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Diseases are a significant impediment to aquaculture’s sustainable and healthy

growth. The aquaculture industry is suffering significant financial losses as a

result of the worsening water quality and increasing frequency of aquatic

disease outbreaks caused by the expansion of aquaculture. Drug control,

immunoprophylaxis, ecologically integrated control, etc. are the principal

control strategies for fish infections. For a long time, the prevention and

control of aquatic diseases have mainly relied on the use of various

antibiotics and chemical drugs. However, long-term use of chemical inputs

not only increases pathogenic bacteria resistance but also damages the fish

and aquaculture environments, resulting in drug residues in aquatic products,

severely impeding the development of the aquaculture industry. The

development and use of aquatic vaccines are the safest and most effective

ways to prevent aquatic animal diseases and preserve the health and

sustainability of aquaculture. To give references for the development and

implementation of aquatic vaccines, this study reviews the development

history, types, inoculation techniques, mechanisms of action, development

prospects, and challenges encountered with aquatic vaccines.

KEYWORDS

aquaculture, fish disease, fish immunity, aquatic vaccines, inactivated vaccine,
liveattenuated vaccine, genetic engineering vaccine
1 Introduction

Global aquatic products, including aquatic plants, fish, crustaceans (shrimps and

crabs, etc.), molluscs (scallops, abalone, oysters, mussels, etc.) and other species

(bullfrogs, jellyfish, etc.), are the third largest source of food protein for human

consumption after cereals and milk, accounting for 16.4% of the total animal protein

supply (1, 2). Among them, fish are the dominant species of farmed and harvested aquatic

products worldwide, accounting for more than 40% of the aquaculture industry. The
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growing demand for fish and other aquatic foods has changed

the face of fisheries and aquaculture, especially accelerating the

development of aquaculture and increasing the proportion of

aquaculture production to approximately 7.7% by 2020, the total

fisheries and aquaculture production rises to a record high of 214

million tons, including 178 million tons of aquatic, and the

proportion is expected to grow by a further 15% by 2030 (3).

However, the growth of aquaculture has often come at the

expense of the environment, resulting in the potential for

major disease problems and food safety issues gradually

increasing. Especially in recent years, viral diseases of aquatic

animals such as grass carp hemorrhagic disease, carp spring

virus disease, grouper iridovirus disease, infectious pancreatic

necrosis, infectious spleen and kidney necrosis, infectious

hematopoietic organ necrosis and viral hemorrhagic

septicemia and other high incidences of disease, almost

involving the main species of aquaculture, causing serious

economic losses to aquaculture. It is estimated that 10% of all

farmed aquatic animals die due to infectious diseases, costing

more than $10 billion per year globally (4). The overall trend of

aquaculture diseases shows a high incidence, diversified types,

long duration of onset, a wide range of infections, and increasing

year by year etc, so it is apparent that disease control in

aquaculture is a matter of urgency (5, 6). Due to the lack of

bas ic theore t ica l research on pharmacodynamics ,

pharmacogenetics, and toxicology and their impact on the

aquaculture ecosystem, as well as serious problems such as

resistance of aquatic pathogens, it is no longer possible to

solve the current disease problems by continuing to rely on

the use of various chemical drugs and antibiotics. The use of

microecological preparation, immunostimulants, vaccines etc.

for integrated disease control is more advocated in the new

ecological farming model. Therefore, vaccination, as a green

ecological control means, has become a mainstream technology

for global aquatic animal disease control and has a good prospect

in the development of the aquaculture industry in the world (7).
2 Aquatic vaccines overview

Vaccination is the most effective way to prevent and control

diseases caused by viruses and bacteria. Research work on

aquatic vaccines started in the 1940s. Duff et al. (1942) (8)

performed the first successful oral immunization with

inactivated Bacterium salmonicida on trout. Since the 1980s,

significant progress has been made in the development of

aquatic vaccines. The number of commercial vaccines available

for use in fish against the major infectious bacterial and viral

diseases has increased from 2 in the 1980s to over 50 currently

(Table 1) (13, 17, 26). According to incomplete statistics, as of

2020, more than 140 aquatic vaccines have been approved

worldwide (27). These include whole inactivated, peptide

subunit, recombinant protein, nucleic acid, and live attenuated
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vaccines. However, some commercial vaccines are not always

protective, and aquatic diseases continue to be severe (28, 29).

Current disease vaccination is routinely used in some

economically important fish species such as Atlantic salmon,

Rainbow trout, Nile tilapia, Amberjack, and Striped catfish (14,

30), whereas corresponding vaccines are lacking, ineffective, or

expensive in many other economic fish species. Currently,

parasite vaccines face significant challenges, with only one

commercial parasite vaccine available against ectoparasite sea

lice. In addition, only a few trials have reported potential vaccine

candidates against endoparasites (31). Furthermore, most

commercial vaccines are administered via intraperitoneal

injection (32), which may not be the best route of

immunization for large-scale population vaccination and is

frequently influenced by factors such as animal species,

immune system status, production cycle, environment,

nutrition and cost-effectiveness (33). In some countries and

regions, the high cost of vaccination has led to the

abandonment of vaccine defence due to widespread drug use.

In light of the rapidly thriving global aquaculture industry, it is

especially crucial to solve these concerns.

In recent years, with the continuous reduction of technological

costs (e.g., genome sequencing, high-throughput screening of

antigens, expanded cell culture, etc.), the development of novel

antigen expression and delivery systems, and the massive

accumulation of basic knowledge on fish mucosal immunity,

aquatic vaccines are bound to see rapid development in the

coming years (34). Developing highly effective mucosal vaccines

and corresponding adjuvants is an important direction for future

development, and optimizing vaccine delivery will undoubtedly

facilitate the development of new vaccines. Aquaculture in low-

income nations will be able to adopt routine immunization in the

future, which will drastically reduce the use of drugs and decrease

disease outbreaks and transmission on a worldwide scale. Since

vaccine development processes are lengthy, it is impossible to have a

vaccine on hand when a disease outbreak first starts. As a result, it is

of great significance to analyze the common factors that exist

among various known pathogens, find the trend rules, and

conduct more clinical trials to discover vaccines with cross-

protection based on existing targeted successful vaccines. In

general, efficient vaccine development and utilization will

contribute to the global aquaculture industry’s healthy and

sustainable development.
3 Classification and preparation
technology of aquatic vaccines

Aquatic vaccines are an effective preventative measure

against many diseases and have recently gained popularity.

According to the antipathogen, aquatic vaccines can be

classified as bacterial, viral, and parasitic. They can also be
frontiersin.org
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TABLE 1 Global commercial aquatic vaccines.

Disease Pathogen Major Fish
Host

Vaccine
Type

Antigens/
Targets

Delivery
Methods

Country/
Region

Further Information

Viral Diseases

Infectious
hematopoietic
necrosis

IHNV
Rhabdovirus

Salmonids DNA G
Glycoprotein

IM Canada https://www.dfo-mpo.gc.ca/
aquaculture/rp-pr/acrdp-pcrda/
projects-projets/P-07-04-010-eng.html

Infectious
pancreatic necrosis

IPNV Birnavirus Salmonids, sea bass,
sea bream, turbot,
Pacific cod

Inactivated Inactivated
IPNV

IP Norway, Chile,
UK

https://www.pharmaq.no

Subunit VP2 and VP3
Capsid
Proteins

Oral Canada, USA https://www.aquavac-vaccines.com

Subunit VP2 Proteins IP Canada, Chile,
Norway

http://www.msd-animal-health.no/

Infectious salmon
anemia

ISAV
Orthomyxovirus

Atlantic salmon Inactivated Inactivated
ISAV

IP Canada, Europe,
and Latin
America

http://www.pharmaq.no

Pancreatic disease
virus

SAV alphaviruses Salmonids Inactivated Inactivated
SAV

IP Norway, Chile,
UK

https://www.merck-animal-health.co

Spring viremia of
carp virus

SVCV
Rhabdovirus

Carp Subunit G
Glycoprotein

IP Belgium (9)

Inactivated Inactivated
SVCV

IP Czech Republic (10)

Koi herpesvirus
disease

KHV Herpesvirus Carp Attenuated Attenuated
KHV

IMM or IP Israel (9)

Infectious spleen
and kidney
necrosis

ISKNV Iridovirus Asian seabass,
grouper, Japanese
yellowtail

Inactivated Inactivated
ISKNV

IP Singapore https://www.aquavac-vaccines.com/

Heart- and skeletal
muscle
inflammation
(HSMI)

Piscine
orthoreovirus
(PRV)

Atlantic salmon Inactivated Inactivated
PRV

IP Europe (11, 12)

Redspotted
grouper nervous
necrosis disease

Redspotted
grouper nervous
necrosis virus
(RGNNV)

Sea bass Inactivated Inactivated
RGNNV

IP Mediterranean
region

https://www.pharmaq.no/sfiles/2/54/9/
file/product-info_alpha-jet_micro-1-
noda_english_2018-9.pdf

Grass carp
hemorrhagic
disease

GCRV grass carp Inactivated Inactivated
GCRV

IP China (13)

Infectious spleen
kidney necrosis,
ISKN

Infectious spleen
and kidney
necrosis virus
(ISKNV)

marine fish Inactivated Inactivated
ISKNV

IP China (13)

Iridoviral disease Iridoviral Disease Red sea bream Inactivated Inactivated
Iridovirus

IP Singapore https://www.aquavac-vaccines.com/

Koi herpes virus
disease

Koi Herpes Virus
(KHV)

Koi carp Attenuated Attenuated
KHV

IMM or IP Israel (14)

Betanoda virus
disease

Betanodavirus Grouper Inactivated Inactivated
Betanodavirus

IP Japan (15)

Grass carp
haemorrhage
disease

Grass Carp
Hemorrhage
Disease

Grass Carp Inactivated Inactivated
Grass carp
haemorrhage
virus

IP China (13)

Viral Nervous
Necrosis

Nodavirus Seabass Inactivated Inactivated
Nodavirus

IP Mediterranean
region

https://www.pharmaq.no/sfiles/2/54/9/
file/product-info_alpha-jet_micro-1-
noda_english_2018-9.pdf

Pancreas Disease Pancreas Disease
Virus

Salmonids Inactivated Inactivated
Pancreas
Disease Virus

IP Norway, Chile,
UK

https://www.merck-animal-health.co

(Continued)
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TABLE 1 Continued

Disease Pathogen Major Fish
Host

Vaccine
Type

Antigens/
Targets

Delivery
Methods

Country/
Region

Further Information

Bacterial diseases

Enteric redmouth
disease (ERM)

Yersinia ruckeri Salmonids Inactivated Inactivated Y.
ruckeri

IMM or
oral

USA, Canada,
Europe

http://www.msd-animal-health.ie/
products_ni_vet/aquavac-erm-oral/
overview.aspx; https://www.msd-
animal-health-hub.co.uk

Vibriosis Vibrio
anguillarum;
Vibrio ordalii;
Vibrio
salmonicida

Salmonids, ayu,
grouper, sea bass,
sea bream,
yellowtail, cod,
halibut

Inactivated Inactivated
Vibriosis spp.

IP or IMM USA, Canada,
Japan, Europe,
Australia

https://www.merck-animal-health.com/
species/aquaculture/trout.aspx;

Furunculosis Aeromonas
salmonicida
subsp.
salmonicida

Salmonids Inactivated Inactivated
A.salmonicida
spp.

IP or IMM USA, Canada,
Chile, Europe,
Australia

https://www.msd-animal-health-me.
com/species/aqua.aspx

Bacterial kidney
disease (BKD)

Renibacterium
salmoninarum

Salmonids Avirulent
live culture

Arthrobacter
davidanieli

IP Canada, Chile,
USA

(16)
https://www.drugs.com/vet/renogen.
html

Enteric septicemia Edwarsiella
ictaluri

Catfish Inactivated Inactivated
E. ictaluri

IP Vietnam https://www.pharmaq.no/

Edwardsiella tarda
disease

Edwardsiella tarda Olive flounder Inactivated Inactivated
E.tarda

IMM Korea (17)

Edwardsiella tarda Rainbow trout
Olive flounder
Turbot

Inactivated
Attenuated

Inactivated
E.tarda,
Attenuated
E.tarda

IP China (13)

Vibrio
alginolyticus, V.
parahaemolyticus,
and E. tarda
disease

Vibrio
alginolyticus, V.
parahaemolyticus,
and E. tarda

Olive flounder Multiplex
antibody
unique
type

Anti-idiotypic
antibody

IP China (13)

Vibrio
anguillarum
disease

V. anguillarum Rainbow trout Genetically
engineered
live vaccine

Deletion of
the aroC gene

IP China (13)

Columnaris
disease

Flavobacterium
columnaris
Arthrobacter

All freshwater finfish
species, bream, bass,
turbot, salmon

Attenuated Attenuated F.
columnare

IMM USA (18) https://www.drugs.com/vet/
renogen.html

Pasteurellosis Pasteurela
piscicida

Sea bass, sea bream,
sole

Inactivated Inactivated P.
pscicida

IMM USA, Europe,
Taiwan, Japan

ALPHA JECT 2000

Lactococciosis Lactococcus
garviae

Rainbow trout,
Amberjack,
Yellowtail

Inactivated Inactivated L.
garviae

IP Spain https://www.hipra.com/

Streptococcus
infections

Streptococcus spp. Tilapia, yellow tail,
rainbow trout, ayu,
sea bass, sea bream

Inactivated Inactivated S.
agalactiae
(biotype 1)

IP Taiwan Province
of China, Japan,
Brazil, Indonesia,
Thailand

https://www.aquavac-vaccines.com/
products/aquavac-strep-sa1/

Inactivated S.
agalactiae
(biotype 2)

IP https://www.aquavac-vaccines.com/
products/aquavac-strep-sa/

Inactivated S.
iniae

IP or IMM https://www.aquavac-vaccines.com/
products/aquavac-strep-si/

Pasteurellosis Photobacterium
damselae subsp.

