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ABSTRACT Herpes simplex virus 1 (HSV-1) establishes latent infection in neurons
via a variety of epigenetic mechanisms that silence its genome. The cellular CCCTC-
binding factor (CTCF) functions as a mediator of transcriptional control and chroma-
tin organization and has binding sites in the HSV-1 genome. We constructed an
HSV-1 deletion mutant that lacked a pair of CTCF-binding sites (CTRL2) within the
latency-associated transcript (LAT) coding sequences and found that loss of these
CTCF-binding sites did not alter lytic replication or levels of establishment of latent
infection, but their deletion reduced the ability of the virus to reactivate from latent
infection. We also observed increased heterochromatin modifications on viral chro-
matin over the LAT promoter and intron. We therefore propose that CTCF binding at
the CTRL2 sites acts as a chromatin insulator to keep viral chromatin in a form that
is poised for reactivation, a state which we call poised latency.

IMPORTANCE Herpes simplex virus 1 (HSV-1) is a human pathogen that persists for
the lifetime of the host as a result of its ability to establish latent infection within
sensory neurons. The mechanism by which HSV-1 transitions from the lytic to latent
infection program is largely unknown; however, HSV-1 is able to coopt cellular si-
lencing mechanisms to facilitate the suppression of lytic gene expression. Here, we
demonstrate that the cellular CCCTC-binding factor (CTCF)-binding site within the la-
tency associated transcript (LAT) region is critical for the maintenance of a specific
local chromatin structure. Additionally, loss of CTCF binding has detrimental effects
on the ability to reactivate from latent infection. These results argue that CTCF plays
a critical role in epigenetic regulation of viral gene expression to establish and/or
maintain a form of latent infection that can reactivate efficiently.
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of gene expression

Herpes simplex virus 1 (HSV-1) undergoes a lytic infection cycle at the primary
mucosal site of infection, expresses approximately 80 lytic genes, and then spreads

to sensory neurons, where it establishes a latent infection and expresses a minimal
number of viral genes (1). Viral gene products recruit host epigenetic complexes to
regulate the viral genome during lytic and latent infection (2, 3). HSV-1 persists as a
latent infection in sensory ganglia, during which lytic genes are epigenetically silenced,
and the only viral gene products expressed abundantly are a family of noncoding RNAs
known as the latency-associated transcripts (LATs) and microRNAs (miRNAs) (4–8). The
LAT gene is transcribed to yield a primary 8.3-kb transcript from which stable 1.5- and
2.0-kb introns and a number of miRNAs are processed (6–9). The LATs promote gene
silencing and increased heterochromatin at lytic genes and have been associated with
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a reduction in lytic gene transcripts in both acute and latent infections of neurons
(10–14). In addition, LAT-dependent gene repression during latent infection in a mouse
model has been implicated in promoting neuronal survival and suppressing reactiva-
tion (15). No strong evidence for proteins encoded by the LAT genes has been found
(16); however, long noncoding RNAs in other systems are known to mediate assembly
of heterochromatin and maintenance through both direct and indirect mechanisms
(16). In transfection assays, miRNAs originating from the LAT region can also repress
expression of viral lytic proteins (6, 17–19).

During establishment of latency, lytic gene expression and viral replication are
repressed and the viral genome progressively accumulates histones and heterochro-
matin on lytic genes (20, 21). Viral lytic genes are associated with histones that are
hypoacetylated and enriched for markers of heterochromatin, such as histone H3 lysine
9 trimethyl (H3K9me3), which is a hallmark of constitutive heterochromatin, and H3
lysine 27 trimethyl (H3K27me3), which is a hallmark of facultative heterochromatin (9,
20–23). Elements of the LAT transcriptional unit, which include upstream regulatory
sequences, a neuron-specific promoter, and a downstream enhancer, appear to be the
exception to this chromatin phenotype (22–28). The LAT gene is the only viral region
known to be enriched for acetylated histones and other markers of active euchromatin,
while also maintaining association with markers of heterochromatin (22, 23). Upon
reactivation in vitro, this pattern is reversed, with lytic genes associating increasingly
with acetylated histones and markers of euchromatin and accumulating transcripts,
while the LAT gene exhibits a corresponding decrease in euchromatin and transcript
levels (29–32). Chromatin control of viral lytic gene expression is therefore thought to
act as a regulator of the transitions between lytic infection, latent infection, and
reactivation.

