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Background. Standard treatment for severe malaria is with artesunate; patient survival in the 24 hours immediately posttreat-
ment is the key objective. Clinical trials use clearance rates of circulating parasites as their clinical outcome, but the pathology of 
severe malaria is attributed primarily to noncirculating, sequestered, parasites, so there is a disconnect between existing clinical 
metrics and objectives.

Methods. We extend existing pharmacokinetic/pharmacodynamic modeling methods to simulate the treatment of 10 000 
patients with severe malaria and track the pathology caused by sequestered parasites.

Results. Our model recovered the clinical outcomes of existing studies (based on circulating parasites) and showed a “sim-
plified” artesunate regimen was noninferior to the existing World Health Organization regimen across the patient population but 
resulted in worse outcomes in a subgroup of patients with infections clustered in early stages of the parasite life cycle. This same 
group of patients were extremely vulnerable to resistance emerging in parasite early ring stages.

Conclusions. We quantify patient outcomes in a manner appropriate for severe malaria with a flexible framework that allows 
future researchers to implement their beliefs about underlying pathology. We highlight with some urgency the threat posed to treat-
ment of severe malaria by artemisinin resistance in parasite early ring stages.

Keywords. Plasmodium falciparum; malaria; artesunate; artemisinin; computer simulation; pharmacology; clinical; sequestra-
tion; pharmacokinetics.
 

Plasmodium falciparum is the malaria species responsible for the 
largest number of deaths worldwide [1] and presents clinically 
in 2 forms. Patients with “uncomplicated” malaria have a rela-
tively mild fever, are conscious, and capable of taking oral drug 
regimens; prompt treatment of uncomplicated malaria is associ-
ated with low mortality [2]. Patients with “severe” malaria present 
with 1, or a combination, of 4 syndromes: severe anemia, respira-
tory distress, metabolic derangement, and cerebral malaria [3, 4]. 
Patients are treated with parenteral artesunate, which rapidly kills 
parasites, but resolution of pathology lags behind parasite killing; 
case fatality rates are high even once patients have been admitted 
to the formal health system (typically between 5% and 12% [2] 
although these have been falling to approximately 2% [5]).

A key factor responsible for severe malaria is the binding of 
parasitized erythrocytes (subsequently called infected red blood 

cells, iRBCs) to microvascular endothelium, a process known as 
sequestration. iRBC sequestration induces pathology through 3 
main causes: (1) impairing blood flow to organs through direct 
physical blockage of the capillaries [6], (2) indirect blockage via 
host defense mechanisms such as inflammation [3, 7], and (3) 
physical damage to microvascular endothelium and the blood/
brain barrier [8]. High case fatality rates occur, even if the drug 
kills parasites within sequestered iRBCs, because the molecules 
responsible for sequestration (eg, P.  falciparum erythrocyte 
membrane protein 1 [9]) are still present on iRBC surfaces and 
it takes a significant amount of time for these ligands to decline 
sufficiently for the sequestered iRBC to detach and/or for the 
pathology associated with sequestration to resolve [10, 11].

Parasite clearance rates are a commonly used clinical outcome 
measure to compare efficacy of antimalarial treatment regimens. 
However, parasite clearance rates correlate poorly with disease 
outcome in severe malaria. Large trials comparing intramuscu-
lar artemether with quinine in African children showed more 
rapid parasite clearance with artemether but no difference 
in case fatality [12, 13]. With parenteral artesunate, parasite 
clearance rates are not different in patients dying from severe 
malaria compared to survivors (results cited in [14]). There are 
2 potential explanations why parasite clearance is an unsuitable 
outcome measure in severe malaria: Firstly, parasite clearance 
rates following treatment for uncomplicated malaria appear 
to mainly reflect host immunity rather than drug effectiveness 
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[15–17] so may be a poor metric of overall drug effectiveness. 
Secondly, parasite clearance rates are measured on circulating 
parasites [15] whereas noncirculating, sequestered parasites are 
responsible for most clinical symptoms, pathology, and deaths 
associated with severe malaria [3]. We developed a new model 
based on existing pharmacokinetic/pharmacodynamic (PK/PD) 
models [18, 19] (themselves based on [20–22]) to investigate 2 
simple metrics reflecting the pathology of sequestered parasites 
in severe malaria: the maximum sequestered load posttreat-
ment, and the area under the curve (AUC) of sequestered para-
sites over time posttreatment. We quantified and compared the 
impact of existing and proposed drug regimens on these metrics 
to identify rational drug dosing regimens for treatment of severe 
malaria. Additionally, we quantified the likely impact of artemis-
inin resistance in treatment of severe malaria.