Sea bream, Sea bass,
Amberjack,
Yellowtail

Inactivated Inactivated
Ph. damselae

IP Mediterranean
Japan

(19)

Piscirickettsiosis Piscirickettsia
salmonis

Salmonids Attenuated Attenuated P.
salmonis

IP Chile (3). https://www.pharmaq.no/products/
injectable/

(Continued)
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classified according to composition, including monovalent,

multivalent, or mixed (multivalent) vaccines, or classify by the

preparation method, such as live, inactivated, or genetically

engineered vaccines (35). It is worth noting that each type of

vaccine has advantages and disadvantages and that different

vaccines need to be developed and used for different pathogens

and animals (as shown in Table 2). Aquatic vaccine production

technology has developed quickly since the introduction of the
Frontiers in Immunology 05
Aeromonas salmonicida inactivated vaccine in 1942, and vaccine

types have also diversified. Currently, most commercial aquatic

vaccines are still inactivated, and the primary methodology for

vaccine manufacture is still the inactivation of virulent wild-type

pathogens by physical and chemical methods. However,

inactivated vaccines have drawbacks such as short immunity

duration, large inoculation dosage, adverse responses, and strict

inactivation requirements. The utilization of live attenuated
TABLE 1 Continued

Disease Pathogen Major Fish
Host

Vaccine
Type

Antigens/
Targets

Delivery
Methods

Country/
Region

Further Information

Aeromonas
septicemia

Aeromonas spp. Striped catfish Inactivated A. hydrophila
(serotypes A
and B)

IP Vietnam https://www.pharmaq.no/;
ALPHAJECT Panga 2

Wound Disease Moritella viscosa Salmonids Inactivated Inactivated M.
viscosa

IP Norway, the UK,
Ireland, Iceland

https://www.pharmaq.no

Tenacibaculosis Tenacibaculum
maritimum

Turbot Inactivated Inactivated T.
maritimum

IP Spain https://www.hipra.com/

Columnaris
disease

Arthrobacter Salmonids Attenuated Arthrobacter
davidanieli

IP Canada (20)
(18)

Yersiniosis enteric
redmouth disease
(ERM)

Yersinia ruckeri
Bacterin

Salmonids
rainbow trout

Inactivated Yersinia
ruckeri

IMM or
oral

Danish
USA, Canada,
Europe

(21); http://www.msd-animal-health.ie/
products_ni_vet/aquavac-erm-oral/
overview.aspx; https://www.msd-
animal-health-hub.co.uk

Edwardsiellosis Edwardsiella
Ictalurii

Catfish Inactivated Inactivated
E. ictaluri

IP Vietnam https://www.pharmaq.no/

Columnaris
disease

Flavobacterium
columnare

Channel Catfish,
Salmonids, FW
species

Attenuated Attenuated F.
columnare

IMM USA (18)

Vibriosis Listonella
anguillarum

Salmonids, seabass,
yellowtail

Inactivated Inactivated
L.anguillarum

IMM International (22)

Vibriosis Vibrio
anguillarum-
salmonicida

Salmonids Inactivated Inactivated
Vibrio
anguillarum-
salmonicida

IMM USA (23)

Enteric septicemia Edwardsiella
ictaluri

Channel Catfish,
Japanese flounder

Inactivated Inactivated
E. ictaluri

IP Vietnam https://www.pharmaq.no/

Wound Disease Moritella viscosa Salmonids Inactivated Inactivated M.
viscosa

IP Norway, the UK,
Ireland, Iceland

https://www.pharmaq.no

Dropsy Free-cell
Aeromonas
hydrophila

Indian Major Carps Inactivated Inactivated
A.hydrophila

IP or IMM Indian (24)

Aeromonas
hydrophila

freshwater fish Inactivated Inactivated
A.hydrophila

IP or IMM China (13)

Streptococcosis Streptococcus
agalactiae

Tilapia Inactivated Inactivated S.
agalactiae

IP Taiwan Province
of China, Japan

https://www.aquavac-vaccines.com/
products/aquavac-strep-sa/

Streptococciosis Streptococcus iniae Tilapia Inactivated Inactivated S.
iniae

IP or IMM Brazil, Indonesia,
Thailand

https://www.aquavac-vaccines.com/
products/aquavac-strep-si/

Pasteurellosis Pasteurella
pscicida

Salmonids Inactivated Inactivated P.
pscicida

IP Mediterranean
Japan

(19)

Motile Aeromonas
Septicemia

Aeromonas
hydrophila

Salmonids Inactivated Inactivated A.
hydrophila

IP or IMM China (13)

Flavobacteriosis Flavobacterium
psychrophilum

Salmonids, FW
species

Inactivated Inactivated F.
psychrophilum

IP UK (25)

Lactococcosis Lactococcus
garvieae

Rainbow trout,
yellowtail

Inactivated Inactivated L.
garviae

IP Spain https://www.hipra.com/
IM, Intramuscular injection; IP, Intraperitoneal injection; IMM, Immersion.
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vaccines in aquaculture provides several benefits, including

simple vaccination, low manufacturing costs, rapid delivery,

low immunization dosage, and prolonged immunity. Positive

outcomes have been attained with several significant economic

fish. For instance, the use of antibiotics in Norwegian and UK

aquaculture has significantly decreased as a result of the

Arthrobacter Vaccine’s favourable immunological response in

salmonids (12). Deficiencies are mostly caused by live attenuated

vaccines’ poor safety in natural settings, which can result in virus

transformation and loss of ecological environment control. It

also has a limited shelf life, low thermal stability, high transport

and storage requirements, and the danger of resuming

mutations. Subunit vaccine keeps only the effective

immunogen components and discards the irrelevant or

dangerous pathogen components that trigger protective

immunity. Subunit vaccines eliminate irrelevant or harmful

pathogen components that induce protective immunity while

retaining only the effective immunogenic components, resulting

in significantly improved and stable immune effects, increased

reliability, and fewer adverse reactions in the body. However,

they frequently need optional adjuvants and are incapable of

producing mucosal and cellular protection (36). But the plant-

produced subunit vaccines are easier to manufacture, transport

and store, and the immunization route is simpler and safer. They
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can be added to feeds as additives to induce mucosal and

systemic immune responses that are more effective than

traditional immunization routes and have great potential for

application in aquaculture (37). Heterologous vaccines are those

that are created with heterologous pathogens that cross-react

with pathogens. It is safe and has a long immunity period, but it

is difficult to obtain. With the advancement of immunology and

molecular biology technology in recent years, there are more

technical means for the development of aquatic vaccines, such as

recombinant vaccine preparation technology, gene deletion

attenuated vaccine preparation technology, genetic engineering

live vector preparation technology, nucleic acid vaccine

preparation technology, and plant vaccine preparation

technology, etc. Vaccines developed using molecular biology

methods provide a variety of benefits: They have immune

properties that are chemically well-defined and stable; they

have known chemical structures that can be engineered and

modified to stimulate particular immune responses; they are free

of infectious components and have no residual toxicity or risk of

toxicity reversion; they can be synthesized directly or expressed

through recombinant expression, which makes it easier to

manufacture and enables the development of multivalent

vaccines (38–40). Using genetic engineering technology to

prepare vaccines is especially significant and advantageous for
TABLE 2 Types and characteristics of aquatic vaccines.

Vaccine type Advantages Disadvantages References

Inactivated vaccine 1. Easy to prepare.
2. High stability of immunogenicity.
3. Easy storage and transportation.
4. Easy to prepare multivalent vaccines.
5. High safety.

1. Short maintenance of immunity, requiring multiple
vaccinations.

2. Induces mainly humoral immunity and cannot induce
cellular or mucosal immune responses.

3. High inoculation doses and adverse reactions.
4. Requires strict inactivation.

(2, 32–34)

Live-attenuated vaccine 1. Can induce comprehensive, stable and long-lasting
humoral, cellular and mucosal immune responses.

2. Generally only one inoculation.
3. Can be immunized by injection, immersion, oral

administration and other ways.

1. Short validity period, poor thermal stability, and high
requirements for transportation and storage conditions.

2. A risk of reverting mutation.
3. Relatively narrow range of use.

(9, 14, 16, 32)

Genetic
engineering
vaccine

Subunit
vaccine

1. Remove harmful components, high safety.
2. Only retain the active ingredient, the immunity is

strong.
3. High purity, and good stability.
4. High output, can be large-scale production.
5. Small adverse reactions.

1. Weak immunogenicity, need to add adjuvant, need to
vaccinate several times.

2. Cannot induce cellular and mucosal immunity.

(14, 30, 32)

Nucleotide
vaccine

1. Immune protection is enhanced.
2. Simple preparation, saving time and effort.
3. Cross-protection of homozygous strains.
4. Safer application.
5. Produces a durable immune response.
6. Easy to store and transport.

1. DNA may induce autoimmune responses;
2. Continuous expression of foreign antigens may produce

some adverse consequences, such as tolerance.
3. Antigen is only locally uptaken after intramuscular

injection.
4. Many factors influence the immune response.
5. 5. A risk of foreign DNA insertion into the fish genome.

(2, 9, 13, 18)

Living
vector
vaccine

1. Strong immune protection effect.
2. Persistent antigen expression.
3. Convenient immunity and less stress.
4. Easy to expand production, low cost.
5. It can induce mucosal immunity.
6. It has multiple immune effects.

1. Foreign plasmids are easy to lose.
2. Continuous expression of foreign antigens may produce

some adverse consequences, such as tolerance.
3. Foreign genes are easy to drift.
4. Exogenous DNA may be integrated into the fish genome.

(2, 14, 18, 35)
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pathogens that cannot or are difficult to culture, pathogens with

potential carcinogenic or immunopathological effects, or

pathogens with poor effects or high adverse reactions to

traditional vaccines. However, genetically engineered vaccines

currently face varieties of challenges, including expensive

development and production costs, protracted development

cycles, and a single protective property. As a result, improved

design strategies for the advanced, novel, and effective

genetically engineered multivalent vaccines will be an

important development direction for the preparation of

vaccines for aquaculture.
3.1 Live-attenuated vaccine

In veterinary medicine, there are three types of live vaccines:

strong, weak, and heterologous vaccines (41). Live aquatic

vaccines are now more commonly used with pathogenic

strains that have been weakened or mutated, such as the F25

(9) antipyretic strain of viral hemorrhagic septicemia virus

(VHSV), infectious spleen and kidney necrosis virus (ISKNV),

attenuated channel catfish virus (CCV) vaccine, attenuated

Furunculosis vaccine, attenuated haematopoietic necrosis virus

(IHNV) vaccine (42–47). The outstanding benefit of live

vaccines is that the pathogen replicates in the host to produce

antigenic stimuli, and the quantity, type, and location of these

antigens are similar to those of natural infections. As a

consequence, immunogenicity is typically strong, even without

the need for a booster vaccination and the addition of adjuvants,

and immunity lasts longer, displaying better immune protection

(48). The live vaccine can be immunized by injection, but it is

also very effective by immersion, and oral or nasal vaccination

(49–52). This exceptional benefit is, however, accompanied by

potential hazards, including inconveniences with storage and

transportation, a short shelf life, the potential for infection to be

triggered in those with low immunity, and the potential for

mutations to reestablish virulence. Additionally, live attenuated/

weakly virulent vaccines are excellent starting strains for vector

vaccines due to their ability to retain high host invasiveness and

restricted host multiplication.

There are several techniques for producing live attenuated

vaccines, including chemical/physical mutagenesis, genetic

engineering, attenuated culture, and antibiotic-induced

attenuation. Early live attenuated vaccines were continuously

transmitted to attenuated strains for screening, but the process

was time-consuming and the virulence returned. Antibiotic-

induced attenuation is the term for the in vitro screening of

weak strains that are not antibiotic-dependent using media that

contain antibiotics (53). Antibiotic-induced attenuated mutant

strains, on the other hand, are haphazard, lack a clear genetic

background, and are virulently unstable. It is difficult to ensure

their safety when used in vaccine preparation and therefore

hasn’t been frequently applied in following attenuated
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investigations. Chemical/physical mutagenesis attenuation

refers to the use of chemical mutagens or altered physical

conditions to induce non-situated mutations in the causative

agent thereby obtaining a weakly virulent strain. The mutations

produced by this induction method are random and the

corresponding vaccine strain is selected due to the lack of

virulence in the host animal (54, 55). Currently, with the

development of genome sequencing and genetic engineering

technologies, a clear understanding of the genetic background

and pathogenic mechanisms of various pathogens has been

achieved, and safe and efficient live attenuated vaccine strains

can be constructed by knocking out virulence and metabolism-

related genes of virulent strains (56). As a new means of genetic

engineering, homologous recombination technology can modify

DNA without any restriction endonuclease and DNA ligase.

