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Abstract: Maintaining bridges that support road infrastructure is critical to the economy and human
life. Structural health monitoring of bridges using vibration includes direct monitoring and drive-by
monitoring. Drive-by monitoring uses a vehicle equipped with accelerometers to drive over bridges
and estimates the bridge’s health from the vehicle vibration obtained. In this study, we attempt to
identify the driving segments on bridges in the vehicle vibration data for the practical application of
drive-by monitoring. We developed an in-vehicle sensor system that can measure three-dimensional
behavior, and we propose a new problem of identifying the driving segment of vehicle vibration on a
bridge from data measured in a field experiment. The “on a bridge” label was assigned based on
the peaks in the vehicle vibration when running at joints. A supervised binary classification model
using C-LSTM (Convolution—Long-Term Short Memory) networks was constructed and applied to
data measured, and the model was successfully constructed with high accuracy. The challenge is
to build a model that can be applied to bridges where joints do not exist. Therefore, future work is
needed to propose a running label on bridges based on bridge vibration and extend the model to a
multi-class model.

Keywords: drive-by bridge monitoring; vehicle bridge interaction; neural network; C-LSTM; field test

1. Introduction

Bridges are critical infrastructure structures that support transportation networks.
Bridges daily degrade due to varied external factors, such as deterioration caused by chem-
ical reactions with oxygen and chloride ions in the air, high cycle fatigue caused by traffic
vibrations, loss of members due to impact loads of traffic accidents, and large-scale destruc-
tion caused by natural disasters. The economic impact of bridge malfunction is significant
and sometimes life-threatening. Therefore, early detection of structural performance deteri-
oration of bridges is essential, and appropriate monitoring and maintenance are crucial.
One method of vibration monitoring in bridges is installing accelerometers directly on the
bridge. While this method can evaluate bridge performance with high accuracy, there are
challenges in applying it to multiple bridges. The need to install multiple sensors on a
single bridge is time-consuming, costly, problematic in securing a power source, requires
traffic control during installation, and is sometimes hazardous.

Yang et al. (2004) [1] proposed mounting sensors on traveling vehicles instead of
the target bridge. Since the vehicle vibration contains the bridge’s mechanical informa-
tion, it is expected to estimate the bridge condition indirectly from the vehicle vibration
data. For example, Lin and Yang (2005) [2] experimentally extracted the bridge’s nat-
ural frequency from the Fourier’s power spectrum of the measured vehicle vibration.
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Yang and Chang (2009) [3,4] tried to estimate the bridge’s natural frequencies accurately
for considering its application to bridge damage detection.

Inspired by Yang’s indirect approach, many researchers have vigorously developed
varied drive-by monitoring technologies. Xiang et al. (2010) [5] applied STFT (Short-Time
Fourier Transform) to vibration data of a traveling vehicle with a shaker to evaluate
the bridge condition. Their numerical examination shows that the power of vehicle vi-
bration in the time-frequency domain reacts sensitively to the bridge’s local damage.
Nguyen et al. (2010) [6] also showed a similar result by applying wavelet transform. Ac-
cording to their results, it is efficient to use the spatial indices of the bridge vibration to
detect damage. Thus, Oshima et al. (2014) [7] proposed a method to estimate the bridge’s
mode shape from vehicle vibrations. However, these drive-by monitoring technologies
based on spatial indices assume that the vehicle position can be measured accurately.
Takahashi et al. (2019) [8] used SSMA (Spatial Singular-Mode Angle) for damage detec-
tion and also confirmed its high sensitivity, while the SSMA-based method also requires
accurate vehicle position data temporally synchronized with the vehicle vibration data.

The data measured in the actual vehicles passing through the actual bridges contain
various noises caused by varied factors—for example, the effects of road surface roughness,
vehicle speed, and temperature. Malekjafarian et al. (2019, 2020) [9,10] used artificial neural
networks and Gaussian processes to analyze the relationship between these factors and
vehicle response analysis. Corbally and Malekjafarian (2021) [11] showed that the model
above can be used to detect changes in boundary conditions due to cracks in the bridge deck
and bearing seizures. Locke et al. (2020) [12] showed that bridge damage discrimination
using vehicle vibration can be estimated with high accuracy even when environmental
and operational noise, such as road traffic, road surface roughness, and temperature, are
included. Sarwar and Cantero (2021) [13] suggested a method to estimate the location and
extent of bridge damage using deep autoencoders from vehicle vibration. As environmental
factors, the number of vehicles, vehicle speed, measurement noise, and variation in vehicle
characteristics are considered, and robust estimation results can be obtained for each of
them. Although these studies are based on vehicle vibrations simulated numerically, they
suggest the possibility of bridge damage detection by drive-by monitoring.