METHODS

We utilized a computer-based PK/PD model to track changes 
in the number of sequestered iRBCs following drug admin-
istration. The model was implemented in the statistical pro-
gramming software R [23] version 3.4.1. P. falciparum parasites 
undergo a 48-hour developmental cycle in human erythrocytes 
with 2 main implications for pathology and treatment. Firstly, 
parasites initially circulate freely in blood vessels but sequester 
(ie, bind to capillaries) at mature stages of their intraerythro-
cytic cycle. Secondly, parasites differ in their sensitivity to drugs 
over the course of this 48-hour cycle.

We assumed that severe malaria pathology is caused by a sin-
gle clone (discussed in Supplementary Information) and simu-
lated a monoclonal infection. As previously described [22], we 
separated the parasite population within a patient into 48 “age-
bins” that each represent a 1-hour long development stage in 
the parasite’s 48-hour life cycle within human erythrocytes. 
Parasites within age-bins have differing propensities to seques-
ter and have varying degrees of drug sensitivity. Our model 
tracked the number of iRBCs in each of 4 classes at any time 
posttreatment depending on whether the parasites are alive or 
dead, and whether the iRBC is circulating or sequestered: alive 
and circulating, alive and sequestered, dead and circulating, 
and dead and sequestered (see Figure 1 for illustration). Note 
that iRBCs classed as “dead and sequestered” are those iRBCs 
whose parasites have died while sequestered and are either: (1) 
still sequestered and causing pathology or (2) have ruptured/
detached from the capillary but are still associated with contin-
ued, lingering pathology. For model specification and details, 
see Supplementary Information.

Pathological Load and Pathological Recovery Rate

Severity of the malaria infection is determined by what we refer 
to as “pathological load,” that is the number of sequestered iRBCs 
(containing either living or dead parasites) physically restricting 
blood flow and/or eliciting patient’s immune and/or inflammatory 

response that may also contribute to pathology [3, 24]. It is unlikely 
that the iRBC immediately ruptures on death of the parasites 
(which would reduce physical blockage of the capillary) or that the 
immune/inflammatory responses immediately disappear when 
the parasite dies, so we assumed that pathology persists for a period 
after the death of the sequestered parasites. We captured this effect 
by defining a “pathological recovery rate,” r, which is the rate at 
which the pathology caused by sequestered iRBCs disappears with 
time following the death of the parasite. As will be discussed later, 
there are no clinical estimates of this “recovery rate” so our strat-
egy was to quantify the impact of dosing regimen and artemisinin 
resistance across a range of values of recovery rate to test whether 
our results were dependent on assumed values for recovery rate 
(we show later that they were not). We varied the “recovery rate” 
r in the simulations by altering its half-life (Table 1), which is the 
time it takes pathology caused by dead sequestered parasites to 
reduce by half. We assumed that parasite death, with consequent 
rupturing of the iRBC or reduction of binding ligands (allowing 
iRBCs to detach from blood vessel walls), was essential to allow the 
start of pathological recovery, hence sequestered iRBCs with liv-
ing parasites were not subject to the pathological recovery rate. We 
quantified the pathological load L(t) at any time t posttreatment as 
the sum of the current number of sequestered iRBCs with living 
parasites α(t) and the lingering pathological effects of once-seques-
tered iRBC whose parasites were killed in the current or previous 
time periods, β(i), that is 

  L t t i e t i r

i

t

( ) = ( ) + ( ) − −( )

=
∑α β

1

    (1)

We used 2 metrics to analyze treatment regimens and resistance: 
(1) maximum pathological load (MPL), the maximum value of 
L(t) occurring during a defined time period posttreatment, and 
(2) the area under the pathological load curve (AUCPL) during a 
defined time period posttreatment, that is the total pathology in 
that period. For example, the AUCPL in the period 0 to 24 hours 
posttreatment is: 