Attenuated strains constructed by knocking out one or more

virulence genes using genetic engineering techniques have the

advantages of a clear genetic background, weaker virulence and

less susceptibility to reassortment. Some of the common

virulence-related genes include housekeeping genes involved in

encoding structural components of bacteria, outer membrane

protein genes (57, 58), aromatic amino acid genes involved in

essential metabolite synthesis (59), virulence genes involved in

bacterial host resistance mechanisms, population sensing genes

(60–64), iron uptake system genes (65, 66), virulence island

(SPI)-related genes (67–71), secretion system-related genes, etc

(72–75). Delete multiple functional genes, such as flagellin and

enzymes, present more desirable immune protection (76–80),

and even produce a good cross-protection (81–83).

In recent years, important progress has been made in the

research of live aquatic vaccines (Table 3). The attenuated

vaccine against Edwardsiella tarda and the genetically

engineered weakened vaccine against Vibrio eels used in turbot

and flounder culture have resulted in important protection of the

fish (106–108). The Nile tilapia (Oreochromis niloticus) (109–

111), silver pompano (Pampus argenteus) (112), giant

Queensland grouper (Epinephelus lanceolatus) (113),

Australian jewel perch (Scortumco) (114), bighead carp

(Aristichthys nobilis) (115), and many other fish species can be

infected by the important pathogen Streptococcus lactis, which

threatens the aquaculture industry and causes high mortality.

Liu et al. (2019) (100) developed an attenuated S. lactis TFJ0901

(named TFJ-ery) from a naturally low virulence S. lactis strain

through erythromycin resistance screening, and they found TFJ-

ery to be an effective attenuated vaccine candidate to protect

tilapia from S. lactis infection. Zhang et al. (2020a) (102)

developed an effective live attenuated vaccine against S. lactis

that was also able to induce humoral and cellular immune

responses in tilapia, significantly increasing the level of specific

antibodies. A live attenuated vaccine was created by Liu et al.

(2018) (116) to protect against the Vibrio disease in Takifugu

rubripes, and it was discovered that the vaccination had no

negative impacts on fish growth. T. rubripes also produced an
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efficient immune response after receiving the live attenuated

vaccination. High-density farming of loach and deteriorating

farming conditions have accelerated the outbreak of Aeromonas

hydrophila and are a potential threat to food quality. Zhang et al.

(2020) (117) developed a live attenuated vaccine to treat loach

infected with A. hydrophila TH0426 and found that the vaccine

induced an increase in enzyme activity in the serum and skin

mucus of loach and upregulated immune-related genes,

including IL-1b, TNF-a, IL-10 and pIgR, which effectively

protected the loach from infection by A. hydrophila TH0426.

Zhou et al. (2020) (96) developed a live attenuated vaccine

against Vibrio alginolyticus infection that increased the

expression of IgM, IL-1b, IL-6 and TNF-a and induced a

protective immune response in zebrafish.

In general, live attenuated vaccines have great potential in

the aquaculture industry because of their weakened toxicity,

which cannot cause diseases, and their ability to be administered

via natural infection routes. These vaccines provide extended

and consistent antigen presentation, stimulate humoral and cell-

mediated immune responses, induce host mucosal immunity,

and offer the organism broad immune protection. In light of this,

live attenuated vaccines have enormous promise in the

aquaculture industry, and the development of novel, diverse

live attenuated vaccines using genetic engineering technologies is

a key area of focus for the future development offishery vaccines.
3.2 Inactivated vaccine

Inactivated vaccines are vaccines that use physical or

chemical methods to inactivate highly virulent pathogenic

microorganisms, but they still maintain their immunogenicity

and produce specific resistance in aquatic animals after

vaccination. Physical inactivation methods include ultraviolet
Frontiers in Immunology 08
light (118), high-temperature heating (119–121), ultrasound

(122) and g-ray (123). Chemical inactivation is the process of

rendering pathogenic bacteria dormant by destroying their

nucleic acids or proteins with chemical chemicals. Physical

inactivation is complex, costly, limiting and unstable, while in

contrast, chemical inactivation is simple, low cost and reliable,

and is the most commonly used method of inactivation (124,

125). In 1942, Duff first applied an inactivated vaccine against A.

salmonicida on trout to give them immune protection, which

became a precedent for fish vaccine application. An inactivated

cell culture vaccine for grass carp disease was developed in China

in 1986 (126), which was the first successful step in the

development of aquatic vaccines. Inactivated vaccines also

have limitations in that their immunogenicity is inevitably

affected by the way they are prepared, which destroys the

integrity of some pathogens, thus affecting the protective effect

of the vaccine (127). Meanwhile, inactivated vaccines are not

biologically active after entering the host and cannot colonize

and reproduce, thus requiring higher doses and shorter duration

of immunity, and need to be improved by adding appropriate

adjuvants and making multivalent vaccines or combination

vaccines. However, inactivated vaccines have the advantages of

a short development period, stable storage, low cost and no

virulence problems, and are currently the most reported and

used vaccines in aquaculture (128).

Bacterial diseases can cause significant biological harm and

thus economic losses. Although it can be controlled with

antibiotics, these drugs eventually pose a threat to human health

due to the development and transfer of resistance mechanisms

among bacterial species (129, 130). Therefore, inactivated bacterial

vaccines have been the subject to combat the spread of bacterial

diseases among aquatic animals, as shown in Table 4, many

inactivated aquatic bacterial vaccines have been reported. Liu

et al. (2015) (132) used 0.5% formalin to inactivate eel vibrio at
TABLE 3 Attenuated vaccine.

Disease Pathogen Vaccine attenuated methods Main influencing species Reference

Enteric septicemia Edwardsiella ictaluri Genetic engineering attenuation Catfish (84, 85)

Attenuated culture (86)

Carp disease Carp nephritis and gill necrosis virus(CNGV) Attenuated culture Koi/Common carp (87–89)

Furunculosis Aeromonas hydrophila Genetic engineering attenuation Rainbow trout (90, 91)

Edwardsiellosis Edwardsiella tarda Genetic engineering attenuation Crucian carp (92)

Hemorrhagic septicemia VHSV Genetic engineering attenuation Olive flounder (43, 93, 94)

Vibriosis V.anguillarum Genetic engineering attenuation Duffer (95)

V.alginolyticus Genetic engineering attenuation Zebrafish (96)

Pearl gentian grouper (97–99)

Streptococcosis Streptococcus agalactiae Attenuated culture Nile tilapia (100)

Natural attenuation (101)

Genetic engineering attenuation (102)

visceral white spot disease Pseudomonas plecoglossicida Genetic engineering attenuation Garrupa; Yellow croaker (64, 103, 104)

Ulcer Syndrome Aeromonas veronii Genetic engineering attenuation loach (105)
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30°C for 48 h. They found that the survival of immunized

zebrafish and turbot was effectively improved with relative

survival rates of (89.0 ± 4.5) % and (80.0 ± 6.9) %, respectively.

Nguyen et al. (2017) (152) inactivated Vibrio harveyi with 0.3%

formalin at 25°C for 48 h. Immunization of grouper for 6 weeks

resulted in 100% relative survival and a significant increase in

interleukins. Inactivation of Haemonchus contortus with formalin

at an optimal vaccination rate of 1.0×108 CFU/fish significantly

promoted antibody production in turbot, and enhanced lysozyme

activity, total serum protein and antimicrobial properties in the

serum of immunized fish (153). Formalin-inactivated F. harveyi

ZJ0603 vaccine (FKC) combined with b-glucan improved

immune protection in pearl grouper, and the expression levels

of IgM, TNF-a, MHC-Ia, IL-1b and IL-16 in the spleen and the

antibody potency, lysozyme and superoxide dismutase activities in

the blood of immunized fish were significantly increased (154).

Aeromonas veronii is an extremely important infectious pathogen

in carp culture. Inactivated A. veronii TH0426 significantly

improves immune protection against crucian carp, while the

addition of adjuvants can promote vaccine efficacy (139).

Inactivated viral vaccines are safe and won’t cause any

infections because the virus has lost its activity, many inactivated

aquatic viral vaccines have been reported in studies (Table 5).

However, the immune response is lessened or the duration of

immunity is reduced since the virus is only a fragment and not

an intact virus (173). It has been reported that the infectious

hematopoietic necrosis virus (IHNV) vaccine inactivated by 1.5

mmol/L Beinylating agents can significantly improve the

survival rate of rainbow trout (155). Neural necrosis virus

vaccine inactivated by 4 mmol/L BEI can not only significantly

promote the expression of various immune genes in grouper, but

also cause body fluids and cellular immunity (162). Inactivated
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cyprinid herpesvirus type 2 (CyHV-2) vaccine with 0.1% BPL

(chemical formula C3H4O2) at 4°C significantly induced non-

specific and specific antiviral immune responses in carp,

resulting in relative immune protection of 71.4% (164). Grass

carp had a relative immune protection rate of more than 80%

after receiving the grass carp reovirus (GCRV) vaccine

inactivated with 0.1% BPL (165). The addition of adjuvants is

effective in improving the effectiveness of inactivated viral

vaccines, for example, because squalene and aluminium

hydroxide adjuvants prolong and improve the efficiency of

formalin-inactivated VHSV in flounder, which can be

controlled by a single dose of this vaccine administered before

winter (174). Montanide IMS 1312 adjuvant significantly

improves the immune efficiency of formaldehyde and b-
propiolactone inactivated tilapia lake virus-inactivated vaccine

and increases protection against tilapia (175).
3.3 Genetically engineered vaccine

Genetic engineering vaccines primarily use genetic

engineering technology to isolate immune antigen genes from

bacteria or viruses and transfer them into animal cells or

recipient organisms, allowing the organism to produce a large

number of protective antigens and improve disease resistance.

The main types include recombinant subunit vaccines, nucleic

acid vaccines, recombinant live vector vaccines, gene deletion/

mutation vaccines and plant vaccines. Aquatic vaccines have

been widely used in aquaculture since the 1980s, but the majority

of commercial vaccines are inactivated bacterial vaccines, with

only a few being genetically engineered recombinant vaccines.
TABLE 4 Inactivated Bacterial vaccine.

Disease Pathogen Inactivation antigen Main influencing species Reference

Cold water vibriosis V.salmonicida Formalin Atlantic salmon (131)

Vibriosis V.anguillarum Formaldehyde/Formalin Zebrafish; Scophthalmus maximus; Flounder (132, 133)

V.harveyi; V.mimicus;
V.alginolyticus

Formalin Garrupa; Pearl gentian grouper; Zebrafish; Grass carp; Large
yellow croaker

(134–137)

Ulcer syndrome; ascites
disease

aeromonas veronii; Edwardsiella
ictaluri

Formalin/Formaldehyde Yellow-head catfish; Crucian carp; Carp (138–140)

Tenacibaculosis Tenacibaculum finnmarkense Formaldehyde Salmon (141)

Francisellosis Francisella noatunensis subsp.
orientalis

Inactivated adjuvants:
Montanide

Nile tilapia (142)

Crack-head disease Edwardsiella ictaluri Formalin Red Sea Bream (143)

Formaldehyde Yellow-head catfish (144)

Edwardsiellosis Edwardsiella tarda Formalin Flounder (145)

streptococcosis streptococcus Formalin Olive flounder; Garrupa (124, 146)

streptococcus agalactiae Hydrogen peroxide Nile tilapia (147)

lactococcosis Lactococcus garvieae Formalin Grey mullet fish; Rainbow trout (148, 149)

Furunculosis Aeromonas salmonicida Formalin Rainbow trout (150)

Hemorrhagic septicemia Aeromonas hydrophila Sonication Grass carp (151)
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3.3.1 Subunit vaccine
A subunit vaccine is a vaccine prepared by encoding a

pathogen antigen into a recombinant expression vector and

expressing a gene product (recombinant peptide or

recombinant protein) using a prokaryotic or eukaryotic

expression system. Subunit vaccines utilize only the antigenic

component for vaccination and pose no risk of causing disease in

the host or non-target species because subunit vaccines cannot

replicate in the host. Furthermore, subunit vaccines can be

manufactured in a highly characterized state, they can target

immune responses to specific microbial determinants, they can

incorporate non-natural components, and they can be freeze-

dried, allowing for non-refrigerated transport and storage.

Heterologously expressed recombinant subunit vaccines

address both difficulties with antigen supply and vaccination

safety, are easily accessible when testing is required and can be

produced and used consistently. Some of the most important

characteristics of vaccine candidate molecules are that they are

highly conserved among different strains of the same species and

that they are expressed on the pathogen’s surface so that antigen-

presenting cells can easily recognize them due to their

immunogenicity. The high immunogenicity of outer

membrane proteins (OMP) is considered a promising

candidate for the design of antimicrobial drugs and vaccines in

various pathogenic strains. Numerous other studies have

reported that outer membrane proteins (OMPs) are generally

very immunogenic due to their exposed epitopes on the cell

surface (176) and have the potential of a vaccine candidate for

fish against V. anguillarum (177, 178), Vibrio mimicus (179), V.
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harveyi (180), Vibrio ichthyoenteri (181), P. olivaceus (182), E.

tarda (183) and A. hydrophila (184) infection. Flagellin is also

well-studied and effective subunit vaccine candidate (185). Viral

capsid proteins are also regarded as significant possible antigens

for the development of subunit vaccines (186, 187). It is

concerning that subunit vaccines frequently contain a single

antigen, resulting in low immunization efficiency, necessitating

multiple immunizations and the addition of adjuvants to

improve the immunization effect or the development of

multiple vaccines (188–192). Cytokines can act as signalling

molecules involved in the immune system and as low molecular

weight glycoproteins or peptides regulating the host defence

network (193). Compared to the most commonly used adjuvants

in fish culture (e.g., aluminium plate adjuvants and oil

adjuvants), cytokines have advantages as immune adjuvants in

initiating the expression of co-stimulatory molecules and

polarization of antigen-presenting cells (194). A large number

of cytokines have been identified in various fish species, for

example, IL-1b, IL-8, G-CS, TNF-a, IL-6, IL-2 and other

cytokines have been found to enhance the immune effect of

subunits in flounder (195, 196).