Transcribed from the strand antisense to the LAT gene in each of the long compo-
nent repeats is the ICP0 gene (Fig. 1), which encodes an immediate-early (IE) protein
that serves many functions to promote lytic infection, including the transactivation of
viral genes and repression of the innate immune system and intrinsic resistance
(33–39). ICP0 counters host-mediated chromatin silencing, intrinsic resistance, and
innate immune responses through several mechanisms, including the degradation of
promyelocytic leukemia (PML) protein in nuclear domain 10 (ND10) bodies (40), deg-
radation of interferon-inducible protein 16 (IFI16) (36), and inhibition of the histone
deacetylase (HDAC) RE1-silencing transcription factor (REST) corepressor to REST
(CoREST)-HDAC repressor complex (41, 42). In latently infected neuronal populations,
ICP0 is largely repressed despite its proximity to the LAT enhancer sequences and

FIG 1 Map of the LAT transcriptional unit of an HSV-1 viral mutant with a deletion of the CTCF-binding sites from the LAT intron sequences. (A) Schematic map
of the HSV-1 genome with an expanded view showing the LAT coding region, with the LAT promoter (LAP), LAT enhancer (LTE), CTCF-binding sites (CTRL2), and
ICP0 promoter (ICP0 P). Restriction endonuclease cleavage sites (H, HpaI; B, BamHI) used to generate the ΔCTRL2 virus are indicated. (B) The locations of qPCR
primers are indicated as open arrows connected by dashed lines: I, LAP; II, LAT intron; III, ICP0 P. (C) Locations of the primary LAT, stable 2.0-kbp LAT intron,
ICP0 transcript, and miRNAs.
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abundant expression from the adjacent LAT region (43); however, we recently found
that ICP0 promotes LAT expression and latent infection (44).

The host factors regulating latent viral chromatin have not been well defined. One
candidate, CCCTC-binding factor (CTCF), is an 11 zinc-finger DNA-binding protein that
is essential, ubiquitously expressed, and highly conserved among metazoan species (45,
46). CTCF was initially classified as a transcriptional repressor with the ability to bind
diverse DNA target sequences (45–48) and was later recognized as a transcriptional
activator as well as an enhancer blocker and insulator (49–51). Consequently, CTCF
emerged as an important chromatin regulator responsible for a diverse range of
activities, including affecting pausing of RNA polymerase II (RNAPII) and RNA splicing,
directing the specific positioning and phasing of nucleosomes (52, 53), and generating
chromatin loops and mediating long-range chromatin interactions through manipula-
tion of the chromatin three-dimensional (3D) architecture (54–56).

Importantly, CTCF is the only identified vertebrate insulator protein. As such, it acts
as a boundary element to isolate adjacent domains of active and inactive chromatin by
directing enhancer activity to prevent interaction with nearby but inappropriate pro-
moters and by blocking the linear spread of heterochromatin (51, 57–59). Insulators are
crucial in the spatial organization of complex genomes of both metazoan species and
herpesviruses (60–63), throughout which essential active regions of transcription are
frequently interspersed with silenced domains.

CTCF-binding sites have been identified in a number of herpesviruses and are
associated with functions such as regulating latent gene expression in two gamma-
herpesviruses, Epstein-Barr virus (EBV) (60) and Kaposi’s sarcoma-associated herpesvirus
(KSHV) (61, 62), as well as regulating expression of the major immediate-early gene in
the betaherpesvirus human cytomegalovirus (HCMV) (63). A number of CTCF-binding
sites have been identified in the HSV-1 genome, including the CTRL2 sites, which are
located between the LAT and ICP0 promoter regions in the terminal repeats of the long
component (Fig. 1) (64, 65). CTCF binds at the CTRL2 sites during latent infection but is
lost during reactivation (66), and this site has been hypothesized to regulate distinct
expression from the adjacent genetic elements (64–66). Additionally, in transfection
assays, CTRL2 is capable of enhancer blocking, silencing, and prevention of heterochro-
matin spreading (64, 65). Indirect evidence also suggests that removal of CTCF-binding
sites can alter gene expression from lytic promoters in cell culture latency models (67).
Interestingly, in lytic infection, CTCF is not detected at CTRL2 or other latency-
associated binding sites; however, CTCF does bind extensively to other regions of the
viral genome and may promote viral transcription and prevent epigenetic silencing
(68).

We were therefore interested in determining whether the presence of CTCF binding
at the LAT intron is critical for establishing and/or maintaining the latent gene expres-
sion pattern and chromatin structure in the LAT region during latency. In this study, we
eliminated the CTRL2 sites from HSV-1 to assess CTCF function in a mouse model
system of latency. We found that the CTRL2 sites are essential for maintaining the
chromatin at the LAT and ICP0 regions that promotes efficient reactivation.