Although many papers explicitly state that they measure vehicle vibration, many
also assume the use of vehicle position in their signal processing [7,8]. Satellite position-
ing, navigation, and timing systems, the so-called GPS (Global Positioning System), can
measure a vehicle’s position. However, the readily available GPS devices are also subject
to significant errors, so a vehicle’s travel position is not reliable. Bridge locations can be
obtained from GIS (Geographic Information System) data, but the resolution is too coarse.
Accurate information on the location of each bridge is usually unknown or not digitized.
Furthermore, drive-by monitoring primarily uses data only while a vehicle passes over a
bridge. Because the time that a vehicle travels on a bridge is so short, the location informa-
tion measured by GPS devices is limited to a rough extraction of interest data. Therefore,
when driving data on bridges are extracted from GPS-only location data, it is likely to
include data from sections of the bridge that are not bridges, and this will likely harm the
results of the analysis. In addition, multiple runs are a promising approach for drive-by
monitoring to overcome the problems of road surface irregularities, environmental effects,
and limited measurement time [14]. Therefore, for the social implementation of drive-by
monitoring, it is essential to have a technology that can automatically extract only the target
data from considerable driving data.

As a possible idea about signal processing to extract the “on a bridge” vehicle response,
the method proposed by Wang et al. (2018) [15] can be considered. This technique is
for estimating the natural bridge frequencies from vehicle vibration. A particle filter
(sequential Monte Carlo method) is used to estimate the input profile from the vehicle
vibration. The input profile is expressed as the sum of the road surface roughness and
bridge vibration at the axle position. Assuming that the vehicle is moving in a straight
line, the road profiles of the front and rear wheels are the same. The bridge vibration
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component can be obtained as the difference between the input profiles of the front and
rear wheels. However, this method assumes that the vehicle characteristics are given in
advance. Murai et al. (2019) [16] succeeded in extracting “on a bridge” signals by using
the difference of the unsprung mass vibration of the vehicle. This method is verified by
numerical simulation. Shin et al. (2021) [17], who examined this method in a field test,
pointed out that it is difficult to visually determine the “on a bridge” section due to the
influence of environmental uncertainties and measurement noise. However, Shin et al.
also showed that C-LSTM networks, which learn from temporal and spatial features,
can estimate entry and exit timing. However, utilizing “on a bridge” labels remains a
challenge. Because of the low reliability of the GPS devices, it is not easy to eliminate the
influence of the road profile. Therefore, this study investigates automatic labeling of the
vehicle response to a bridge. The data are measured on the actual vehicle. The models are
constructed separately by using the data obtained at each axle.

Neural networks are used in various fields, most notably in speech recognition and
natural language processing, where they have shown excellent performance (Donahue
et al., 2015 [18]). CNN (Convolutional Neural Network) has the advantage of learn-
ing local responses from spatial-domain–time-domain data, but they are not suitable for
learning sequential correlations. On the other hand, RNN (Recurrent Neural Network)
can be characterized for sequential modeling but is not suitable for parallel processing
(Zhou et al., 2015 [19]). In addition, for the gradient exploding or vanishing problem caused
by general RNNs, a LSTM unit can be introduced to analyze the data, including past in-
formation (Hochreiter and Schmidhuber [20]). The combination of CNN and LSTM can
be used for visual recognition and description (Donahue et al., 2015 [18]), text classifica-
tion (Zhou et al., 2015 [19]), web traffic anomaly detection (Kim and Cho, 2018 [21]), and
residential energy consumption prediction (Kim and Cho, 2019 [22]). Acceleration data
measured by vehicles traveling on bridges are time-series data that contain both temporal
and spatial features. In recent years, it has been applied to direct bridge damage detection
(Yang et al., 2020 [23], Yang et al., 2021 [24]), and we thought that it would be possible to
create a model that discriminates only the portion of the vehicle acceleration data traveling
on the bridge by using C-LSTM.