Subunit antigens have been produced in bacteria, yeast,

transgenic plants, insects, mammalian cell cultures, and cell-

free platforms. Among them, bacteria can easily and abundantly

express antigens, but cannot post-translationally modify the

expression products; therefore, eukaryotic antigens are usually

not expressed in bacteria. And the expressed exogenous proteins

have damaging effects on the host bacteria, and there may be a

risk of endotoxin contamination in the expression end products.
TABLE 5 Inactivated Viral vaccine.

Disease Pathogen Genome Inactivation
antigen

Main influencing
species

Reference

infectious hematopoietic necrosis Inactivated infectious hematopoietic
necrosis virus (IHNV)

A single strand of
RNA

BEI; BPL;
Formaldehyde

Rainbow trout (155)

Pancreas disease Salmonid alphavirus A single strand of
RNA

Formalin Salmon (156, 157)

Viral hemorrhagic septicemia (VHS) VHS virus (VHSV) ssRNA Formalin Olive flounder (151, 158)

viral nervous necrosis disease Nervous necrosis virus(NNV) A single strand of
RNA

Formalin/BEI Garrupa; Senegalese
sole

(159–162)

giant salamander Iridoviruses disease giant salamander Iridoviruses DNA BPL Chinese giant
salamander

(163)

Herpesviral haematopoietic necrosis
(HVHN)

cyprinid herpesvirus 2(CyHV-2) Double-stranded
DNA

BPL gibel carp (164)

hemorrhagic disease Grass carp reovirus dsRNA BPL Grass carp (165)

viral nervous necrosis disease; grouper
iridoviral disease

viral nervous necrosis virus(VNNV);
grouper iridovirus (GIV)

single strand of
RNA; DNA

BEI orange-spotted
groupers

(166)

viral encephalopathy; retinopathy
(VER)

Nodavirus A single strand of
RNA

Formalin European sea bass (167–169)

UV

White Spot Disease (WSD) white spot syndrome virus
(WSSV)

Double-stranded
DNA

Formalin Penaeus monodon (170)

Tilapia virus disease Tilapia lake virus(TiLV) A single strand of
RNA

Formaldehyde;
BPL; Heat

Nile tilapia (171, 172)
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Yeast is widely used in food, beverage and feed production, and

its genetic and biochemical background is clear. Yeast not only

expresses proteins in a secreted form but also post-

translationally modifies them. Yeast is easy to operate, has a

fast growth rate, and has now mastered a lot of experience in

large-scale fermentation production, with great potential in

aquatic vaccines. The advantage of the mammalian expression

system is that it can post-translationally modify the expression

products close to the natural conformation, which is important

for inducing immune responses to vaccine antigens. However,

the cellular production of vaccines is too costly and potentially

carries the risk of contamination with foreign or oncogenic

components (2, 197). The plant-based vaccine also referred to as

a transgenic plant vaccine, involves the introduction of antigen

genes into plant cells and their expression, or the replication of

antigen genes in plants using pathogenic vectors to produce high

yields of the target protein. Transgenic plants are currently being

used to produce vaccines against viruses, bacteria, and parasites,

and clinical studies have shown that plant-produced

recombinant drug proteins are safe and effective (198, 199).

Compared to microbial or mammalian cell expression, plants

have a higher biosynthetic capacity of which plant seeds, tubers

and fruits are excellent locations for protein aggregation and

conservation. Stably expressed plants integrating antigenic genes

can be produced in large quantities by asexual or sexual

reproduction. They can also undergo post-translational

modifications like glycosylation and complex folding and

assembly to improve vaccine immunogenicity (200).

Furthermore, there are no safety problems with plant-made

subunit vaccines compared to live vaccines, and no harmful

substances like bacterial endotoxins or highly glycosylated

proteins from yeast have been discovered in plant production

systems (201). Plant-produced recombinant subunit vaccines

can also deliver multiple antigenic proteins simultaneously

(202). Thus, plant-based platforms offer appealing benefits for

recombinant subunit vaccines. Plant-produced vaccines are

appropriate for oral delivery, as the vaccine antigen is

absorbed by M cells in the epithelium after passing through

the stomach and into the intestine, eliciting mucosal and

systemic immune responses (203). Aquatic vaccines made

from edible plants hold great promise for oral vaccines in

aquaculture, as such transgenic plants can be directly crushed

and added to feeds as additives to trigger a particular immune

response. The best plants for edible vaccines include vegetables

and fruits that have been shown to generate substantial amounts

of exogenous proteins, such as lettuce, tomatoes, potatoes, rice,

and cabbage (204, 205). According to a study, feeding striped

bream transgenic rice healing tissue with recombinantly

expressed Iridovirus coat protein (MCP) dramatically

increased the fish’s disease resistance (206).

Microalgae are natural baits and nutritional additives for

aquatic animals, especially for the small fry, and are not only rich

in proteins, lipids and essential nutrients and potential
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immunogenicity, but they also have a shorter culture cycle

than other macrophytes to complete complex protein folding

to form active recombinant exogenous protein, making them an

ideal system for aquatic vaccines production and oral delivery

(207–209). Chlamydomonas reinhardtii, Dunaliella salina, and

cyanobacteria have been reported to express antigenic genes for

the prevention and control of infectious diseases. For example,

oral administration of D. salina and C. reinhardtii integrated

with VP28 improved the survival of shrimp exposed to WSSV

(210, 211). Feeds prepared with C. reinhardtii expressing

Antiviral double-stranded (ds) RNA-YHV increased the

survival of shrimp by 22% after a yellow head virus (YHV)

attack (212). Through successful expression in Nicotiana

benthamiana, Atlantic cod neuro necrosis virus (ACNNV)

VLPs be effective in protecting sea bass from viral attack (213).

Diatom recombinantly expressed heat shock protein (GroEL)

and outer membrane protein (IglC) of Francisella orientalis (Fo),

both of which enhance the immune response of Nile tilapia and

improve immune protection in fish (214). To date, however,

many microalgae have not become an effective and established

genetic manipulation system, and no plant-produced aquatic

vaccines have been commercialized (215). Therefore, further

research on the production of aquatic vaccines using plant

biotechnology is essential. To improve the activity of vaccines

and heighten the level of induced animal immune responses,

research on plant-produced vaccines is currently concentrated

on increasing the concentration and purity of antigens in

transgenic plants as well as addressing shortcomings in the

ambiguous efficiency of modifications, such as glycosylation,

methylation, and polymerization (216). In addition, animal

species, animal diet, disease type, vaccine characteristics,

production cycle, production scale, biosafety issues, future

commercial prospects, and management difficulties need to be

considered before selecting a plant expression system for fish

vaccine production (5).

Overall, subunit vaccines offer a wide range of uses and are a

good option for some hard-to-culture microorganisms. They can

be used to protect both homologous pathogens and multiple

infections by combining the antigenic genes of different

pathogens. The effectiveness of subunit vaccinations to

generate mucosal and cellular immunity in vertebrate hosts

has significantly improved even though they are less

immunogenic than inactivated vaccines due to ongoing

advancements in antigen delivery and vaccine adjuvants.

Subunit vaccines are currently plagued by the difficulty of

expressing recombinant viral and protozoan membrane

antigens in their natural structural state, as well as the

production of misfolded or misprocessed proteins by microbial

systems (particularly E. coli and yeast) that lack the

conformational epitopes required to produce protective

antibodies in the host. Furthermore, the fact that subunit

vaccines are primarily administered by injection and the need

for adjuvants raises the cost of their use.
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3.3.2 Nucleic acid vaccine
Nucleic acid vaccine, which includes DNA and RNA

vaccines, refers to the introduction of plasmids containing a

gene encoding an antigen protein into the host to express the

antigen protein through the host cell and induce the host cell to

produce an immune response to the antigen protein to achieve

immune effects. In 1996, Anderson et al. (1996) (217) prepared a

DNA vaccine pCMV4-G containing the IHNV G gene and

immunized trout by intramuscular injection, which improved

trout resistance, launching research into the use of nucleic acid

vaccines for fish. After traditional vaccines and genetically

engineered subunit vaccines, nucleic acid vaccines have

emerged as a hot spot for aquatic vaccine research and

development. Although nucleic acid vaccines provide

enhanced immune protection, are simple to prepare, save time

and effort saving, are safer in an application, and have a long

duration of an immune response, they are prone to immune

tolerance and have a low probability of plasmid DNA integration

into the host genome and causing autoimmune diseases and

insertional mutations. Nucleic acid vaccines are frequently very

effective in preventing viral infections, such as fish bouncing

viruses (rhabdovirus), because they use the same cellular

mechanisms that viruses use when they enter the host cell

(218, 219). Huo et al. (2020) (220) developed recombinant

plasmids pcORF25 and pcCCL35.2 to serve as a vaccine and

molecular adjuvant against CyHV-2, respectively. They

discovered that pcORF25/pcCCL35.2 effectively increased

mRNA expression of critical immune genes (IL-1, IL-2, IFN-

g2, and viperin) and significantly inhibited CyHV-2 replication

in the head kidney and spleen tissues. DNA vaccines are also

effective in preventing bacterial infection in fish, such as Vibrio

anguillarum (221–223), E. tarda (224), V. harveyi (225) and so

on. Several DNA vaccines have been approved for marketing,

and the first licensed DNA vaccine ever was a DNA vaccination

for IHNV that was approved in Colombia, UK, in 2003 (226),

and was approved for marketing in Canada in 2005 (218). In

2018, a DNA vaccine against the Salmon pancreatic disease virus

(SPDV) was approved for marketing in Norway and the EU

(227). A commercially available vaccine based on DNA plasmid

has been authorized to be used in Norwegian aquaculture against

Pancreas disease (PD) caused by salmonid alphavirus subtype 3

(SAV3) in Atlantic salmon SAV3 in salmon since 2018 (228,

229). Studies on DNA vaccines against parasitic fish diseases

have also been reported, for example, immunization of obliquely

banded grouper with DNA vaccines prepared by stimulation of

Cryptococcus repressor antigens improved the resistance of the

fish (230). Intramuscular injection of DNA vaccine against the

parasite Ichthyophthirius multifiliis (Ich) induced significant

upregulation of immune genes in the head kidney of catfish,

including IgM, CD4, MHCI, TCR-a, IFN-g, complement

component 3 (C3) and Toll-like receptor (TLR), and the fish

produced ant i - Ich ant ibodies , obta in ing a higher

immunoprotective effect (231). A DNA vaccine against
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Ichthyophthirius multifiliis was also effective in immunizing

channel catfish (232).

Compared to conventional vaccines, DNA vaccines are more

stable, safer, and largely free of toxicity reversal. However, DNA

vaccines are not mature enough and, at present, it is not possible

to determine whether the host genome will integrate with

exogenous DNA to disrupt the genetic homeostasis in the

host. What’s more, DNA vaccines have potential side effects,

including immune tolerance of the organism to the expressed

antigen, chromosomal integration, and injection site

inflammation (219). RNA vaccines have received significant

attention in recent years, and they have many advantages. For

example, RNA is not infectious, it can be degraded by normal

cellular processes, and there is no potential risk of infection or

insertional mutagenesis. Therefore, RNA vaccines have a

promising future in aquatic vaccines (233).
3.3.3 Recombinant live vector vaccine
A live vector vaccine is a genetically modified vaccine that

uses a non-pathogenic virus or bacteria as a carrier to express

protective immune-related antigens and deliver the antigens to

the lymphoid tissue of the intestine, generating intestinal

mucosal immune responses and system immunity. It is

characterized by the combination of the high immunogenicity

of live attenuated vaccines and the precision of subunit vaccines.

A significant benefit of the live vector vaccines is their ability to

effectively induce cellular and humoral immunization and even

mucosal immunization by inducing target antigen expression in

vivo, resulting in endogenous antigen processing and MHC class

I restriction antigen presentation. Second, the production cost of

live vector vaccine is low and the risk of virulence is low. The

antigen genes of different pathogens can be inserted into the

vector and expressed simultaneously, thus achieving the goal of

preventing multiple diseases with one needle, providing the

possibility for the development of multiple or multiple

vaccines (234). At present, bacterial live-carrier vaccines have

been studied in fish live-carrier vaccines, such as E. coli, E. tarda,

Salmonella, Listeria, Lactobacillus, Bacillus subtilis, etc. have

been reported. It is worth noting that with the in-depth

research on the function of gut microbes in recent years, the

role of probiotics has been paid more and more attention.

Probiotics are safe and non-toxic, can promote the intestinal

absorption of nutrients better, enhance the body’s immunity,

and also have a good adjuvant effect as a live vaccine carrier.

Studies have shown that recombinant live vector vaccines

constructed with Lactococcus lactis and B. subtilis can elicit a

protective immune response in the host (235–238). Oral

administration of Lactobacillus casei CC16 strain expressing

the flaB and OmpAI antigens of A. veronii significantly

induced carp-specific antibody responses and carp-specific

antibody responses, up-regulated IL-10, IL-b, IFN-g, TNF-a
and other immune genes expression, and improved the fish
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immune protection (239, 240). The vectors of live viral vector

vaccines are generally attenuated strains, and exogenous

antigens are inserted into non-essential regions of the vector

genome to form a new recombinant virus, with the exogenous

genes being expressed concurrently with vector replication.