RESULTS
Construction of an HSV-1 CTRL2 binding site deletion mutant virus. Previous

studies identified the CTRL2 DNA elements within the HSV-1 genome and demon-
strated that CTRL2 was able to bind CTCF both in vitro and in vivo (64–66) and function
as an insulator capable of blocking enhancer-promoter interactions (64) and the spread
of heterochromatin in transfection assays (65). To test whether the CTRL2 region has
specific effects on in vivo HSV-1 infection, we constructed a CTRL2 deletion mutant virus
by removing a 370-bp fragment from within the 2.0-kbp LAT intron to generate the
HSV-1 ΔCTRL2 mutant virus (Fig. 1). A control virus, called CTRL2R, was constructed in
parallel by restoring an intact LAT-CTRL2 region in KOSΔLAT1.8eGFP virus, the parent of
ΔCTRL2 mutant virus.
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Growth kinetics in human foreskin fibroblast (HFF) and HeLa cells following infection
at a low multiplicity of infection (0.1) confirmed that there were no differences in lytic
replication between the ΔCTRL2 mutant and control CTRL2R viruses (Fig. 2).

Analysis of CTCF binding to the �CTRL2 mutant and rescued viral genomes. To
confirm the loss of CTCF binding during in vivo infection due to deletion of the CTRL2
site and to validate the mutant virus, we infected mice via corneal scarification with 2 �

105 PFU/eye of ΔCTRL2 or CTRL2R virus and performed chromatin immunoprecipitation
(ChIP) for CTCF. At 28 days postinfection (dpi), trigeminal ganglia (TGs) were removed
and processed for ChIP analysis with a CTCF-specific antibody, and we quantified the
immunoprecipitated DNA sequences by using quantitative PCR (qPCR) with primers
specific to the LAT promoter, LAT intron, and ICP0 promoter (Fig. 3). ChIP analysis
performed in parallel with a nonspecific rabbit IgG confirmed specificity. Statistical
analyses were performed on results from 7 independent ChIP experiments from 4
independent infections, using Friedman’s test with Dunn’s post hoc test to account for
multiple comparisons. Consistent with the absence of putative CTCF-binding sites,
CTCF was not enriched at the LAT promoter (LAP) or at the cellular GAPDH pseudogene
relative to the nonspecific antibody control upon infection with either ΔCTRL2 or
CTRL2R virus (Fig. 3A and D). Comparison of the ΔCTRL2 mutant viral chromatin to
control CTRL2R viral genome showed a significant decrease in CTCF binding at the LAT
intron based on ChIP using primers specific to a region less than 500 bp downstream
of the CTRL2 site (P � 0.003) (Fig. 3B). Interestingly, ΔCTRL2 viral genomes also showed
a significant reduction of CTCF binding within the ICP0 promoter region (P � 0.05)
(Fig. 3C). CTCF enrichment at the downstream ICP0 promoter site was consistent with
a potential CTCF-binding site within the ICP0 promoter region or detection of CTCF
binding to another CTCF-binding site, such as the CTa=m site, which is ~1.5 kbp away
from CTRL2 (64). Collectively, these results demonstrated that deletion of the CTRL2

FIG 2 Analysis of ΔCTRL2 and CTRL2R lytic viral replication. HeLa or HFF cells were infected at
0.1 PFU/cell with ΔCTRL2 or CTRL2R virus. Progeny virus was collected at 12, 24, and 36 hours
postinfection and titrated on Vero cells.

FIG 3 Comparison of CTCF association at the LAT region during latent infection with ΔCTRL2 or CTRL2R virus in mice. Mice were infected with ΔCTRL2 or
CTRL2R virus. At 28 dpi, the mice were sacrificed, and ChIP experiments were carried out on harvested TGs by using antibodies specific for CTCF. Three viral
regions were queried: LAP (A), the LAT intron (B), and the ICP0 promoter (C). The cellular GAPDH sequences (D) were also analyzed. Percentages of
immunoprecipitated DNA are shown as means and standard deviations from 7 ChIP experiments from 4 independent infections. Statistical significance was
evaluated using Friedman’s test along with Dunn’s posttests for ΔCTRL2 versus CTRL2R (controlling for multiple comparisons); significant P values are shown
on top of the brackets.
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sequences in the ΔCTRL2 virus reduced CTCF association at the LAT intron sequences
and at the ICP0 promoter region relative to that with the control CTRL2R virus.