  AUC L tPL t
= ( )=∑ 1

24      (2)

Simulating Patient Treatment Cohorts

We simulated a cohort of 10 000 patients who had parasitolog-
ical, pharmacological, and patient-specific parameters drawn 
from the distributions given in Table 1. Individual patient profiles 
allowed individual PK/PD variation to be incorporated to gen-
erate individual patient posttreatment parasite clearance dynam-
ics (Supplementary Information). Each patient was simulated 3 
times under different scenarios: once for drug-sensitive parasites 
treated by the standard World Health Organization (WHO) reg-
imen (2.4  mg/kg artesunate twice a day in the first 24 hours), 
once for sensitive parasites treated with the simplified regimen 
(4 mg/kg artesunate once a day, as proposed by Kremsner et al 
[30]), and once for artemisinin-resistant parasites treated by the 
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standard WHO regimen. This allowed us to compare the 2 dosing 
regimens (“standard” vs “simplified”) and the impact of resistance 
(“sensitive” vs “resistant”) in each patient. Follow-up time was 48 
hours after drug administration; this reflected a whole parasite 
life cycle within an iRBC but, more importantly, covers the period 
posttreatment where a patient is most likely to die [31, 32].

Sensitivity Analysis

We conducted partial rank correlation coefficient (PRCC) using 
Spearman ρ to establish the strength of the relationship between 

model parameters and dependent variables (ie, the pathology 
metrics AUCPL and MPL).

All parameters are quantitative so can enter the PRCC without 
modification. The exception is mean age-bin which, although 
numeric, has a “circular” scale, age-bin 1 being adjacent to age-
bin 48, due to parasites from ruptured iRBCs (at hour 48) rein-
vading to restart the asexual life cycle. The mean age-bin variable 
was therefore split into either 5 or 3 ordinal classes (depending 
on whether parasites were hypersensitive or resistant to artemis-
inin), as described in Supplementary Information.
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Figure 1. A schematic of how our model tracks parasitemia and pathology posttreatment. A, How the simulation tracks parasitemia and pathology. The parasite population 
is separated into 48 hourly “age-bins” corresponding to their developmental age within their 48-hour intraerythrocytic cycle. A certain proportion of parasites in each age-bin 
will be sequestered, with 0% of parasites sequestering in age-bins 1 to 11 and approximately 100% sequestering in age-bins 14–48 (the proportions given in the figure are 
illustrative). Parasites in age-bin 48 rupture to produce new “daughter” parasites that enter age-bin 1; the number of daughter parasites that successfully invade new eryth-
rocytes is the parasite multiplication rate (PMR). The simulation runs in 1-hour time steps and, if drug is present, it kills parasites according to their drug sensitivity, which is 
given in the second row of boxes as a proportion of basal kill rate (see Supplementary Information). Parasites that survive drug action are moved forward 1 age-bin (unless 
they are in age-bin 48 in which case they rupture to produce daughter parasites as described above). Parasites killed by drug in the time-step have 2 fates depending on their 
status. Those killed in circulating stages enter a pool of “dead circulating parasites” and will eventually be removed by splenic or other host clearance mechanisms. Those 
parasites that are killed while sequestered are removed from the simulation but their pathology does not instantly disappear with their death, so we track their the number 
of dead sequestered parasites and the lingering pathology of these parasites (second term of Equation 1) that resolves at the user-defined “pathological recovery rate”. B, 
How this methodology is used to simulate treatment of 1 exemplar individual (recall that patients and their parasites differ in a range of important variables; see Table 1). 
The number of alive circulating plus dead circulating parasites can be tracked over time posttreatment. These 2 classes can be directly observed (but not distinguished) in 
human blood samples and their rate of clearances, usually known as “parasite clearance rate” is often used as a proxy of clinical outcome; this enables us to verify that our 
simulations recovered these clinical observations. Live sequestered parasites are added to the lingering effects of sequestered parasites killed in earlier stages (ie, those 
contributing to “post-mortem pathology”) to obtain the pathological load L(t) at any time point posttreatment (Equation 1). Note that the number of dead sequestered parasites 
and their lingering pathology are not plotted here because that line is nearly indistinguishable from total pathological load (which includes live sequestered parasites) and 
so only total pathological load is plotted (right y axis; note difference in axis scale compared to other model compartments plotted on the left y axis). The dynamics of L(t) 
following treatment are used to calculate our key pathology metrics that are area under the pathology curve (AUCPL) and the maximum parasite load (MPL). The patient dis-
played in this figure had sensitive parasites and was treated with the standard regimen, with PK parameters drawn from Table 1. Abbreviation: iRBC, infected red blood cell.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy649#supplementary-data
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The following parameters were included in the PRCC 
analysis:

• duration of artesunate killing posttreatment; this captures all 
the PK/PD parameters in Table 1 except maximal artesunate 
kill rate

• maximal rate of artesunate killing (Vmax)
• initial mean age-bin as a categorical variable (see above)
• variation of initial age-bin distribution (measured as the 

standard deviation (SD) around the mean)
• initial parasite number
• parasite multiplication rate (PMR)
• half-life of the ‘pathological recovery rate’ (r).

The splenic clearance rate was not included in the analysis as it 
has no impact on sequestered iRBC based pathology.

RESULTS

Our model calculated pathological load and returns 2 outcome 
metrics: AUCPL and MPL. Figure 2 shows the values of these 
metrics for 3 model scenarios: patients with sensitive parasites 
treated with the standard WHO regimen, a comparison of the 
ratios of AUCPL and MPL for treatment with simplified regimen 
versus standard regimen, and the impact or artemisinin resis-
tance on outcomes following treatment with standard WHO 
regimen.

Ratios of outcome metrics are calculated as simplified reg-
imens scaled by standard regimen and as resistant parasites 
scaled by sensitive parasites. High metrics are deleterious, thus 
ratios of >1 indicate worse prognosis associated with the sim-
plified or resistant parasites. These ratios quantify the impact, 

for example a ratio of 5 for resistant versus sensitive parasites 
indicates pathological metrics are 5 times higher when treating 
resistant parasites. We investigated 4 time periods posttreat-
ment: 0–12 hours, 0–24 hours, 12–24 hours, and 24–48 hours.

Consistency of Model Outputs with Existing Field Data

Our model calculated parasite reduction ratios (PRR) from cir-
culating parasite numbers (Supplementary Information). The 
clinical endpoint of the trials by Kremsner and colleagues was the 
proportion of patients in each arm whose PRR at 24 hours (PRR24) 
was >99% [30], reported as 79% and 78% for the 5-dose standard 
and the 3-dose simplified regimen, respectively. When calibrated 
with PK parameters from Kremsner’s study [30], our results were 
consistent with these clinical observations, that is our model pre-
dicted 78% and 74% for the standard and simplified regimen with 
hypersensitive parasites, respectively (Supplementary Table  3). 
However, the results we present below are calibrated using PK 
parameters from Hendriksen et  al [33] (see Supplementary 
Information for justification), with which we observed lower val-
ues of 70% and 62% of patients with PRR24 >99% for the standard 
and simplified intramuscular regimens, respectively.

Hendriksen et al [33] do not report the percentage of patients 
with PRR24 >99% in their study, so we could not simultane-
ously compare the findings of our simulation with the find-
ings of Kremsner et al [30] and Hendriksen et al [33]. However, 
Hendriksen et al [33] reported the population geometric mean of 
the fractional reduction in parasite counts at 24 hours as 96% (95% 
confidence interval [CI], 94%–98%,) following treatment with the 
standard regimen. The population geometric mean obtained for 
the reduction in parasite counts at 24 hours (ie, PRR24) in our sim-
ulation using parameters from Hendriksen et al [33] was >99%.