Baculovirus (BmNPV), a pathogen of silkworm (Bombyx

mori), can be used as a potential vaccine vector for clinical

application (241). Baculovirus (Baculovirus) and IHNV can both

be used as vaccine carriers to induce effective immune protection

of the host (242, 243). It has been reported that the recombinant

BacCarassius-D4ORFs-BmNPV vector vaccine can effectively

protect crucian carp from CyHV-2 infection, with relative

survival rates of 59.3% and 80.01% by oral or injection

vaccination, respectively (244).

Although live vector vaccines have many advantages in

terms of immunization mode, strain culture, and gene

delivery, there are still many drawbacks, such as the fact that

some bacteria with reduced virulence can still be harmful to the

body’s health and that long-term immunity causes the body to

become tolerant to producing antigen, which hurts the immune

system. Therefore, further optimization of vector selection and

immunization strategy is needed to improve the protective effect

of live vector vaccines.
4 Aquatic vaccination methods

The development of protective vaccines and their proper use

is essential for successful vaccination. Vaccination should be

administered before pathogen exposure to allow sufficient time

for immunity to develop. The route of immunization used is also

selective, depending on the type of vaccine, cost, type, size, and

several fish to be immunized, as well as the purpose of

immunization. In aquaculture, three vaccination methods are

commonly used: injection, immersion, and oral immunization

(245). As shown in Table 6, each immunization method has

advantages and disadvantages, and in practice, we must select

the best vaccination method based on the characteristics of the

vaccine, the type of animal, etc.
4.1 Injection immunization

The most effective method of vaccination is injectable

immunization. It ensures that each immunized fish receives an

equal amount of vaccine to stimulate the body’s immune

response, allowing the immunized fish to achieve long-term

and stable immune protection. This vaccination method

requires fewer vaccines and is especially appropriate for

inactivated, subunit, and nucleic acid vaccines, as well as

mixed, monovalent, and multivalent vaccines. However, there
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are numerous issues with the injection immunization process,

such as the difficulty of handling and, in particular, the

inconvenience of immunizing small fish under 20g, but fish

smaller than this are generally the most susceptible to disease. It

can also harm the fish mechanically, causing ulceration at the

injection site and adhesions between internal organs and the

peritoneal wall. Second, the handling, anaesthesia, and injection

processes not only stress the fish but also increase labour costs,

particularly when immunizing large numbers of fish. Machine

injection, as opposed to manual injection, can reduce stress on

fish, reduce labour intensity, shorten injection time, and

overcome some disadvantages of the injection immunization

method itself (252). Many patented inventions of vaccination

apparatus are now commercially available, which not only

greatly facilitates large-scale vaccination operations by farmers,

but also improves the efficiency of vaccine utilization and

facilitates the vaccine development process. Injectable

immunizations typically include intraperitoneal and

intramuscular injections. Inactivated vaccines are frequently

administered intraperitoneally, subunit vaccines usually

require adjuvants, and some nucleic acid vaccines are only

suitable for intramuscular immunization due to their high

uptake by muscle tissue, which can induce a systemic immune

response. Corbeil et al. (2000) (253) evaluated the vaccination

effect via various vaccination routes including intramuscular

injection, scarification of the skin, intraperitoneal injection,

intrabuccal administration, gene gun, or immersion with

pIHNVw-G, and found only the intramuscular injection and

using gene gun induced protective immunity in Rainbow trout

fry. The pSAV/HE DNA vaccine elicited a strong immune

response at the injection site after intramuscular injection and

provided high protection in Salmon, whereas neither the pSAV/

HE alone nor the mixed inactivated low-dose virus vaccine by

intraperitoneal injection elicited an immune response in

Caenorhabditis elegans or improved the effectiveness of the

inactivated vaccine (254). An SWCNTs-DNA vaccine

encoding matrix protein provides a good protective effect

against spring viremia of carp virus by intramuscular

vaccination (246). Ramı ́rez-Paredes et al. (2019) (247)

developed an autologous whole-cell inactivated vaccine to

effectively protect red Nile tilapia from Francisellosis by

intraperitoneal injection. Xu et al. (2019) (153) developed an

effective inactivated vaccine against Vibrio harzianus in turbot.

They found that the vaccine not only induced humoral

immunity but also enhanced the innate immune response to

provide long-term effective protection by intraperitoneal

injection with different concentrations of the vaccine in turbot.

The commercial use of the Yersinia ruckeri vaccine without

adjuvant is possible, but efficiency is insufficient, wherein the use

of aluminium hydroxide is harmless and does not cause

complications (255).
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4.2 Immersion immunization

Immersion immunization is a unique way of vaccination for

aquatic vaccines. Antigens can be uptaken by mucosal tissues

such as gills, skin, lateral line and gastrointestinal tract, which

can quickly and effectively activate the mucosal immune system

of fish, and then spread to the peripheral blood, kidney and

spleen and other systemic immune tissues through blood

circulation to generate a systemic immune response (256). Its

advantages are that it causes less mechanical damage and stress

stimulation to fish bodies, is easy for herd immunity, has less

labour intensity, and less time-consuming immunity. It is

suitable for fry and smaller fish. The application of immersion

vaccine has been reported in many fish, such as Anguilla

japonica (257), Atlantic cod (258), grouper (259), Crucian carp

(260), and rainbow trout (261). Immersion immunity mainly

includes Direct immersion (DI), Hypertonic immersion (HI),

Flush and Spray, etc (262). DI involves transferring fish to water

containing the vaccine for some time and then returning them to

the breeding pond. This method is simple and suitable for

sterilization vaccines and attenuation vaccines and causes less

stress to fish bodies. Therefore, it can improve the uptake of

antigens by prolonging the immersion time, thus improving the

effect of immersion immunity and reducing the cost of vaccines

(263, 264). Many studies show that the immune protection of

direct immersion immunization is low, and needs to be

strengthened to achieve the ideal immune effect (265). The

hyperosmotic method is to soak the fish in 3% ~ 5% salt

solution for 5 minutes, then move the fish herd to the vaccine

solution for immersing, to force the antigen to infiltrate into the

fish by the change of osmotic pressure (248, 266). Ultrasonic

treatment can increase the permeability of biological tissues such

as skin and muscles, and the number of antigens entering a fish’s
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body can be significantly increased by ultrasound in spray (267,

268). Although hypertonic and spray methods can improve the

efficacy of immersion vaccines, their application is limited by

stress on fish bodies. The uptake of antigen by immersion is

limited, so the immune effect of immersion on fish is lower than

that of injection immunization. Moreover, the immersion

environment has a great influence on the vaccine effect, and it

is difficult to control the amount and time of immersion.

Immersion usually requires a large amount of vaccine, and in

practice, vaccine cost must be a primary consideration. In recent

years, many studies have focused on how to improve the effect of

immersion immunity using different methods. Examples are

booster vaccination, administration of immunostimulants/

adjuvants, use of delivery vehicles, preconditioning by physical

methods, use of novel live attenuated vaccines and DNA

vaccines, etc (269–271). Mucoadhesive polymers are widely

used in drug delivery and can also be developed and utilized

as vaccine carriers in immersion immunization (272–274).
4.3 Oral immunization

Oral administration is considered to be the most practicable

form of immunisation for aquatic vaccines and is suitable for a

wide range of vaccine types including inactivated, live attenuated

and nucleic acid vaccines. Compared to injectable vaccination,

oral administration is not restricted by the size and age of the

animal, can reduce stress and mechanical damage to the animal,

can provide some savings in labour costs and meets animal

welfare requirements (275). At present, aquaculture is most

intensive and factory-based, and oral immunization is more

suitable for large-scale farm animals than other immunization

methods. However, the development and application of oral
TABLE 6 Comparison of vaccination methods.

Inoculation
regimes

Feature Advantages Disadvantages Reference

injection Can be done manually or automatically. A small
amount of known antigen can be directly
transmitted to fish, which plays effective
protection and long protection time.

A delivery method with the best
protective effect is the only choice for
adjuvant vaccines. A small amount of
use can be sustained protection.

If anaesthesia is not performed, it
usually causes a large animal
stress response; needs a lot of
labour and is high cost.

(153, 246,
247)

immersion direct
immersion
(DI)

Transfer fish to water containing vaccines for
some time and put them back in their tanks.

Easy to operate; suitable for
immunization of small-sized fish species;
better effect; less stressful effect

Can only be applied to
concentrated fish stocks; requires
booster measures; high vaccine
dosage; no versatility.

(248, 249)

hypertonic
immersion
(HI)

Immerse the fish in a solution such as urea or
sodium chloride for a short time, and then soak
in the vaccine.

spray
vaccination

Mainly for larger individuals.

Oral Vaccines are made into baits and fed to activate
intestinal mucosal immunity; the best
vaccination method for fish and other
aquaculture animals.

No stress effect; suitable for dispersed
fish; not constrained by the size of the
fish; simple and easy to operate.

The vaccine is easily destroyed by
the digestive tract; poor
immunization effect; high vaccine
dosage.

(236, 250,
251)
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vaccines for fish are not yet widespread. The main constraint is

that the vaccine is susceptible to destruction by digestive tract

enzymes, cannot induce intestinal mucosal immunity and

systemic immune responses, and may induce immune

tolerance. In addition, the number of orally immunised fish

and the dose of vaccine cannot be effectively guaranteed,

resulting in a lower immune protection effect than that of

injection immunization at present. To improve the immune

effect of oral vaccines, it is necessary to avoid naked antigens as

much as possible. At present, the common materials used to

encapsulate vaccines include alginate, chitosan, liposomes and

other polymeric microspheres and biofilms (275–278). It has

been shown that DNA vaccine can improve fish defence against

disease, but the immune effect of orally administered naked

DNA vaccines is not ideal, instead, the immunological effect of

the vaccine can be significantly improved after encapsulating

with sodium alginate (279–281). In addition, the recombinant

subunit vaccine can also be administered orally after being

encapsulated. Caruffo et al. (2016) (282) used brewer’s yeast to

simultaneously express the surface protein of the

Hemagglutinin-esterase virus and the F protein of the salmon

anaemia virus (ISAV) and encapsulated it in a cationic

polysaccharide matrix capsule. The salmon obtained a survival

rate of 66.7% after feeding. Biofilm (BF) are Extracellular

polymeric substances (EPSs) attached to the surface of

microorganisms and serve as a protective barrier for

microorganisms to enhance their tolerance to environmental

stresses, such as desiccation, osmotic pressure, UV radiation,

disinfection and antibiotic therapy (283). The biofilm can

protect the antigen components of the vaccine from the

destruction of the digestive fluid as it reaches the gut

lymphoid tissue, allowing the oral vaccine to perform its

proper immune function (284, 285). Due to the high cost of

the encapsulated material and its large amount of use, it is

unrealistic in practical application. And the mechanism of

immune activation in the animal intestinal mucosa is not

clear, some materials may cause non-specific reactions and

reduce vaccine effectiveness (286, 287). Therefore, in recent

years, the research of another biological carrier vaccine has

become the focus of oral vaccine research. Genetic engineering

allows the expression of exogenous antigen components through

non-pathogenic microorganisms. Reported biological carriers

include insects (halogen larvae, beet noctule, silkworm pupae,

etc.), probiotics (lactobacillus, bacillus subtilis, yeast, etc.), plants

(Chlamydomonas, fishy algae and potatoes, etc.) and viruses

(288). Compared to traditional vaccines, biocarrier vaccines are

more effective at presenting antigens and antigen selectivity (205,

289). Different vector vaccines can be prepared according to

different antigen properties, or insert multiple exogenous

antigens into the same vector vaccine to achieve the effect of

one vaccine against several diseases. It is noteworthy, however,

that biological vector vaccines often receive interference from
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vector-derived antibodies during booster immunization, and

that the components of vectors such as viruses can also pose a

potential threat to the host. Therefore, the selection of a suitable

biocarrier for the antigen and the improvement of the safety and

applicability of biocarrier vaccines have become prerequisites for

the mass production of biocarrier vaccines.

Currently, the immune response to oral vaccines is still

different from that of vaccines administered via injection, and

in some cases, it is just half as strong. Further in-depth research

is required on several topics, including the immune mechanism

of oral vaccines, in particular the immune effect on the intestinal

mucosa, the handling of antigens during vaccine production, the

effective dose, the type of vaccine coating material, carrier, and

adjuvant, the form of the vaccine, as well as the duration of

immunization, the frequency of immunization, and the

physiological developmental stage of the experimental fish.
5 Mechanism of aquatic vaccines

Teleost fish possess both primary and secondary lymphoid

tissues. Primary lymphoid tissues include the thymus, where T-

cell development occurs, and the head kidney, which performs

hematopoietic functions similar to mammalian bone marrow.