Acute infection of mice with �CTRL2 and CTRL2R viruses. We first examined
acute infection in mice infected with the ΔCTRL2 and CTRL2R viruses by collecting shed
virus with eye swabs for the initial 5 dpi and titrating the virus on Vero cells. We
observed similar levels of viral shedding from mice infected with ΔCTRL2 and CTRL2R
viruses at days 1 to 4; however, at day 5, virus levels collected from mice infected with
ΔCTRL2 virus were slightly but significantly lower than in mice infected with CTRL2R (P
� 0.005) (Fig. 4A). To allow establishment of latent infection, we maintained infected
mice for 28 days. For CTRL2R-infected mice, 90% of the mice survived to day 28 and
generally did not succumb to infection before day 10. In contrast, for ΔCTRL2-infected
mice, we observed slightly increased mortality beginning at day 7, with 15% fatality by
day 10 and 19% fatality by day 28 (P � 0.05 by log-rank test) (Fig. 4B). In general, acute
viral replication and survival were largely similar for the mice infected with mutant or
restored mutant viruses.

Trigeminal ganglion infection with �CTRL2 and CTRL2R viruses. To test whether
the ΔCTRL2 mutation affected the viral genome load in the ganglia during acute or
latent infection, we isolated total ganglion DNA and quantified viral genomes at 7 and
30 dpi from TGs of mice infected with ΔCTRL2 or CTRL2R virus. Viral DNA levels, when
normalized to cellular DNA levels, showed no significant difference in genomes per TG
for ganglia acutely infected with ΔCTRL2 or CTRL2R viruses at day 7 or for ganglia
latently infected with ΔCTRL2 or CTRL2R viruses at day 30 (Fig. 5A), showing that acute
infection of the trigeminal ganglia was similar with the two viruses and there were
similar levels of latent infection with the ΔCTRL2 and CTRL2R viruses.

To measure latent viral gene expression with the two viruses, total RNA was also
extracted from each sample and measured with primers specific for the viral LAT intron,
the viral miRNAs, including miR-H2, miR-H4, and miR-H6, the lytic viral transcripts,
including ICP0, ICP27 (IE), and the genes for thymidine kinase (tk; early kinetic class [E]),
and glycoprotein C (gC; late kinetic class [L]), and also host GAPDH transcripts and let-7a
miRNA. Viral transcripts were first normalized to cellular glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) mRNA. Total RNA levels were then normalized to total viral
genome copy numbers for each mouse to calculate transcript levels per genome.
Similarly, viral miRNAs were normalized to let-7a levels and then to the viral genome
copy number for each mouse. In ganglia infected with the ΔCTRL2 virus, compared to
those infected with the CTRL2R virus, we observed a small (~3-fold) but significant
increase in levels of LATs at days 7 and 30 (Fig. 5B) (P � 0.0001 by the Mann-Whitney
test); however, the levels of LAT became indistinguishable during reactivation of
ΔCTRL2 and CTRL2R viruses (Fig. 5B).

FIG 4 Eye swab titers and survival of mice infected with ΔCTRL2 or CTRL2R virus. Mice were infected with
2 � 105 PFU/eye of ΔCTRL2 or CTRL2R virus. (A) Viral replication in corneal epithelia. Eye swabs were
collected daily at 1 to 5 dpi from 5 mice infected with each virus, from 4 independent infections.
Collected virus was titrated on Vero cells, and the results are plotted as mean and standard errors for all
infections. Statistical significance was evaluated using Student’s t test and is indicated with an asterisk
(P � 0.05). (B) Infections were allowed to progress for 28 days, and survival curves are presented from
8 independent infections of groups of 5 to 20 mice per virus (infected in parallel in each infection group).
Statistical significance was evaluated with the log-rank Mantel-Cox test.
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miR-H2 and miR-H4 are both derived from the primary LAT transcript (6, 17, 69);
while miR-H6 is encoded upstream of the LAT transcription unit, its expression is
dependent on a 200-bp sequence that includes the LAT promoter (6, 69). At day 7,
miRNAs showed no significant difference; however, at day 30, we observed a small
(~1.8-fold) increase in miR-H2 (Fig. 5C) in ΔCTRL2-infected ganglia, based on the
Mann-Whitney test. Levels of miR-H4 (Fig. 5D) and miR-H6 (Fig. 5E) were not signifi-
cantly different (~1.2-fold and ~1.4-fold higher, respectively). In addition, lytic transcript
levels were not significantly different at day 7 (Fig. 5F to I). Because lytic transcript levels
were too low for quantification at day 30, ganglia were scored as positive or negative
for detectable transcripts. We did not find significant differences in the fraction of
ganglia with detectable lytic viral transcripts between ΔCTRL2 and CTRL2R infections
(Table 1). These results indicated that loss of CTCF binding at the CTRL2 site increased
the accumulation of LATs slightly but did not affect the low levels of lytic gene