Table 1. Parameter Values Used in the Simulationsa

Parameter Unit Abbreviation Range Format Distribution Justification

Initial parasite number P0
10x, where x x∈ < <( )R|10 12

Double Uniform [25, 27]

Mean of initial age-bin 
distribution 

[h] Mean
 x + 0.5, where x x∈ ≤ ≤( )N|0 47

Integer Triangular with 
mode = 10 

[25, 26], Supplementary 
Information

Standard deviation of initial 
age-bin distribution

[h] SD
x, where x x∈ ≤ ≤( )N|2 4

Integer Uniform [27], Supplementary 
Information

Parasite multiplication rate PMR
x, where x x∈ ≤ ≤( )N|1 10

Integer Triangular with 
mode = 1 

[26, 27]

Pathological recovery rate 
half-life 

[h−1] r = ln(2)/x
x, where x x∈ ≤ ≤( )N|4 12

Integer Uniform

Splenic clearance rate 
half-life

[h−1] u = ln(2)/x x, where mean = 2.7 and CV = 0.3 Double Normal [28, 29]

Half-maximum inhibitory 
concentrations AS

[mg/L] IC50AS x, where mean = 0.0016 and CV = 0.86 Double Log-normal [20]

Half-maximum inhibitory 
concentrations DHA

[mg/L] IC50DHA x, where mean = 0.009 and CV = 1.17 Double Log-normal [20]

Maximal rate of drug killing [h−1] Vmax x, where mean = 1.78 and CV = 0.1 Double Normal [20, 22]

Slope factor n x, where mean = 4 and CV = 0.3 Double Normal [20]

Abbreviations: AS, artesunate; CV, coefficient of variation; DHA, dihydroartemisinin.
aNot including volume of distribution (Vd) / clearance (Cl). See Supplementary information for discussion of those parameters.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy649#supplementary-data
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The general accepted value for PRR48 following artemisinin 
treatment is 10–4 [34], which is very close to the value obtained 
here: for the standard regimen, using the artesunate  killing 
duration derived from Hendriksen’s PK parameters (Figure 3) 
we obtained a mean PRR48 of 5.18−5 (see Supplementary 
Information for a nuanced discussion of PK parameters).

Standard Regimen Treatment of Artemisinin-Sensitive Parasites

We simulated treatment of drug-sensitive parasites with the 
standard regimen and identified the key drivers of pathology by 
calculating which parameters were most correlated with AUCPL 
and MPL (Figure 4;  Supplementary Table 7). The most highly 
correlated parameter for both metrics was the initial parasite 
number: large positive PRCCs (between 0.88 and 0.98) were 
observed with associated P values ≤.001 at all time periods. The 
half-life of the recovery rate r had PRCC of 0.46 for AUCPL and 
0.34 for MPL in the 24 to 48-hour time period (P values ≤.001), 
but PRCC of <0.3 in earlier time periods. All other parameters 
had PRCC values of <0.3, indicating that outcome metrics were 
not highly correlated as per accepted statistical criteria [35]. All 
other model parameters had negligible correlation. The most 
likely explanation is that such a large proportion of parasites 
are killed by artesunate that small differences in the number 
killed are negligible compared to the initial parasite number 
and pathological recovery rate.

Comparison of Simplified and Standard Regimen

We evaluated alternative treatment regimens on artemisi-
nin-sensitive parasites. These results are presented as ratios of 
AUCPL and MPL. The simplified regimen had a slightly higher 

median ratio in 0–24 hours of 1.03; MPL was 1. At 24–48 hours, 
higher medians of 1.49 and 1.45 for AUCPL and MPL, respec-
tively, were observed (Figure 2; Supplementary Table 4).

Parameter analysis with PRCC (Supplementary Table  8) 
revealed that patients whose initial infections were in either 
very late or very early initial mean age-bins (Figure  5, lower 
panel) will have worse outcomes with the simplified regimen. 
This occurred because parasites in these stages are largely insen-
sitive to artesunate at first treatment, and the simplified regimen 
lacks the second dose, 12 hours later, of the standard regimen 
that would effectively target these parasites that had matured 
into more artemisinin sensitive age-bins.

The half-life of the recovery rate r had a moderate correlation 
with outputs in the 12 to 24-hour and 24 to 48-hour periods, 
indicating that assumption of slower recovery made the simpli-
fied regimen perform relatively better (Supplementary Figure 5). 
We are confident this parameter does not affect the valid-
ity of our results; for complete discussion see Supplementary 
Information. No other parameters have notable correlation 
with sequestration-based pathology when comparing regimens.