Wang et al. (2019) [25] proposed estimating tire ground forces with relatively high
accuracy even at vehicle speeds of about 30 km/h using a Kalman filter based on vehicle
vibrations measured with an iPod installed on the vehicle. Yang et al. (2020) [26] compared
the accuracy of estimating the natural frequencies of bridges using data measured by sen-
sors installed on special vehicles and directly measured bridge vibration. When traveling at
relatively low speeds, it is possible to estimate up to the second-order natural frequencies of
bridges without being affected by the frequency of the vehicle by determining the ground
point force from the vehicle vibration. Yang et al. (2022) [27] proposed a comprehensive
indirect method for estimating girder bridges’ fundamental mode dynamic properties with
two identical trailer-mounted passing tractors and evaluating the element stiffness. They
were validated both numerically and in field experiments. Locke et al. (2022) [28] com-
pared the system identification capabilities of different OMA (Operational Modal Analysis)
techniques on bridges less than 18.28 m (60 ft). The experimental results demonstrate that
OMA techniques can be utilized to correctly identify the frequencies of short-span bridges
in the dynamic response of a passenger vehicle even in the presence of time-varying and
nonlinear system characteristics. In prior research, as pointed out in the above paper, when
the roughness of the road surface on which the left and right tires’ travel paths are different,
the estimation accuracy of dynamic tire force and bridge frequency is reduced. However,
no onboard sensors have been proposed to verify this, and no measurements have been
conducted on heavy vehicles capable of exciting bridges. Therefore, this study will develop
a new in-vehicle measurement sensor system to measure 3D behavior.

This study focuses on the automatic determination of driving sections on bridges in-
cluded in vehicle vibrations for the social implementation of drive-by monitoring. A sensor
system capable of measuring the three-dimensional behavior of vehicles was proposed and
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field-tested. By comparing three types of information, namely vehicle vibration, location
information measured by GPS sensors installed on the bridge, and location information
obtained from Google Maps, the correct label for the segment traveling on the bridge can be
obtained. A machine learning method is used to determine whether the vehicle is traveling
on the bridge section or not. The discrimination model is a supervised binary classification
problem using C-LSTM networks.

2. Methodology
2.1. Labels for Driving on Bridges

There are three possible ways to label “on a bridge” to vehicle data. The first method
uses the data measured by the GPS receiver installed on the vehicle and uses the latitude and
longitude information of Google Maps to determine the entry and exit of the bridge. This
study adopts Hubeny’s formula to calculate the distance between the bridge entrance/exit
line and the vehicle position measured by the GPS receiver at the front wheel. The timings
of entry/exit are determined when each distance is minimized.

The second method uses the data measured by the GPS receivers installed on the vehi-
cle and bridge. This method can be more accurate because similar atmospheric conditions
have affected the vehicle and bridge GPS receivers simultaneously.

The third method uses the vibration peaks obtained when a vehicle runs on a joint
before and after the bridge. When applying this to vehicle response analysis, “on a bridge”
data are often extracted concerning the peaks caused by the joints. However, peaks are not
always indicating the bridge joints. This study compares these three methods and selects
the best way to label the data.

2.2. C-LSTM Networks

C-LSTM networks is a deep learning model that combines CNN and RNN. The CNN
layer handles spatial relationships and short-time dependencies, reducing the data input
to the LSTM layer [19]. Yang et al. [23] applied hierarchical CNN and GRU (HCG), a
combination of CNN and GRU (Gated Recurrent Unit), to bridge vibration measurements
to detect structural damage directly. According to them, the magnitude of the forces
received varies from location to location due to the bridge’s structure, but adjacent locations
are subjected to similar forces. Therefore, data measured by adjacent sensors often have
similar patterns and are dependent on each other. On the other hand, a signal from one
sensor measured simultaneously influences the next signal. Thus, the data are influenced
simultaneously by spatial and temporal data, so it is necessary to design an appropriate
model to learn and extract spatio-temporal features simultaneously. Since vehicle vibration
data are measured at moving points and include vibration of the interaction with bridges,
C-LSTM networks are considered effective in capturing the spatio-temporal relationship.
However, LSTM is computationally more expensive than GRU because of its greater
expressive power. This study aims to address the challenge of identifying the traveled
sections on bridges during vehicle vibrations, and the investigation of a more accurate
method is a subject for future work.