FIG 5 Viral DNA and transcript levels during acute and latent infection in mice infected with ΔCTRL2 or CTRL2R virus. TGs from infected mice were harvested
at 7 dpi, 30 dpi, or following explant reactivation, and total RNA and DNA were isolated and quantified. (A) Viral genomes were measured by qPCR and
normalized to the cellular DNA control. (B) Viral RNA transcript levels for LAT were measured at 7 and 30 dpi and following explant reactivation. (C to I) The
miRNAs miR-H2 (C), miR-H4 (D), miR-H6 (E), and lytic transcripts ICP0 (F), ICP27 (G), tk (H), and gC (I) were measured by quantitative reverse transcription-PCR
with specific primers and normalized to a cellular control and viral genome copy number. Statistical significance was evaluated with the Mann-Whitney test.

TABLE 1 Expression of viral lytic transcripts in mouse TG at 30 days

Virus

Expression of transcript (no. positive/total no.)

ICP0 ICP27 tk gC

ΔCTRL2 8/34 8/34 7/34 7/34
CTRL2R 8/24 5/24 4/24 4/24
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expression during latent infection; however, LAT levels became indistinguishable upon
explant reactivation.

Increased H3K27me3 histone modification on the LAT region of �CTRL2 mu-
tant virus. To examine the potential role of CTRL2 in regulating viral chromatin during
latency and its potential function as an insulator, we collected TGs from mice latently
infected with ΔCTRL2 or CTRL2R viruses and performed ChIP analysis with antibodies
specific for total histone H3 or heterochromatin modifications H3K9me3 and
H3K27me3. The relative fraction of HSV-1 DNA immunoprecipitated was measured by
qPCR using primers specific for the viral LAT promoter (LAP), LAT intron, and ICP0
promoter normalized to the fraction of DNA immunoprecipitated by the cellular
control, GAPDH.

Similar to previous results with wild-type (WT) KOS and 17syn� HSV-1 strains (22,
23), the CTRL2R virus LAP sequences were associated with less silenced chromatin than
the LAT intron or ICP0 promoter regions during latent infection (Fig. 6A and B). We
observed ~3- to 5-fold less total H3, H3K9me3, and H3K27me3 associated at LAP
relative to that at the ICP0 promoter (P � 0.05, Wilcoxon matched-pairs signed-rank
test). In contrast, during latent infection with the ΔCTRL2 mutant virus, the LAP
sequences and ICP0 promoter region were associated with equivalent levels of H3
histones and H3-directed heterochromatin modifications. Specifically, we observed a
mean fold enrichment of less than 1.5-fold at the ICP0 promoter relative to that of the
LAPs for all antibodies tested, and this did not reach statistical significance. These
results showed that CTCF binding at the CTRL2 region serves as a chromatin barrier to
limit accumulation of H3K27me3 at the LAP and the LAT intron.

When we compared the chromatin of the ΔCTRL2 virus directly to that of the
CTRL2R virus, we observed a significant increase of H3K27me3 heterochromatin marker
accumulation at LAP and the LAT intron (P � 0.05), but not at the ICP0 promoter
(Fig. 6C). We also observed slight but not significant increases in total histone H3 or
H3K9me3 accumulation. These results showed that CTCF binding to CTRL2 may prevent
the spread of specific heterochromatin markers, such as H3K27me3, to the LAT region
encompassing LAP and the LAT intron.

Explant reactivation from TGs infected with �CTRL2 virus is reduced. To
determine whether loss of CTCF binding at the CTRL2 sites affected the ability of the
ΔCTRL2 mutant virus to reactivate, we harvested TGs latently infected with ΔCTRL2 or
CTRL2R virus and explanted them onto a monolayer of Vero cells. We tested individual
ganglia from two independent infections of 5 mice and 10 mice per virus, respectively.
We assessed the emergence of infectious virus for 7 days postexplant by collecting
overlay medium and, on day 7, also the underlying Vero cell monolayer and replating
each on a fresh Vero monolayer. Infectious virus was first detected at 3 days from