We repeated this analysis to compare regimens (ie, WHO 
standard vs simplified) when treating artemisinin-resistant par-
asites. Differences between regimens were extremely similar to 
those shown in Figure  5 and are displayed in Supplementary 
Figure 7 and Supplementary Table 9.

The Impact of Artemisinin Resistance on Treatment by the Standard 

Regimen

Unsurprisingly, ratios of AUCPL and MPL when comparing 
resistant and sensitive parasites are never less than 1 (Figure 2), 
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Figure 2. Values of area under the pathology curve (AUC PL) and maximum parasite load (MPL) obtained for each of 3 model scenarios across 4 time periods posttreatment: 
0–12 hours, 0–24 hours, 12–24 hours, and 24–48 hours. A, The “baseline scenario” when artemisinin-sensitive parasites are treated with the standard regimen. B, A com-
parison of the simplified versus standard regimen (values >1 show the standard regimen is superior). C, A comparison of the standard regimen when used to treat resistant 
versus sensitive parasites (values >1 show that sensitive parasites produce better outcomes).
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that is under no circumstance did patients have a better out-
come when parasites are resistant. Differences in median values 
(Figure 2; Supplementary Table 4) were extremely small.

We carried out PRRC analysis (Supplementary Table 10) to 
investigate whether this small difference obscured the presence 
of a vulnerable subgroup of patients. This appeared to be the 
case: patients whose infections are clustered in the early age-
bins at time of treatment had pathological outcomes that were 
significantly worse in the presence of resistance (Figure 6).

In these early age-bins, ratios for AUCPL and MPL are as 
high as 5 in the 0 to 24-hour period (comparisons based on the 
upper quartile value). This occurs because artesunate presence 

posttreatment largely coincides with parasites in age-bins 
insensitive to artesunate through resistance, rendering the ini-
tial dose nearly or completely ineffective.

SD of the initial mean age-bin had a positive correlation with 
the ratio (indicating that resistant parasites had worse outcomes 
as SD increased). This occurred because higher SD “nudged” 
parts of the age-bin distribution into (or out of) resistant 
age-bins (ie, the contiguous bin 45–48 and 1–5 where killing 
is absent). PRCC analysis showed no other parameter had a 
PRCC value of >0.01, suggesting the initial mean age-bin (and, 
to a lesser extent, its SD) are the sole determinants of whether 
a patient’s outcome will be worse in the presence of resistance.
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Figure 3. Distribution of artesunate killing duration. Data for 10 000 patients following treatment with a single dose of artesunate of either 2.4 mg/kg (A) or 4 mg/kg (B); 
note the duration includes that of the active metabolite dihydroartemisinin. This distribution was obtained using parameters from Hendriksen et al [33].
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DISCUSSION

We established a PK/PD modeling methodology capable of 
investigating the treatment of severe malaria. Kremsner et  al 
[36] recognized the clinical necessity of this, and noted that 
“for the first time, we [ie, Kremsner et al] are assessing artesu-
nate using similar pharmacokinetic and dynamic approaches”. 
Parasite clearance is likely to be a poor measure of regimen 
effectiveness (and, by extension, clinical outcome) in severe 
malaria where pathology is due to sequestered parasites. The 
effects of alternative regimens and the impact of drug resistance 
can only be investigated by traditional clinical outcomes using 
large-scale clinical trials, so pharmacological modeling of the 
type proposed here is essential to help generate the evidence 
base for rational treatment design. Our pathological modeling 

was highly flexible (discussed in Supplementary Information) 
and, of necessity, reflected the limitations in our understanding 
of pathology, for example how rapidly pathology is resolved fol-
lowing parasite death and whether pathology depends on max-
imal sequestered load (measured as MPL) or on total exposure 
(measured as AUCPL). An interesting, highly important result is 
that the key quantitative assumption made in the analysis, the 
rate of resolution of pathology (measured as the half-life of r), had 
little effect on our conclusions when comparing alternative regi-
mens or the impact of resistance (Supplementary Information) 
implying that the pathological model is a robust to assumptions 
made in this comparative investigation. Importantly, while cir-
culating parasite loads do not reflect the pathology of severe 
malaria they are currently the regular endpoint of choice in 
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severe malaria trials, including those undertaken by Kremsner 
et al [30, 37]; our model was able to reproduce the clinical out-
comes reported in [30, 33] (when appropriately parameterized), 
and recover expected PRR48, so we are confident it is reflective 
of in vivo scenarios (Supplementary Information).