In this study, the C-LSTM model examined by Kim and Cho (2018) [21] and Kim
and Cho (2019) [22] is used as a reference, and it is composed of convolution, activation,
pooling, LSTM, and dense layer. Activation is a function that determines the output value
for a weighted sum of inputs. Mainly nonlinear functions are used, and ReLu, tanh, and
softmax are considered. Pooling is used to extract data features, and MaxPooling is used in
this paper. The kernel size, stride size, and activation function were adjusted to minimize
the loss function value calculated in the training data. Table 1 shows the finally obtained
model. Prediction results and training labels are compared to the learned model, and the
percentage of agreement is taken as the percentage of correct responses. Of the data used
for analysis, 70% was used for learning, and 30% was used for verification.
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Table 1. Architecture of proposed C-LSTM networks.

Layers Filter Kernel Size Stride

Convolution 96 32 1
Activation (ReLu) - - -

MaxPooling - 4 1
Convolution 96 32 1

Activation (ReLu) - - -
MaxPooling - 4 1
LSTM (200) - - -

Activation (tanh) - - -
Dense (2) - - -
softmax - - -

3. Field Study

This paper deals with the data obtained from real-world environmental tests using a
heavy vehicle in Ibaraki Prefecture, Japan. The measurement experiment was conducted
from 19–21 July 2021 and 7–9 December 2021.

3.1. Experimental Setting

Accelerometers were installed at a total of 10 locations (8 locations (front or rear × left
or right × sprung mass or unsprung mass) and two additional locations). A three-axis
MEMS (Micro Electro Mechanical Systems) accelerometer (ADXL 355 by Analog Devices
Inc., Norwood, MA, USA) was used in the experiment. The sampling frequency is 300 Hz,
and the acceleration measurement range is ±8 g. The vehicle position is measured by GPS
receivers (AE-GYSFDMAXB by TAIYO TUDEN, Tokyo, Japan) installed at three points
(one point directly above the center of the front wheels and two points directly above the
left and right rear wheels). The test vehicle (Fighter Mitsubishi FUSO) was loaded with
steel plates, weighing 13.6 tons. Figure 1 shows a photograph of the vehicle used in the
experiment and the accelerometer’s position. Figure 2 shows the vehicle acceleration sensor
system used in this study. The measurement system uses FPGA (Field-Programmable
Gate Array), and each accelerometer and GPS receiver are connected using a LAN cable.
In addition, power is supplied from the mobile battery, and the data are recorded on the
PC. Vehicle vibration and position data are output 300 times per second. The time of
vehicle vibration and position is synchronized based on the accurate time (GPS timestamp)
included in the satellite signal measured by the GPS receiver. However, the GPS position
and time information is updated every second. At the time of the first updated GPS
timestamp, the measured CPU time is set to 0. By the above operation, the vibration and
position of the vehicle can be accurately synchronized with the GPS time. Since there is a
time lag before the measured latitude and longitude are saved, the previously measured
latitude and longitude will be output when the GPS timestamp is updated. Therefore, the
latitude/longitude data were corrected to match the update timing of the GPS time stamp.
Latitude/longitude data with a sampling frequency of 1 Hz were linearly interpolated to
be 300 Hz.
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Figure 2. Vehicle measurement sensor system used for measurement.

3.2. GPS Receiver for Bridges and Target Bridges

Figure 3 shows the GPS receiver installed on the bridge. The GPS receiver for bridges
consists of a microcomputer (GR-peach by Core Corporation, Tokyo, Japan), a GPS module
(ADA-746 by Adafruit, New York, NY, USA), and a GPS antenna. Power is supplied from
the mobile battery, and the data are recorded on the SD card. A GPS receiver was installed
at each entrance and exit of the bridge (right and left side) to measure the bridge position.
The target bridge was a simple support beam in Ibaraki prefecture, Japan, which has a joint.
The bridges driven in this study are summarized in Table 2 (bridge names are anonymized).
Only the time overlapping with the vehicle measurement data is extracted and linearly
interpolated at 300 Hz from the bridge position information data.
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Figure 3. The GPS receiver installed on the bridge.