Secondary lymphoid tissues include the spleen and mucosa-

associated lymphoid tissue (MALT). There are four kinds of

MALTs, nasopharynx-associated lymphoid tissue (NALT), gill-

associated lymphoid tissue (GIALT), skin-associated lymphoid

tissue (SALT), and gut-associated lymphoid tissue (GALT),

which contain specific adaptive immune systems (290, 291). In

general, teleost MALT does not have organogenic lymph nodes

or lymphatic aggregates but consists of a diffuse network of

myeloid and lymphoid cells (292). However, there are some T

lymphocyte aggregates within the GALT, called interbranchial

lymphoid tissue (ILT), despite the lack of a complete regional

growth centre for B and T cells (293). At present, the

mechanisms of antigen uptake and antigen presentation in the

teleost MALT are unclear. In all organisms, the mucosal surface

is the main site of entry for pathogens, while the mucosal surface

is covered with an immune-enhanced mucus protective layer,

which acts as the first line of defence against pathogens. Fish

mucus contains a variety of immune-related factors such as

lysozyme, defensins, immunoglobulins, etc (294). Teleost fish

also possess an adaptive immune system that relies on somatic

recombination of germline-encoded VDJ fragments to produce a

large number of antigen receptors expressed on T and B

lymphocyte membranes (295). Studies have shown that teleost

MALT has a large number of antigen-presenting cells in mucosal

sites, including dendritic cells (DCs), macrophages, IgT/Z+ B

cells and granulocytes, all of which have been shown to have

antigen uptake functions (296–298).
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5.1 Mechanism of injection immunization

The immune organs of fish are simpler, mainly including the

thymus and spleen, as well as the anterior kidney, which

functions like bone marrow and lymph nodes, and the

scattered lymph-like tissues containing lymphocytes,

monocytes, macrophages, granulocytes, platelets, mast cells,

and non-specific cytotoxic cells (299). Fish have mammalian-

like T and B lymphocytes. Different subpopulations offish T cells

have not been well characterized, but homologs of CD8 and CD4

have been reported, while B lymphocytes were also found to

have phagocytic activity (300, 301). Fish MHC I, TCR and TCR

co-receptor CD8 are homologous to mammals, suggesting

similarities in the antigen presentation process, i.e., antigens

presented by MHC are recognized by TCR and activate immune

responses. In addition to TCR-specific recognition of MHC I/II,

natural antigens are also recognized directly by B lymphocyte

receptors. Currently, it is generally accepted that the specific

immune response in fish is the basis of Injectable immunization.

When the antigen invades the fish, it is presented by antigen-

presenting cells (APCs) to T cells, and then presented to B cells

by T cells, leading to B cell activation, proliferation, and

differentiation into plasma cells and memory cells, which

eventually produce a large number of antibodies, resulting in a

specific immune response. Antibodies are the main functional

factors of the fish immune system, and in recent years four

classes of Ig have been identified in fish, namely IgM (302), IgD

(303), IgZ/T (304, 305) and IgM-IgZ (306). Injection

immunization mainly causes the immune system of fish to

produce IgM. After intraperitoneal immunization, mucosal

IgM antibodies and pIgR responses are triggered, and the pIgR

produced by local plasma cells in the lamina propria (LP)

mediate the IgM-antigen complex through the intestinal

epithelium into the intestinal mucus (307). Antigens being

injected intramuscularly can evoke a local adaptive immune

response, however, the mechanisms regarding the dynamics and

transport of antigens after injection have not been elucidated.

There are differences in the immune response of various organs

caused by injecting immunity, mainly inducing a response in the

systemic immune organs such as the spleen and kidney, and a

weaker immune response in the mucosa tissues such as gill, skin

and intestinal (308). Interestingly, we found that the difference in

antigen uptake after intraperitoneal and intramuscular injection

followed the same pattern: the highest antigen uptake was in the

spleen and head kidney, followed by blood, liver, and gills, and

the least in the hindgut, muscle, and skin. However, the peak

antigen uptake in the spleen, head and kidney, liver, blood, and

hindgut was significantly higher in the intraperitoneal injection

than in the intramuscular injection. The peak antigen uptake in

skin and muscle was significantly higher in the intramuscular

injection (309). Moreover, the expression of antigen

presentation-related genes (CD4-1, MHC IIa, CD8a, MHC
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Ia) in the spleen, head kidney, liver and hindgut of flounder,

and the proportion of sIgM+ cells in the spleen and peripheral

blood were higher in the intraperitoneal injection group than in

the intramuscular immunization group (310, 311). Both cellular

immunity (including cytotoxicity) and humoral immunity are

activated by nucleic acid vaccination. Cellular immunity is

primarily initiated by antigen-presenting cells (APCs) such as

macrophages and dendritic cells (DCs) (312, 313). DNA motifs

and mRNA transcripts express immunogenic proteins in fish

that simulate infection by intracellular pathogens and allow the

presentation of exogenous antigenic peptides on the APC surface

via major histocompatibility complex (MHC) class I.

Subsequently, APC at the site of administration may trigger

immune cells (314, 315). Antigen-presenting cells can also

absorb soluble antigens released from transfected myoblasts

(or other cells) or in the presence of antigenic apoptotic

vesicles, delivered to MHC class II molecules on the cell

surface. Antigenic peptides in MHC class I and MHC class II

are recognized by the T cell receptor (TCR), which activates

CD8+ T cell (cytotoxic T cells) and CD4+ T cell (helper T cells)

responses, while the adaptive humoral immune response is

manifested by B lymphocyte activation and antibody

production. The unmethylated CpG motif is identified by the

vertebrate immune system as a “foreign” and “dangerous” signal.

For the vectors of nucleic acid vaccine derived from bacterial and

viral DNA, which carries unmethylation CpG motif can be

identified by the body as a pathogen-related molecular pattern,

activating the macrophage, and B cells to induce the humoral

immune also can directly activate monocytes, macrophages and

dendritic cells to secrete Th1 cytokines to induce a cellular

immune response (316, 317). In addition, CpG motifs can be

recognized by Toll-like receptor 9 (TLR9) to activate leukocytes

by the uptake of DNA into lysosomes containing specific

receptors (318, 319). In addition, humoral factors such as

complement, cytolysin, interferon, lectin, etc. that mediate

fish’s non-specific immunity are important ways for fish

bodies to resist the external environment. While macrophages

were found to play the phagocytic function of non-specific

immunity as well as phagocytosis, processing and presentation

of antigens, indicating that specific and non-specific immunity

in fish complements each other in the process of injection

immunization. Studies have found that phagocytic cells similar

to mammalian M cells are distributed in the hindgut of fish.

After intraperitoneal injection, antigens are recognized,

processed and presented by these cells, thus causing immune

responses in fish.
5.2 Mechanism of immersion
immunization

The gills and skin mucosa not only have non-specific

immune functions but also have specific immune response
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functions (187, 320). The mucosal tissues and their secreted

mucus contain abundant non-specific immune factors such as

hydrolase, enzyme/transfer factor, chitin, C-reactive protein,

lectin and specific antibody proteins, which together constitute

the first line of defence against the invasion of pathogenic

microorganisms in fish (321, 322). It was found that there

were a certain number of T and B lymphocytes, mucous cells,

cystic cells and antibody-secreting cells in the skin of fish.

Similarly, various immune cells such as lymphocytes,

macrophages, goblet cells and neutrophils were found in gill

tissues. The level of antibodies and the number of antibody-

secreting cells on the surface of gills, skin and intestinal mucosal

tissues were significantly increased after vaccine immersion,

which indicates immersion immunization can cause an

obvious immune response (323, 324). Numerous studies have

now shown that mucosal immunity can produce a local immune

response independent of the systemic immune response.

Immersion immunity mainly induces a mucosal immune

response in fish, while systemic immune response is weaker

and later than mucosal immunity. During immersion

immunization, antigens are first taken up by mucosal tissues

such as gills, skin and intestine, which activate lymphocytes in

mucosal tissues to produce antibodies. Through blood

circulation, antigens are transported to tissues such as the

spleen and kidney and activate systemic immune responses

(256). Antigen uptake was positively correlated with

immersion concentration in a certain range, and antigen

particles on the gills were mainly taken up by phagocytes,

while antigen recognition and presentation in the skin were

presumably done by macrophages (325). Three immunoglobulin

isotypes (IgM, IgT and IgD) were detected in the gills, skin and

nose of fish, with IgT being the predominant functional Ig

isotype in these mucosal tissues and the strongest response of

IgT in immersion immunization (326, 327). Some researchers

believe that gills have an independent immune response, because

MHC II -positive cells were detected in a variety of fish gill

tissues, and found that the proportion of ASC on the gills was

significantly higher than that in peripheral blood of immersion

immunized fish, and the number of antibody-secreting cells at

the different time showed a kinetic response pattern (328–330).
5.3 Mechanism of oral immunization

Current studies have shown that oral immunization can

produce both local mucosal immunity and systemic immune

responses, but the intestinal mucosal immune response is

predominant (331). The possible mechanism is that the

macromolecular antigens were swallowed by the hindgut

epithelial cells, and the small molecule soluble antigens were

infiltrate the blood through the intestinal mucosal cell gap.

While large molecule particle antigens are the first uptake by
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macrophages into the cells after processing, then transported to

the relevant lymphatic tissues or cells, then transported to the

circulatory system, and finally transported to the lymph nodes

via blood or lymphatic fluid to produce the relevant immune

response (332). A large number of lymphocytes, mainly

including macrophages, granulocytes and plasma cells, are

distributed in the entire intestine of fish, especially in the

hindgut (333, 334). It is now generally accepted that the

hindgut is the main site of antigen uptake and processing in

fish and that antigens entering the hindgut are taken up by

macrophages to induce an immune response in the fish (334,

335). Companjen et al. (2005) (336) found lymphoid tissue in

the gut of Dicentrarchus labrax, and the number of lymphocytes

showed an obvious numerical gradient from the digestive tract to

the anus. This phenomenon suggests that the hindgut produces a

stronger immune response than any other part of the intestine,

and it is presumed that oral vaccines work mainly in the hindgut.

The intestinal mucosa layer offish can be divided into two layers,

the epithelial layer and the lamina propria, in which

granulocytes, macrophages and other leukocytes and Ig+ cells

mainly exist in the lamina propria of the intestinal mucosa layer,

while a large number of Ig- cells also exist in the epithelial layer

of the mid and hind intestine (337, 338). In addition, T cells are

distributed in the epithelial layer of the intestinal mucosa, while

B cells are distributed in the lamina propria of the intestinal

mucosa to participate in the mucosal immune response. Mucosal

immunoglobulins (e.g., IgT or IgZ) are relatively new findings in

fish immunology. In rainbow trout intestine, IgT+ and IgM+

lymphocytes account for approximately 54% and 46% of the

total B-cell population, the IgT/IgM ratio is higher in intestinal

mucus than in serum, and the percentage of bacteria

phagocytosed by IgT (48%) is significantly higher than that of

IgM (24%), these studies suggest that IgT is the major

immunoglobulin in intestinal mucus (339). In orally

vaccinated rainbow trout intestine, IgM+ and IgT+ cells were

found to be distributed throughout the intestine, with IgM+ cells

located mainly in the lamina propria (LP) and IgT+ cells

localized mainly as intraepithelial lymphocytes (IEL), and a

significant increase in the number of IgM+ and IgT+ IEL was

observed in the pyloric cecum region. Not only that, the authors

found that B cells responsive to vaccination were detected in

adipose tissue in the digestive tract, suggesting that these cells

surrounded by adipocytes also play a role in mucosal defence

(340). Oral tolerance is a low response to fed antigens and a

result of inhibition of cellular and/or humoral immune

responses, a phenomenon also prevalent in fish (341, 342).

Many factors, including excessive antigen dose, inhibition of

Treg production, repeated administration, low temperature,

antigen type, and genetic effects, are prone to induce tolerance

in fish (343, 344). Decreased antibody response after repeated

exposure to antigens may be associated with the induction of

upregulation of FoxP3, TGF-b and IL-10 (345).
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6 Aquatic vaccines adjuvants

In recent years, immunization control has become an

important initiative for aquatic animal disease control, and

there has been rapid development of aquatic vaccines and

more diversified vaccine types. Traditional inactivated vaccines

and emerging recombinant vaccines have problems with high

antigen dosage, short duration of immunity, and low immune

efficacy, and cannot achieve the desired immunization effect

when used alone. An adjuvant is a non-specific immune

enhancer that is used before or simultaneously with an antigen

to enhance the body’s immune response to the antigen or to alter

the type of immune response. The use of adjuvants can reduce

the immunization dose, lower the cost of vaccines, reduce

vaccine irritation, enhance the body’s immune response to

antigens, prolong the protection time, etc. The ideal adjuvant

enhances the effectiveness of the vaccine, is free of side effects,

and is easily available and universally applied. The development

of new aquatic vaccines requires new adjuvants to improve the

effectiveness of vaccine use. An appropriate adjuvant enables an

effective vaccine to produce efficient immune protection by

different vaccination methods, such as the Fno vaccine, which

can also improve the protection of Nile tilapia by oral

administration with an oral adjuvant (346). New adjuvants

should be studied for vaccine type, mode of action and carrier,

immune efficiency, the durability of immune effect, and toxicity

of the adjuvant itself, to match vaccines better and improve

immune protection. Available evidence suggests that adjuvants

may generate an immune response in a variety of ways, such as

the sustained release of antigen at the injection site and

recruitment of immune-related immune cells, upregulation of

cytokines and chemokines, promotion of antigen uptake and

proliferation of antigen-presenting cells (APCs), and activation

of inflammatory responses (347). Moreover, the majority of

adjuvants are currently on the market for injectable vaccines,

while immersion and oral vaccines are less available, which

limits the development of immersion and oral vaccines to a

certain extent. Compared with injectable vaccines, immersion

and oral vaccines have the advantages of convenience, low stress

and low cost, so the application prospect of immersion and oral

vaccine adjuvants is promising. Based on their mode of action,

adjuvants can be categorized broadly into antigen-presenting

and immune-enhancing types.
6.1 Antigen-presenting adjuvants

Antigen-recurrent adjuvants include aluminium salts, oil

emulsions and granules, which are usually presented to the

immune system in the form of endocytosis, pinocytosis, and

membrane fusion to promote an immune response to antigens.