Kremsner and colleagues [30, 37] concluded that their sim-
plified regimen was noninferior to the standard WHO regimen 
and possessed operational advantages due to less frequent drug 
administration [30, 37]. This work was influential and ini-
tiated a wider debate about the best drug regimen(s) to treat 
severe malaria [14, 36, 38] to which our study can contribute. 
Comparison of the 0 to 24-hour and 12 to 24-hour period was 
used to compare the effects of the initial, larger dose of the sim-
plified regimen against the additional dose at 12 hours with 
the standard regimen. The standard regimen produced slightly 

lower median AUCPL within the first 24 hours posttreatment 
(Figure 2; Supplementary Table 4). This difference was greater 
in the 24 to 48-hour period, but the majority of pathological 
load occurred within the first 24 hours as artesunate rapidly 
kills parasites: AUCPL in the 24 to 48-hour period is, on aver-
age, between 20% and 30% that of AUCPL in the 0 to 24-hour 
period (data not shown). The first 24 hours are critical for 
patient survival [31], so outcome metrics at 24–48 hours may 
have little relevance in choosing between regimens. However, 
the simplified regimen performed much worse in the subgroup 
of patients with very late or very early initial mean age-bins. 
Based on these results, we are dubious about recommending 
use of the simplified regimen but add an important rider to this. 
Kremsner et al never claimed this simplified regimen would be 
superior, but argued that any inferiority, if it exists, would be 
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within acceptable margins. We leave it to clinically qualified 
personnel to judge whether 50% in some subgroups is within an 
acceptable margin of inferiority, especially given our inability 
to directly link our pathological outcomes with the likelihood 
of mortality.

We assessed the impact of artemisinin resistance on treat-
ment of severe malaria, that is the extent to which resistance 
increased MPL and AUCPL. Resistance prevents drug killing in 
age-bins 2–4 (these bins are otherwise hypersensitive) resulting 
in no killing for a contiguous 8-hour period in resistant par-
asites (ie, age-bins 45 to 5). Our results show the initial mean 
age-bin and its SD are the only parameters that distinguish out-
comes between sensitive and resistance parasites (Figure 6). We 
argued previously [39] that artemisinin resistance would have 
a negligible impact on eventual cure rates in uncomplicated 

malaria (provided there was no resistance to partner drugs) 
but artemisinin resistance clearly poses a much larger threat 
to treatment of severe malaria than it does to uncomplicated 
malaria. Although differences between sensitive and resistant 
parasites across the entire population are minor (Figure  2; 
Supplementary Table 4), there is an extremely vulnerable sub-
group of patients whose infections at the time of treatment are 
clustered in very late or very early age-bins (ie, where parasites 
are resistant in our model; Figure 6).

Note that we specifically model relatively tightly synchro-
nized parasite distributions (Supplementary Information); if 
distributions were to become less tightly synchronized the vul-
nerability of patients with early initial mean age-bins decreases 
and both the difference between regimens and the impact of 
resistance reduces.
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We present a highly adaptable methodology for PK/PD mod-
eling of treatment of severe malaria that was able to recover key 
clinical observations (based on circulating parasite numbers), 
and, with novel metrics, used to investigate the pathology of 
severe malaria. Our model showed that while on a popula-
tion level a simplified artesunate regimen is noninferior to the 
standard WHO regimen, outcomes in a subgroup of patients 
with infections grouped in late or early initial mean age-bins 
are notably worse with the simplified regimen. The emergence 
of artemisinin resistance in early ring stages poses a significant 
threat to this same group of patients. Neither of these results are 
particularly obvious from summary statistics of the population 
and so subgroup analysis is particularly important in devising 
treatment strategies for severe malaria.
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Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
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