FIG 6 Deletion of CTRL2 increased H3K27me3 accumulation on LAT promoter and intron sequences. Mice were infected with 2 � 105 PFU/eye of ΔCTRL2 or
CTRL2R virus. At 28 dpi, mice were sacrificed, TGs were harvested, and ChIP analysis was carried out with antibodies specific for total histone H3 (A), H3K9me3
(B), or H3K27me3 (C). Three viral regions, the LAT promoter (LAP), LAT intron, and ICP0 promoter (ICP0 P), were examined, and the results are expressed as means
and standard deviations of the percent viral chromatin immunoprecipitated relative to immunoprecipitation of the cellular GAPDH region. Asterisks indicate
significance (P � 0.05), which was evaluated using the Wilcoxon matched-pairs signed-rank test.
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CTRL2R virus-infected ganglia but appeared first at 4 days from ΔCTRL2 virus-infected
ganglia (Fig. 7). By 7 days postexplant, 77% of CTRL2R virus-infected ganglia produced
infectious virus, while only 53% of ΔCTRL2 virus-infected ganglia produced detectable
virus (P � 0.03, by log-rank test). At 7 days, the underlying cells were also sampled, and
ΔCTRL2 never reached the reactivation frequency of the CTRL2R virus, as evaluated by
the log-rank Mantel-Cox test. These results indicated that despite similar numbers of
latent viral genomes present at day 28, genomes from ΔCTRL2 virus infection showed
significantly reduced explant reactivation.

DISCUSSION

The LAT and ICP0 transcriptional units are encoded on opposite strands of the HSV-1
genome (Fig. 1) but are regulated independently during latent infection, so that they
maintain suppression of ICP0 gene transcription while allowing persistence of LAT
transcription (4). The divergent expression patterns correlate with different chromatin
modifications found at the LAT and ICP0 promoters that are maintained despite the
relative proximity of these genetic elements (21–23, 70, 71). While ICP0 and other lytic
gene promoters are associated with high levels of heterochromatin during latent
infection, the LAT region also shows enrichment of euchromatin (23, 70). CTCF is a key
mediator of the ability to maintain independently regulated but adjacent chromatin
domains within mammalian and viral genomes (51, 72). Of the various sites on the
HSV-1 genome that bind CTCF during latent infection, CTRL2 has been of particular
interest due to its position between the transcriptionally active LAT promoter and the
silenced ICP0 promoter (64–66).

In this study, we constructed a mutant HSV-1 virus, ΔCTRL2, with deletions of the
CTRL2 CTCF-binding sites to examine the role of CTCF binding to CTRL2 during in vivo
latent infection in a mouse model system. The ΔCTRL2 mutant virus produced a
relatively normal acute infection in the cornea and trigeminal ganglia and established
latent infection to the same level as the CTRL2R virus. The ΔCTRL2 mutant virus showed
slightly higher levels of LAT expression during latent infection, but this was indistin-
guishable during reactivation. Despite equal latent DNA genome loads per TG, the
mutant virus showed reduced reactivation relative to that by the CTRL2R virus. Because
the mutant virus showed higher levels of H3K27me3 heterochromatin on the LAT
promoter and intron sequences, we hypothesize that CTCF binding at the CTRL2 site
serves as a chromatin barrier to keep at least certain forms of heterochromatin off the
LAT promoter/regulatory sequences.

CTCF is associated with the LAT intron sequences in a CTRL2-dependent man-
ner. We confirmed that deletion of the CTRL2 region was sufficient to reduce CTCF
binding to the LAT intron to background levels. CTCF is known to mediate long-range,

FIG 7 Explant reactivation was reduced by infection with ΔCTRL2 mutant virus. Mice were infected with
2 � 105 PFU/eye of ΔCTRL2 or CTRL2R virus. At 28 dpi, individual ganglia from each mouse, from 15 mice
from two independent infections, were isolated and explanted onto Vero cell monolayers. Supernatant
was collected daily from the overlay medium for 7 days. At 7 days, the underlying cells were also
collected (7�). All samples were replated onto fresh Vero monolayers to detect infectious virus. Statistical
significance was evaluated with the log-rank Mantel-Cox test.
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three-dimensional chromatin interactions through simultaneous association with dis-
tant binding sites; therefore, the loss of one binding site has the potential to alter CTCF
binding to distant sites (54, 73–75). Our study also identified a reduction of CTCF
binding at the ICP0 promoter region after deletion of the CTRL2 sites, suggesting that
CTRL2 and a region near the ICP0 promoter may bind CTCF cooperatively. An interac-
tion between these sites could form a closed chromatin loop surrounding the 5= end
of the ICP0 gene and separating the ICP0 promoter from the LAT promoter. However,
there are CTCF-binding sites at many regions of the HSV-1 genome, and further work
is required to characterize these sites, their role in the HSV-1 3D chromatin architecture,
and their interaction with the LAT region.