Table 2. Specifications of the target bridge and number of runs.

Bridge Name Structure Joint Type Bridge Span (m) Bridge Width (m) Number of Runs

A PC Concrete Box Girder Rubber 30.9 13.0 12
B PC Concrete T-Girder Steel 14.0 10.7 6
C Concrete Rubber 12.0 11.0 4
D RC Concrete I-Girder None 12.6 6.8 6
E RC Concrete Girder Rubber 14.0 6.6 5
F PC Concrete Girder Rubber 36.8 18.8 1
G Steel Girder Rubber 16.0 16.8 4

Figure 4 shows the vehicle vibration and position data obtained from three runs at the
University of Tsukuba. The vehicle vibrations are measured at the unsprung mass at the
front-left wheel. The high repeatability is confirmed.
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3.3. Bridge Description

The target bridges were seven simply supported, single-span bridges in Japan’s Ibaraki
Prefecture. Information on the bridges is summarized in Table 2. As a representative
example, a photograph of Bridge A is shown in Figure 5. Only the materials are listed for
Bridge C because its structure was unknown. There is a joint between the road and the
bridge in all other bridges except for Bridge D. The pavement was structurally sound and
smooth even though it had been in use for a considerable time.
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3.4. Preprocessing

In this section, bridge labels are compared. Figure 6 plots the data measured for the
position of the vehicle’s front wheels and the unsprung mass of the left side of the front
wheels during one run on Bridge A. The black dots indicate the location of bridge corners
obtained from Google Maps. As shown in Figure 5a, the bridge corner has a joint, which
generates a peak in vehicle vibration when driving. The position of the peak of the vehicle
vibration and the position of the bridge corner are misaligned, probably due to an error
in the position information measured by the GPS installed in the vehicle. Particularly
in urban areas, satellite signals are difficult to receive due to reflections, diffraction, and
blockage by nearby obstacles. Figure 6 also visualizes the data measured at the front and
rear wheels. From top to bottom: left side unsprung mass, right side unsprung mass, left
side unsprung mass, right side unsprung mass, bridge label from Google Maps, bridge
label from vehicle vibration peak, and bridge label from bridge GPS. As shown in Figure 7,
labeling by vehicle vibration peaks is not a problem if the pavement is smooth. Therefore,
labeling is performed in this study by the peak of vehicle vibration when driving on the
bridge. However, if potholes or maintenance holes before or after the bridge, vehicle
vibration peaks will occur even if they are not at the joints. All data were visually verified
to be acceptable to prevent mislabeling of bridges. The analysis data were extracted before
and after the bridge so that the data were three times the size of the section on the bridge.
Data measured at eight locations (front or rear x left or right x sprung mass or unsprung
mass) were used for the measured vehicle vibrations. Vehicle vibration is noise processed
before being learned by C-LSTM. Since vehicle vibration includes environmental noise,
extracting only the interest data is crucial. Therefore, in this study, a low-pass filter to
reduce frequencies above 30 Hz, a high-pass filter to reduce frequencies below 1 Hz, and a
band-pass filter to reduce frequencies outside of the 1–30 Hz range were used to compare
the results with those without noise processing.
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4. Result and Discussion

For the data measured in the field test, the detection of the traveling section on the
bridge by C-LSTM networks showed high accuracy in both the front and rear models. The
results obtained are shown in Table 3. In particular, high accuracy was obtained for the
front wheel models when no filter was applied, and the highest accuracy was obtained
for the rear wheel models when a low-pass filter was applied. The vehicle used in this
experiment was designed to transport crushed stones and other materials, and the tires
and suspension of the front wheels were designed to enhance riding comfort. Therefore,
the data measured at the front wheels are expected to have reduced low-frequency and
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high-frequency noise effects. Therefore, the filtering performed as preprocessing had little
effect. On the other hand, vibration contamination by high-frequency components was
observed, especially in the rear wheels, and it is considered that the low-pass filter made
the steep peaks more pronounced when running at joints.