Among them, aluminium adjuvant has a powerful delivery effect
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and is widely used in many types of vaccines. Aluminium

adjuvants can enhance the expression and duration of major

histocompatibility complexes (MHCs) on the surface of

dendritic cells, promote antigen delivery to intracellular

antigens, and thus produce adaptive immune responses (348,

349). Aluminium adjuvants cause less tissue damage and few

adverse immune reactions and hypersensitivity reactions and are

considered safe adjuvants. Currently, most of the vaccines used

in production are aluminium-adsorbed vaccines (350).

Oil adjuvants are the most commonly used adjuvants in

aquatic vaccines, and almost all salmon are vaccinated against oil

adjuvants. Of these, the complete Freund’s adjuvant (CFA) is

composed of heat-inactivated mycobacteria and mineral oils

containing surfactants. The adjuvants act as carriers and

reservoirs for the presentation of antigens in animals after

injection, allowing slow release of antigens and continuous

stimulation of strong Th1 and Th17 reactions in animals

through MyD88 pathways to produce higher immunity (351).

CFA is the most widely used adjuvant (352). CFA causes fish in

long-term antigen environmental stimulation, although it

improves antibody levels, it also has side effects associated

with inflammatory response, and usually causes damage in

injection sites such as the pyloric blind sac, spleen, muscles,

oesophagus, etc., affecting the growth of fish (353). Incomplete

Freund’s adjuvant (IFA) does not contain mycobacteria, can

improve cell phagocytosis, promote leukocyte infiltration and

cytokine production, and produce long-lasting immune

protection, IFA also has serious toxicity (354). The

MONATINE series of mineral oil-based adjuvants developed

by SEPPIC is easy to emulsify, low viscosity, stable and safe to

absorb, and widely used in fisheries vaccines (355).

Microparticle is a new type of delivery vector widely used in

vaccine adjuvants, including virions, nanoparticles, polymers,

etc. Antigens such as polypeptides, proteins and DNA are

transported inside particles to lymphatic organs through

covalent binding or physical burial and are released

continuously through void diffusion and particle degradation.

At present, covalent coupling of antigen and micro grain has

become a new technique, which can reduce antigen dose, protect

antigen integrity, and improve antigen stability and immune

efficiency (356–358). Studies have shown that the micro granule

adjuvant effect is closely related to micro granule size, and the

smaller the particle, the higher the immune efficiency. For

example, microparticles often induce humoral immunity and

nanoparticles mainly produce cellular immunity (359–364).

Polylacticacid (PLA) is a biodegradable histocompatibility

polymer. PLAs can quickly reach the cytoplasm by phagocytic

action or clathrin-mediated endocytosis causing an early

immune response (365). As an adjuvant, polylactic-co-

glycolicacid (PLGA) can cause cellular and humoral immunity

and improve antigen delivery. It also has the advantages of good

histocompatibility, biodegradability and non-toxicity. In an

application of an outer membrane protein (OMP) based
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vaccine against A. hydrophila, the PLGA adjuvant showed a

better vaccine immune effect compared with the IFA

adjuvant (366).
6.2 Immune-enhancing adjuvants

Immuno-enhanced adjuvants indirectly cause a congenital

immune response, or directly activate a congenital immune

response, mainly by activating the pathogen recognition

receptor (PRRS) (367). PRRS is mainly divided into membrane

receptors (including Toll-like receptor, TLR, C-type lectin, etc.),

intracellular receptors (including NOD-like receptor, RIG-I-like

receptor) and secretory receptors, which are expressed in a

variety of immune cells, to activate congenital immune

responses by identifying PAMPs, or by stimulating the

secretion of inflammatory cytokines and activating antigen-

transitive cells, thus establishing an adaptive immune

response. A total of 17 different types of TLR genes are found

in fish, far more than in mammals, and immune enhancers are

expected to play an important role in aquatic vaccines.

Saponins are natural steroids or terpenoids, widespread in

animals and plants, low-grade marine animals and bacteria.

Saponins can stimulate the secretion of specific antibodies,

enhance the phagocytosis of macrophages and respond to

exogenous antigens by cytotoxic t-lymphocytes (CTL). QS-21

is a saponin extracted from a soap tree that enhances the

secretion of Th1 cytokines (IL-2 and IFNg) and IgG2-a. In

aquatic, saponins can enhance the non-specific immunity of

shrimp and stimulate fish growth, but high-dose saponins can

easily cause severe tissue damage in fish when using

Intraperitoneal injection (368, 369). In the study of immersion

immunity, it is shown that saponins can significantly improve

the delivery of vaccine antigens in the skin and other tissues,

trigger the inflammatory response, and improve the effect of

non-specific immune levels in fish (370). Usually, the longer the

immersion immunization time, the better the immunization

effect and the adjuvant can accelerate the absorption of

antigens, shorten the immunization time and reduce the stress

on the fish body (371). Therefore, the application of saponins as

an immersion vaccine adjuvant is of great value, but it is

necessary to solve its instability in the water phase.

Cytokines are a class of small molecular proteins secreted by

immune cells and non-specific immune cells, which play an

important role in pro-inflammatory response and immune

system regulation. The structural function of fish cytokines is

similar to that of mammals, including IL, IFN, tumour necrosis

factor and chemokine, etc., with good adjuvant effects. Studies

have shown that a large number of B cells and cytotoxic T cells

accumulate at the muscle site where IFN is injected. Different

IFNs have different biological activities, while IFN, as an

autoantigen, can maintain long-term adjuvant activity without

attack by the immune system (372, 373). Cytokine IL (e.g., IL-8,
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IL-6) has been shown to upregulate genes associated with

inflammatory response, humoral immunity and cellular

immunity, improve immunoprotection and maintain long-

term vaccine protection (370).

Others such as b-glucan, mannose (374, 375) ,

chitosan, (376, 377)monophosphoryl lipid A (MPLA),

flagelloprotein, CpG ODNs (CpGoligodeoxy nucleotides),

poly-nosinicopolycytidylicacid, Poly (I-C) (68), insect

hemocyanin (378), propolis (379), complement, etc. can also

be used as adjuvants. Among them, b-glucan is the best adjuvant

currently used in fish oral vaccines (380, 381). b-glucan or

anisodamine as adjuvant b-glucan can enhance the immersion

immune efficacy of inactivated CyHV-2 vaccine in gibel carp

(382). More work is needed to present propolis as a proper

candidate for the development of a natural adjuvant in aquatic

vaccines (383). Clinically, MPL has been used in combination

with liposomes or emulsions, demonstrating a good adjuvant

effect (384). The inactivation vaccine of E. tarda in mixed

flagelloprotein can significantly improve vaccination protection

on flounder (385), which proves that flagelloprotein is an

important candidate for the fish vaccine.
7 Challenges and prospects for
aquatic vaccines

At present, the number and variety of aquatic vaccines with

production approvals worldwide are relatively limited, and they

cannot fully cover the major diseases of the main breeding

species, which is insufficient to support the development of a

comprehensive integrated disease immunization and control

system. Inadequate supply of efficient vaccine varieties, as well

as a lengthy development process, reduce the overall effect of

disease immunization and control in the aquaculture production

process and reduce farmers’ confidence in the industrial

application of vaccines, which harms vaccine promotion and

popularization, as well as investment in the fish vaccine industry.

Given the current state of fish vaccine development, more

research in the field of fish vaccine engineering is required,

primarily to address the following technical challenges and

accelerate the development of high-efficiency, multiplexed

aquatic vaccines.
7.1 Research on types of fish vaccine and
vaccination routes

Most vaccines are currently administered via injection,

which is undeniably a very effective way to vaccinate expensive

nucleic acid vaccines and subunit vaccines and is practical for

the majority of vaccine types. However, given the small size of

aquatic animals and the large number of vaccinations, oral and
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immersion vaccines appear to have more potential. While

immersion vaccination necessitates vaccines that are

inexpensive and simple to prepare in large quantities, such as

whole bacteria-inactivated vaccines, attenuated vaccines, and so

on. It is especially suitable for mass immunization of juvenile

fish, which have tender skin and easily absorb antigens, whereas

slightly larger fish must be vaccinated with the help of adjuvants,

penetrants, carriers, and so on to achieve the desired effect, and

research in this area is still limited. Oral immunization is the

simplest and quickest method of immunization, with a low

workload and little stress on the fish, and it is not limited by

fish size, species, location, or time, making it a more ideal

method of vaccine administration. However, current research

indicates that an oral vaccine is less effective than injectable

immunization because the integrity of the antigen is destroyed in

the digestive tract, resulting in a weaker response from the

intestinal mucosal system; second, the mucosal immune

system of aquatic animals is not perfect. Nonetheless, antigens

absorbed by mucosal tissues are transmitted to systemic immune

tissues, resulting in a systemic immune response. As a result,

future research on the mechanism of mucosal immunity and the

relationship between mucosal and systemic immunity will be

required. Furthermore, more detailed research is required on

antigen treatment in vaccine production, effective doses, vaccine

coating materials, carriers and adjuvants, vaccine forms, as well

as the duration of immunization, the number of immunizations,

and the physiological developmental stages of experimental fish.
7.2 Improve the evaluation system of
fish vaccine

Survival of animals after the attack was the most primitive

method for evaluating the effectiveness of vaccines. With the

advancement of flow cytometry, monoclonal antibody

preparation technology, and multi-omics, vaccine efficacy can

now be evaluated comprehensively by detecting changes in gene

and protein levels, as well as antibody and cellular responses. In

general, vaccine evaluation systems have been rapidly developed,

but more in-depth studies, particularly at the cellular response

level, are required. The investigation of vaccine response at

different levels in the animal organism not only evaluates

vaccine effectiveness but also promotes in-depth research on

immune mechanisms in aquatic animals. More and more

immune cell types are being discovered and the role these cells

play in the vaccine immunization process should be appreciated.

The lack of antibody probes for fish cells has resulted in many

more cells being limited in their detection during vaccine

immunization. Despite the current high cost of single-cell

sequencing, it is undeniably important to assess vaccine

efficacy at the single-cell level, as this will aid in the

development of efficient vaccines.
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7. 3 Strengthen basic research related to
fish pathogens and diseases

With a global shortage of fishery resources, an increasing

number of aquatic animals are shifting from wild to factory

farming, resulting in an increase in diseases that is becoming

increasingly complex. The complex farming environment has

resulted in disease outbreaks, with the majority of infections

being conditional pathogenic and multi-pathogenic. Serotyping

of fish epidemic pathogens is the foundation for effective vaccine

research, and the lack of efficacy of many currently promoted

vaccines is directly related to significant mutation of the relevant

epidemic pathogens. However, the rapid development of

genomic sequencing technology in recent years has made

molecular typing and systematic identification of pathogens

much easier, which is very helpful for ongoing research on

pathogen serology and epidemiological patterns. Furthermore,

there is a need to expand research into the mechanisms of

pathogenic conditions that cause disease and disease outbreaks.

Environmental factors such as temperature, dissolved oxygen,

salinity, and nutrient salts may be causative factors offish disease

outbreaks in the “triad” system of pathogen, environment, and

host, and an in-depth understanding of the signal transduction

mechanism of pathogenic bacteria to related factors can lay a

solid theoretical foundation for vaccine development and

integrated immune control of diseases.
7. 4 Promoting the molecular design of
efficient aquatic vaccines using multi-
omics technologies

The screening of critical antigens is required for the efficient

design of novel live attenuated, nucleic acid, and genetically

engineered vaccines. Furthermore, with the rapid development

of various omics technologies (genome, functional genome,

proteome, and metabolome) and genome editing technologies,

the genetic background and genomic information of various

pathogens, as well as the dynamic process of pathogen infection,

are better defined, allowing for the systematic screening of

genetic targets for highly effective vaccines, particularly

attenuated targets and safety targets of live attenuated

vaccines. Furthermore, in recent years, structural biology has

resolved an increasing number of critical protein structures of

pathogenic bacteria, allowing for more precise screening and

design of antigenic targets, which will greatly facilitate the

molecular design of efficient vaccines, the discovery of

antigenic epitopes, and the development of subunit vaccines,

multiplex vaccines, and so on. There is no doubt that reverse

genetics and reverse vaccinology are important directions for

future development, and nucleic acid vaccines such as DNA

vaccines, live vector vaccines, and mRNA vaccines have emerged
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as hot spots for viral infectious disease prevention. Synthetic

biology should be used in the future to overcome key technical

bottlenecks in the design and delivery of nucleic acid vaccines.