Removal of CTCF binding to CTRL2 decreases viral reactivation in a mouse
model. Deletion of the CTCF binding site at the CTRL2 region did not affect viral

replication in lytic infection of cultured HeLa or HFF cells or acute infection at the ocular
epithelium for the first 4 days of infection. These results argue that lytic infection of
nonneuronal cells is not affected by CTCF binding to CTRL2. This is consistent with the
findings of a recent study that did not detect CTCF binding at the CTRL2 site during lytic
infection (68). Although infection with the ΔCTRL2 virus showed a reduction in shed
virus in the eyes of mice on one day, at 5 dpi, total viral genomes per TG were not
significantly different between ΔCTRL2 and CTRL2R viruses at 7 or 30 dpi. However, the
mutant virus showed reduced reactivation upon ganglionic explant, arguing that CTCF
binding at CTRL2 promotes reactivation. Slightly higher levels of LAT were observed
during latent infection with the mutant virus compared to the repaired virus, but
during reactivation, the levels of LAT were equivalent. Therefore, the major effect of the
CTRL2 sites on viral infection seems to be promotion of reactivation.

Results from related herpesviruses, EBV and KSHV, have also indicated that CTCF has
a complex role in promoting latent infection. Removal of CTCF-binding sites from the
intron of the LMP2A gene of EBV resulted in a higher viral genome copy number
in latent infection, possibly as a result of partial lytic replication or aberrant latent
replication (76). However, results with KSHV indicated that removal of CTCF-binding
sites from the intron of its major latency-associated transcript reduced the latent
genome copy number due to reduced viral episome maintenance (61). Given that CTCF
binding has such diverse effects among related herpesviruses, it is possible that CTCF
binding exhibits both positive and negative regulation during HSV-1 latent infec-
tion. To address these questions, future studies that address the progression of
latency establishment before 28 days and the maintenance of long-term latent viral
genomes are needed to differentiate between the initial viral dose entering the ganglia,
viral replication within the neural tissue, and long-term viral genome maintenance.

Histone modifications at the LAT promoter sequences are affected by CTCF
binding at the CTRL2 site. The increased accumulation of H3K27me3-modified het-
erochromatin at LAP and the LAT enhancer regions of the ΔCTRL2 mutant viral genome
is consistent with the hypothesis that CTCF binding at CTRL2 functions as an insulator
to block the linear spread of heterochromatin from the lytic ICP0 region to the LAT
transcriptional regulatory regions. Previous results demonstrated that the H3K27me3
modification accumulates gradually at viral lytic promoters from days 10 to 14 during
the establishment of latent infection and is enhanced by LATs (20, 23). Therefore,
increased LAT accumulation at 7 dpi with the ΔCTRL2 virus may also contribute to
higher levels of H3K27me3 accumulation at the LAT sequences by day 28.

Furthermore, H3K27me3 can be found in bivalent chromatin domains (77) and
poised chromatin domains (78) on developmentally regulated genes and genes in
pluripotent stem cells. Our previous study found that increased levels of H3K27me3 at
the ICP8 promoter relative to the viral UL48 promoter correlated with higher levels of
ICP8 RNA than UL48 RNA (20). Therefore, H3K27me3 alone may be insufficient to silence
transcription, or additional histone modifications, such as H3K4me3, may exert a
dominant effect to maintain active transcription. Alternatively, a phospho switch
proposed for reactivation (79) may work effectively on chromatin that has H3K27me3
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modifications. Therefore, H3K27me3 may be important for maintaining repressed but
poised genomes during latent infection.

Model for mechanism of action for CTCF binding at the CTRL2 site. We have
shown that binding of CTCF to the CTRL2 sites causes a statistically significant reduction
in H3K27me3 and a trend toward reduction of H3K9me3 modification of chromatin on
the LAT promoter and intron sequences. Furthermore, the CTRL2 sites promote the
reactivation of latent virus upon explant in culture. We propose a model in which CTCF
bound at CTRL2 dimerizes with a CTCF molecule bound at another site to form a 3D
structure that promotes reactivation. The most likely targets, VP16 and ICP0, are viral
genes whose products are involved in early stages of reactivation (1, 12, 80). We
envision at least two ways in which CTCF promotes their expression during reactivation.
First, we have shown that CTCF binding at the CTRL2 sites promotes CTCF binding in
the ICP0 promoter, which could place the 5= end of the ICP0 gene in a chromatin loop.
Because CTCF-mediated chromatin loops are believed to often enclose inducible gene
regulatory domains (81), enclosing the ICP0 gene promoter in a chromatin loop may
promote its expression when reactivation is triggered. Second, CTCF may dimerize with
a CTCF molecule bound near the VP16/UL48 gene promoter to keep the VP16 promoter
in a chromatin state that can be readily induced when reactivation is triggered. Further
studies are needed to define the 3D chromatin structure of viral chromatin that is
dependent on CTCF binding at the CTRL2 sites and to test these hypotheses.