Table 3. Accuracy rate of the proposed model.

Front Model Rear Model

Train Test Train Test

None 1.000 0.981 0.958 0.835
High-pass Filter 1.000 0.775 1.000 0.820
Low-pass Filter 1.000 0.970 1.000 0.855
Band-pass Filter 1.000 0.864 1.000 0.735

Only bridges with joints were included in this study and were given the label “on
a bridge” based on the peaks in the vehicle vibration. However, since some bridges do
not have joints, this technique has only limited applicability and needs to be improved to
acquire practicality. For example, non-jointed bridges are integral bridge abutments (IABs).
While IABs are easy to run and construct, soil settlement occurs as the bridge expands and
contracts due to temperature. To mitigate this, Zadehmohamad et al., 2021 [29], considered
a backfill mixture of tire material and soil, which is being developed with high interest.
To automatically detect non-jointed bridges, it is necessary to study a method to extract
only the bridge vibration component from the vehicle vibration and utilize it for bridge
labels. However, non-jointed bridges have only short spans and are often destroyed by
scour. Therefore, it can be assumed that many non-joint bridges will be monitored based
on water level data rather than vehicle vibration data, and different approaches, such as
vehicle–bridge simultaneous measurement, can be expected.

In addition, the model considered in this study may respond to peaks in vehicle
vibration when traveling outside of joints. Therefore, it is necessary to investigate a method
to extract only the bridge vibration component from the vehicle vibration and utilize it
for bridge labels. Methods to extract only the bridge vibration component have been
proposed by Wang et al. (2018) [15] and Murai et al. (2019) [16]. However, it is necessary
to synchronize the positions of the front and rear wheels to remove the road surface
irregularity component in the vehicle vibration. This method is challenging to apply when
there are measurement errors in position information or high vehicle speed because even
minor errors in position synchronization can affect the method. Therefore, assuming that
the measured vehicle vibration includes bridge vibration, it may be possible to solve this
problem by increasing the complexity of the discriminant model. It is expected to develop
a multi-class classification model that considers multiple labeling, such as when driving on
bridges, when driving on non-bridges, and when driving on seams. Unsupervised learning
methodologies would also be effective. In advance, a model is trained to estimate vehicle
vibration during non-bridge driving. When the model is applied to the measured vehicle
vibration, if the model does not fit well, the vehicle may be traveling on a bridge.

5. Conclusions

In this study, an in-vehicle sensor system that can measure the three-dimensional
response was developed, and vehicle vibration data were measured while driving on a
bridge in Ibaraki Prefecture, Japan. This is the first paper to address the identification of
the traveled sections on bridges in vehicle vibration. The accuracy of bridge labeling of
segments traveling on bridges was compared based on vehicle vibration data, location
information obtained from Google Maps, and location information measured by a GPS
receiver grounded on the bridge. In this study, the peaks generated at the joints before
and after the bridge in the vehicle vibration were used; supervised learning with C-LSTM
networks was used to perform binary classification, and it was possible to estimate the
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driving section on the bridge with high accuracy for each model of the front and rear
wheels. However, the trained model has a problem in that it responds to vehicle vibration
peaks other than joints. Future work includes extracting bridge vibration components from
vehicle vibration and labeling them accordingly. This is possible if the axle positions of the
front and rear wheels can be synchronized, and the effects of road surface irregularities can
be eliminated, but this is challenging because of the effects of GPS receiver measurement
errors and vehicle speed. Therefore, it is considered realistic to extend the model to multi-
class classification and build a model with multiple labels, such as when driving on and off
bridges, when entering bridges, and when exiting bridges. Unsupervised learning is also
expected to be used to build models that do not fit well only on sections on the bridge.

Additionally, this study did not attempt to compare the accuracy of the prediction
models. Since various C-LSTM models and related models have been proposed in previous
studies, comparing them is also a future task. The mechanical relationship of the method
to the joints and bridge structures has not been clarified. Numerical simulation is useful
to verify this. The proposed model was constructed for the front and rear wheel sections.
However, heavy vehicles often have more than just front and rear wheels. Therefore, it is
necessary to examine whether a model with the same accuracy can be constructed using a
vehicle model other than the one considered in this paper.
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