Simultaneously, the mechanism of action and application

potential of nucleic acid vaccines in the immune protection of

fish in theropods should be investigated, as should the

synergistic effects of different vaccination/delivery routes on

systemic and local mucosal immunity.
7. 5 Construction of a technological
platform for fish vaccine engineering
research

Fish vaccine development is a complex systemic project that

necessitates additional in-depth research on the immune system

of fish, particularly on immune response generation, immune

memory, immune tolerance after fish vaccination, and the

homeostatic balance and conversion mechanisms of natural,

adaptive, and trained immunity. Meanwhile, systematic research

on vaccination protocols, disease early warning, animal models,

vaccine adjuvants, immune boosters/modulators, therapeutic

vaccines, manufacturing, and registration protocols should be

strengthened. To promote the efficient development and

application of fish multiplex vaccines, a complete and

systematic engineering technology platform for aquatic

vaccines can be formed. Vaccination can provide complete

disease prevention and control coverage, particularly for key

fish culture species and major diseases.

In general, there is a lack of a large amount of experimental

data and information to support the immune mechanism of

vaccine timing, immunization mode, number of immunizations,

and time of booster immunization due to imperfect research on

the basic immunology of aquatic animals, combined with the

large range and variety of species spanned by aquatic animals.

The aforementioned factors have severely hampered the

development and application of aquatic vaccines. Therefore, it

is critical to strengthen basic theoretical research on aquatic

vaccines. The structure, function, and biological properties of

pathogens, the technical basis and methodology of fish vaccine

design and production, and the relationship between the

immune effect of fish vaccine and the environment and

organism will all be important foundations for fish

vaccine development.
8 Conclusion

In recent decades, aquatic vaccines have been developed with

some success and their application in aquaculture production

has become increasingly popular. The promotion of aquatic

vaccines can reduce the use of drugs, reduce diseases, protect the

environment and improve the quality and safety of aquatic
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products. Although some aquatic vaccines against bacterial

and viral diseases are currently available on the market, due to

the numerous serotypes and easy variation of most pathogens,

the strains isolated from different regions and fish species vary

significantly, resulting in uneven vaccine effects. Parasitic and

fungal diseases are causing increasing damage to aquaculture,

but there is a serious lack of commercial vaccine. Genetic

engineering vaccines consisting of protective antigen genes and

a newer generation of nucleic acid vaccines have shown better

immunity, but many studies are still in the experimental stage

and fewer vaccines are commercially available. Combining

vaccines with immunostimulants such as probiotics and herbal

additives to improve the animal’s immune effect is an important

measure. In addition, important progress has been made in

recent years to address disease problems by breeding resistant

strains of aquatic animals. On this basis, exploring the functional

genes and proteins of resistant strains through gene and

proteomics, resolving the differences in animal immune

systems, and revealing the mechanisms of pathogenic

infestation and pathogen-cell interaction will provide

important theoretical guidance for vaccine design. Overall, it is

a long process for the aquatic vaccine from research to

commercialization, in which the lack of technical content,

cumbersome approval procedures, and insufficient promotion

efforts are seriously hindering the development of the aquatic

vaccine industry. At present, many aquatic vaccine

developments are in the clinical trial stage, and it is believed

that there will be many commercial vaccines available in the next

few years, which will greatly promote the development of the

aquaculture industry.
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fish. In: Principles of fish immunology. (Springer, Cham) (2022) 387–443.
doi: 10.1007/978-3-030-85420-1_12

299. Miller NW, Sizemore RC, Clem LW. Phylogeny of lymphocyte
heterogeneity: the cellular requirements for in vitro antibody responses of
channel catfish leukocytes. J Immunol (1985) 134:2884–8.

300. Li J, Barreda DR, Zhang YA, Boshra H, Gelman AE, LaPatra S, et al. B
lymphocytes from early vertebrates have potent phagocytic and microbicidal
abilities. Nat Immunol (2006) 7:1116–24. doi: 10.1038/ni1389

301. van der Wal YA, Jenberie S, Nordli H, Greiner-Tollersrud L, Kool J, Jensen
I, et al. The importance of the Atlantic salmon peritoneal cavity b cell response:
Local IgM secreting cells are predominant upon piscirickettsia salmonis infection.
Dev Comp Immunol (2021) 123:104125. doi: 10.1016/j.dci.2021.104125

302. Pilström L, Lundqvist ML, Wermenstam NE. The immunoglobulin light
chain in poikilothermic vertebrates. Immunol Rev (1998) 166:123–32. doi: 10.1111/
j.1600-065X.1998.tb01257.x
Frontiers in Immunology 29
303. Saha NR, Suetake H, Kikuchi K, Suzuki Y. Fugu immunoglobulin d: A
highly unusual gene with unprecedented duplications in its constant region.
Immunogenetics (2004) 56:438–47. doi: 10.1007/s00251-004-0693-y

304. Danilova N, Bussmann J, Jekosch K, Steiner LA. The immunoglobulin
heavy-chain locus in zebrafish: Identification and expression of a previously
unknown isotype, immunoglobulin z. Nat Immunol (2005) 6:295–302.
doi: 10.1038/ni1166

305. Hansen JD, Landis ED, Phillips RB. Discovery of a unique ig heavy-chain
(IgT) in rainbow trout: Implications for a distinctive b cell developmental pathway
in teleost fish. Proc Natl Acad Sci USA (2005) 102:6919–24. doi: 10.1073/
pnas.0500027102

306. Savan R, Aman A, Nakao M, Watanuki H, Sakai M. Discovery of a novel
immunoglobulin heavy chain gene chimera from common carp (Cyprinus carpio
l.). Immunogenetics (2005) 57:458–63. doi: 10.1007/s00251-005-0015-z

307. Sheng X, Qian X, Tang X, Xing J, Zhan W. Polymeric immunoglobulin
receptor mediates immune excretion of mucosal IgM-antigen complexes across
intestinal epithelium in flounder (Paralichthys olivaceus). Front Immunol (2018)
9:1562. doi: 10.3389/fimmu.2018.01562

308. Vervarcke S, Ollevier F, Kinget R, Michoel A. Mucosal response in African
catfish after administration of vibrio anguillarum O2 antigens via different routes.
Fish Shellfish Immunol (2005) 18:125–33. doi: 10.1016/j.fsi.2004.06.004

309. Zeng C, Tang X, Du Y, Sheng X, Xing J, Zhan W. Dynamic distribution of
formalin-inactivated edwardsiella tarda in olive flounder (Paralichthys olivaceus)
post intramuscular injection. Vet Immunol Immunopathol (2018) 199:53–60.
doi: 10.1016/j.vetimm.2018.03.007

310. Silvaraj S, Yasin ISM, Karim MMA, Saad MZ. Transcriptome analysis of
immune response in recombinant cell vaccine expressing OmpK vaccinated
juvenile seabass (lates calcarifer) head kidney against vibrio harveyi infection.
Aquac Rep (2021) 21:100799. doi: 10.1016/j.aqrep.2021.100799

311. Xue T, Liu Y, Cao M, Li J, Tian M, Zhang L, et al. Transcriptome analysis
reveals deep insights into the early immune response of turbot (Scophthalmus
maximus) induced by inactivated aeromonas salmonicida vaccine. Fish Shellfish
Immunol (2021) 119:163–72. doi: 10.1016/j.fsi.2021.09.027

312. Tian H, Xing J, Tang X, Chi H, Sheng X, Zhan W. Cluster of differentiation
antigens: essential roles in the identification of teleost fish T lymphocytes.Mar Life
Sci Technol (2022) 4:303–16. doi: 10.1007/s42995-022-00136-z

313. Restifo NP, Ying H, Hwang L, Leitner WW. The promise of nucleic acid
vaccines. Gene Ther (2000) 7:89–92. doi: 10.1038/sj.gt.3301117

314. Banchereau J, Steinman RM. Dendritic cells and the control of immunity.
Nature (1998) 392:245–52. doi: 10.1038/32588

315. Bedekar MK, Kole S. DNA Vaccines for fish. In: Advances in fisheries
biotechnology. (Singapore: Springer) (2021) 289–336. doi: 10.1007/978-981-16-
3215-0

316. Jakob T, Walker PS, Krieg AM, Udey MC, Vogel JC. Activation of
cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for
dendritic cells in the augmentation of Th1 responses by immunostimulatory DNA.
J Immunol (1998) 161:3042–9.

317. Tonheim TC, Bøgwald J, Dalmo RA. What happens to the DNA vaccine in
fish? a review of current knowledge. Fish Shellfish Immunol (2008) 25:1–18.
doi: 10.1016/j.fsi.2008.03.007

318. Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter
CF, et al. TLR9 signals after translocating from the ER to CpG DNA in the
lysosome. Nat Immunol (2004) 5:190–8. doi: 10.1038/ni1028

319. Chang CJ. Immune sensing of DNA and strategies for fish DNA vaccine
development. Fish Shellfish Immunol (2020) 101:252–60. doi: 10.1016/
j.fsi.2020.03.064

320. Xu DH, Klesius PH, Shelby RA. Cutaneous antibodies in excised skin from
channel catfish, ictalurus punctatus rafinesque, immune to ichthyophthirius
multifiliis. J Fish Dis (2002) 25:45–52. doi: 10.1046/j.1365-2761.2002.00339.x

321. Mulder IE, Wadsworth S, Secombes CJ. Cytokine expression in the
intestine of rainbow trout (Oncorhynchus mykiss) during infection with
aeromonas salmonicida. Fish Shellfish Immunol (2007) 23:747–59. doi: 10.1016/
j.fsi.2007.02.002

322. Giri SS, Park SC. Application of carbon nanotubes in the advancement of
fish vaccine. In: Biotechnological advances in aquaculture health management.
(Singapore: Springer) (2021) 61–78. doi: 10.1007/978-981-16-5195-3_4

323. Esteve-Gassent MD, Fouz B, Amaro C. Efficacy of a bivalent vaccine
against eel diseases caused by vibrio vulnificus after its administration by four
different routes. Fish Shellfish Immunol (2004) 16:93–105. doi: 10.1016/S1050-4648
(03)00036-6

324. Midtlyng PJ. Current use and need for new fish vaccines. In: Principles of
fish immunology. (Springer, Cham) (2022) 599–608. doi: 10.1007/978-3-030-
85420-1_19
frontiersin.org

https://doi.org/10.1016/j.fsi.2015.05.045
https://doi.org/10.1016/j.fsi.2016.03.009
https://doi.org/10.1016/j.fm.2017.08.003
https://doi.org/10.1016/j.fsi.2014.09.021
https://doi.org/10.3390/ani12020133
https://doi.org/10.1016/j.addr.2015.11.005
https://doi.org/10.1016/j.fsi.2018.03.028
https://doi.org/10.1016/j.fsi.2018.03.028
https://doi.org/10.3390/polym10090948
https://doi.org/10.1016/j.vaccine.2016.02.015
https://doi.org/10.1016/j.isci.2019.08.034
https://doi.org/10.1016/j.fsi.2019.04.001
https://doi.org/10.1016/j.fsi.2010.09.001
https://doi.org/10.1016/j.fsi.2010.09.001
https://doi.org/10.1007/978-3-030-85420-1_8
https://doi.org/10.1073/pnas.0803124105
https://doi.org/10.1073/pnas.0803124105
https://doi.org/10.3109/08820139209069375
https://doi.org/10.3390/biology4030525
https://doi.org/10.3389/fimmu.2017.00190
https://doi.org/10.1007/978-3-030-85420-1_12
https://doi.org/10.1038/ni1389
https://doi.org/10.1016/j.dci.2021.104125
https://doi.org/10.1111/j.1600-065X.1998.tb01257.x
https://doi.org/10.1111/j.1600-065X.1998.tb01257.x
https://doi.org/10.1007/s00251-004-0693-y
https://doi.org/10.1038/ni1166
https://doi.org/10.1073/pnas.0500027102
https://doi.org/10.1073/pnas.0500027102
https://doi.org/10.1007/s00251-005-0015-z
https://doi.org/10.3389/fimmu.2018.01562
https://doi.org/10.1016/j.fsi.2004.06.004
https://doi.org/10.1016/j.vetimm.2018.03.007
https://doi.org/10.1016/j.aqrep.2021.100799
https://doi.org/10.1016/j.fsi.2021.09.027
https://doi.org/10.1007/s42995-022-00136-z
https://doi.org/10.1038/sj.gt.3301117
https://doi.org/10.1038/32588
https://doi.org/10.1007/978-981-16-3215-0
https://doi.org/10.1007/978-981-16-3215-0
https://doi.org/10.1016/j.fsi.2008.03.007
https://doi.org/10.1038/ni1028
https://doi.org/10.1016/j.fsi.2020.03.064
https://doi.org/10.1016/j.fsi.2020.03.064
https://doi.org/10.1046/j.1365-2761.2002.00339.x
https://doi.org/10.1016/j.fsi.2007.02.002
https://doi.org/10.1016/j.fsi.2007.02.002
https://doi.org/10.1007/978-981-16-5195-3_4
https://doi.org/10.1016/S1050-4648(03)00036-6
https://doi.org/10.1016/S1050-4648(03)00036-6
https://doi.org/10.1007/978-3-030-85420-1_19
https://doi.org/10.1007/978-3-030-85420-1_19
https://doi.org/10.3389/fimmu.2022.1040336
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Du et al. 10.3389/fimmu.2022.1040336
325. Stosik M, Tokarz-Deptuła B, Deptuła W. Immunological memory in
teleost fish. Fish Shellfish Immunol (2021) 115:95–103. doi: 10.1016/
j.fsi.2021.05.022

326. Xu Z, Parra D, Gomez D, Salinas I, Zhang YA, von Gersdorff Jørgensen L,
et al. Teleost skin, an ancient mucosal surface that elicits gut-like immune
responses. Proc Natl Acad Sci USA (2013) 110:13097–102. doi: 10.1073/
pnas.1304319110
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