Establishing and maintaining a poised latent infection. To establish a successful
latent infection, HSV-1 must balance suppression of lytic gene expression with main-
tenance of a latent state that is poised for reactivation. The results in this study indicate
that HSV-1 exploits the cellular protein CTCF to maintain its genome in a state that can
be efficiently reactivated. Large domains of H3K27me3 with short domains of H3K4me3
histone modifications are known to define a bivalent chromatin structure that is
silenced but poised to be reactivated at the appropriate time (77). We propose a model
to explain how the CTRL2 sites can promote reactivation. In addition to the CTRL2 sites,
HSV-1 gene products contribute to promoting H3K27me3 on HSV-1 lytic gene chro-
matin. HSV-1 LAT promotes H3K27me3 on lytic gene chromatin (23) as well as reacti-
vation (12; P. Raja, J. S. Lee, and D. M. Knipe, unpublished results). Furthermore, ICP0
promotes LAT expression and H3K27me3 modifications on lytic gene chromatin (44) as
well as reactivation (82, 83). Therefore, CTCF, LAT, and ICP0 may all be acting to
promote the correct form of viral chromatin so that a poised latent infection is
established and maintained and reactivation can take place at the appropriate time.
Therefore, viral gene products play an active role in not only promoting epigenetic
silencing of DNA viral genomes for latent infection (84) but also keeping them in a
poised form that is capable of efficient reactivation, a state that we call poised latency.

MATERIALS AND METHODS
Cells and viruses. Vero, HeLa, and HFF cells were obtained from ATCC. The ΔCTRL2 virus has a

deletion of CTRL2 sites from within the LAT intron of both TRL repeats (HSV-1 KOS KT899744 bp 120136
to 120508 [85]).

The control CTRL2R virus was constructed in parallel by cotransfection of the WT DNA fragment. All
viruses were propagated and titrated in parallel on Vero cells.

Mouse infections. Mice were housed in accordance with institutional and National Institutes of
Health guidelines on the care and use of animals in research. Ocular infection was carried out with 2 �
105 PFU/eye of virus (86). Eyes were swabbed on days 1 to 5 postinfection, and virus collected from tear
films was titrated on Vero cells (87). Mice were monitored for survival for at least 28 dpi.

ChIP assays. Immunoprecipitations were carried out on chromatin prepared from TGs (20) with 5 to
10 �g of anti-CTCF (catalog number 07-729; Millipore), 2.5 �g of anti-histone H3 (ab1791; Abcam, Inc.),
2.5 �g anti-H3K27me3 (39156; Active Motif, Inc.), 2.5 �g of anti-H3K9me3 (ab8580; Abcam, Inc.), or
normal rabbit IgG (12-370; Millipore). Immunoprecipitated DNA was quantitated using the qPCR primers
listed in Table 2.

Quantification of viral genomes and transcripts. Nucleic acids were isolated using the Allprep
RNA/DNA minikit (Qiagen), and RNA was reverse-transcribed with specific primers using the QuantiTect
RT kit (Qiagen). Viral DNA and transcripts were quantified relative to host adipsin DNA and GAPDH mRNA
(44, 88). For miRNA quantification, RNAs from TGs were purified using an RNeasyPlus minikit (Qiagen) and
quantified using TaqMan miRNA assays (Applied Biosystems). Viral miRNA levels were normalized to
cellular let-7a.
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Reactivation. TGs isolated from mice latently infected with HSV-1 ΔCTRL2 or CTRL2R viruses were
bisected and explanted onto a confluent monolayer of Vero cells in Dulbecco’s modified Eagle’s medium
supplemented with 10% (vol/vol) fetal bovine serum and 0.25 �g/ml amphotericin B. Culture medium
was sampled daily for 7 days, and after 7 days (7�) the entire Vero monolayer and ganglia were collected,
frozen, and replated onto a fresh Vero monolayer to score the number of ganglia that showed detectable
infectious virus (see Text S1 for additional details on our methods).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.02372-17.
TEXT S1, DOCX file, 0.1 MB.
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