primary sites in other locations, which was also supported by previous results [11,15,27].
Given their nature, axial tumors are more likely to extend into the visceral cavities, thus resulting in
noticeable symptoms later than tumors at other locations [31,32]. In such cases, when patients notice
relevant symptoms and go to the hospital, the tumors usually are already large, and distant metastasis
may have already occurred.

In the present study, the other identified predictor of lung metastasis was tumor extension.
Tumor extension beyond the periosteum generally means higher malignancy and higher odds of
distant metastasis. In addition, in the lung metastasis subgroup of this study, approximately 37.3%
(44/118) of patients had other site metastasis at initial diagnosis. Once multiple metastases occur,
metastases in the lung become very likely [6,11]. Thus, regarding metastasis at other sites as a predictive
factor for lung metastasis is rational and necessary.

Undoubtedly, compared with general treatment, personalized treatment is more rational and
specific [33]. As a concise but visualizable predictive model, a nomogram can be tailored according
to the individual profile of the patient [34]. Such predictive tools can help clinicians optimize early
diagnosis and develop personalized treatment strategies. For example, consider a 60-year-old ES
patient with a tumor greater than 10 cm and tumor extension beyond the periosteum with a primary



Curr. Oncol. 2021, 28 75

tumor site in the spine. For this patient, we could use the nomogram to connect each risk factor and
obtain the patient’s total points (Figure 2). By adding up the points of each risk factor, we would
obtain his ultimate score of 345 and thus conclude his lung metastatic probability is approximately
60%. According to the DCA, our nomogram would provide clinical usefulness and net benefit for our
patient, as his metastasis probability is within the range of 1% to 90% (Figure 4b). Based on his result
from the nomogram, we may advise that the patient be monitored for lung metastasis and consider
performing detailed examinations, such as high-resolution CT or PET/CT, if necessary [35].

It is also important to consider the potential limitations of the present study. First, the retrospective
nature of this study may have resulted in potential bias. Second, we validated the nomogram internally
and externally with data from the same center, and, if possible, the nomogram should be validated with
data from different centers to be more reliable. Finally, the SEER database did not include variables
such as tumor markers and the expression of genes. Future studies could try to add these factors and
develop a more comprehensive predictive model for lung metastasis of ES.

5. Conclusions

A nomogram to predict lung metastasis in patients with ES was constructed and validated based
on independent factors, including age, tumor size, tumor extension, primary site, and other site
metastasis. We believe this nomogram is a convenient and effective tool for clinicians that can improve
prediction of the probability of lung metastasis in patients with ES at initial diagnosis.
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Abbreviations

ES Ewing sarcoma

os overall survival

SEER the Surveillance, Epidemiology, and End Results
LASSO least absolute shrinkage and selection operator
ROC receiver operating characteristic

AUC area under the curve

DCA decision curve analysis

CXCR6 CXC-chemokine receptor 6
CXCL16 CXC-chemokine ligand 16
CHM1 chondromodulin 1
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