
Cooling a Band Insulator with a Metal:
Fermionic Superfluid in a Dimerized
Holographic Lattice
Arijit Haldar & Vijay B. Shenoy

Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.

A cold atomic realization of a quantum correlated state of many fermions on a lattice, eg. superfluid, has
eluded experimental realization due to the entropy problem. Here we propose a route to realize such a state
using holographic lattice and confining potentials. The potentials are designed to produces a band insulating
state (low heat capacity) at the trap center, and a metallic state (high heat capacity) at the periphery. The
metal ‘‘cools’’ the central band insulator by extracting out the excess entropy. The central band insulator can
be turned into a superfluid by tuning an attractive interaction between the fermions. Crucially, the
holographic lattice allows the emergent superfluid to have a high transition temperature – even twice that of
the effective trap temperature. The scheme provides a promising route to a laboratory realization of a
fermionic lattice superfluid, even while being adaptable to simulate other many body states.

E
mulation of many body quantum systems1,2 with cold atoms provides new opportunities to obtain answers
to the most enigmatic problems of condensed matter physics3 and even obtain phases with new topological
order4. Notwithstanding the spectacular new developments5–13, headway in the use of cold atomic systems

to study interesting strongly interacting/correlated regimes such as those of the Hubbard model (both repulsive/
attractive) has been hampered by the entropy problem14. For example, the remarkable progress made in the study
of the BCS(Bardeen-Cooper-Schrieffer) to BEC(Bose-Einstein Condensate) of interacting fermions15,16 (see17 for
an overview), has not been replicated on a lattice in the single band tight binding limit despite many proposals18–25

(see also14, and references therein).
The proposal in this paper, aimed at obtaining a fermionic superfluid in a lattice limit, contains two key

ingredients. The first involves redistribution of entropy of the noninteracting cold gas in the trap such that, the
trap-center carries very little entropy density, with the excess being ‘‘pushed out’’ to the peripheries of the trap.
The second, the state at the center of the trap is chosen such that, upon tuning of interactions between the
fermions, an interesting many body state, such as a superfluid, with a high characteristic temperature is realized.

Our scheme, which realizes both these ingredients simultaneously, uses a specially designed holographic
optical lattice10 along with an optical confining potential that obtains a band insulator state at the center of the
trap, even while the periphery of the trap is in a gapless metallic state. Due to the high heat capacity of the metallic
state, entropy flows from the center of the trap to the periphery, resulting in a band insulating center with a very
low entropy density owing to its exponentially low heat capacity. The band insulator is thus cooled by the metal.
On tuning an attractive interaction between opposite spin fermions, a superfluid state is realized from the band
insulating state. Remarkably, by a suitable design of the holographic optical lattice (which is quite difficult in a
conventional optical lattice with interfering lasers) the superfluid state can be rendered to have a high transition
temperature. We show that parameters can be chosen such that the transition temperature can be as high as twice
the effective trap temperature, promising a realistic route to the laboratory realization of a lattice superfluid (see
fig. 1).

The proposed setup, a schematic of which is shown in fig. 2, uses a hologram H1 and a s-polarized laser beam
(Beam 1) to generate the lattice potential. This is then superimposed on the confining potential generated by
another hologram H2 from a secondary s-polarized beam source (Beam 2), using a beam splitter. Using two
different sources with the same polarization ensures that the pattern intensities from both the holograms gets
added without any interference, at the same time it keeps the polarization constant throughout the trap. The
beams are suitably frequency detuned with respect to a hyperfine transition of the fermionic atoms. The axial
confinement in the perpendicular direction (along the z axis) can be achieved either via a cross dipole trap26 or by
the use of evanescent waves10. Lattice potentials with optical holograms10,27–31 have been used recently producing a
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dazzling range of results in conjunction with the quantum gas micro-
scope10. Holograms work by modulating the phase of the incident
laser light spatially at every point of the beam cross-section. A given
phase modulation pattern produces an intensity pattern that can
then be scaled and focused by using suitable optical elements.

Holograms such as these can be created permanently by lithograph-
ically etching a periodic mask into a dielectric substrate10, or dynam-
ically, by using a computer controlled spatial light modulator29–32.
Robust algorithms are available33–35 for calculating a phase modu-
lation pattern to produce a target intensity profile.

The underlying plot in fig. 3(a) shows the profile of the optical
lattice produced by the hologram H1 at F(see fig. 2). The potential
consists of a double well (dimer) motif represented by the circles A
and B, repeated periodically in space. The double well potential,
which is a sum of two Gaussian potentials

VDW ~rð Þ~{V exp
{

x{
a
2

� �2

w2

 !"

zexp
{

xz
a
2

� �2

w2

 !#
exp {

y2

w2

� �
,

ð1Þ

is described by three parameters V (depth), w (width) and a (the
spacing, see fig. 3(a)). We define ER 5 h2/2ma2 which provides a
kinetic energy scale, where m is the mass of the fermions. For a laser
of wavelength 670 nm, w , 270 nm and a , 900 nm for w/a 5

0.3. The double well is repeated periodically in space by basis
vectors ~a1~ azb cos hð Þð Þx̂zb sin hð Þŷ and ~a2~ azb cos hð Þð Þx̂
{b sin hð Þŷ, where b and c are lengths and h is an angle as shown
in fig. 3(a). The resulting lattice potential is

Vlat ~rð Þ~
X
~Ri

VDW ~r{~Ri
� �

ð2Þ

Figure 1 | Concept: (a) Stage 1: Fermion gas(with equal number of " and # spins) in a confining potential(Vconf) (without the lattice pattern); here

fermion dispersion is qualitatively free particle like (purple curve).(b) Stage 2: The lattice pattern is adiabatically ramped up and superimposed on the

existing confining potential, which results in a dispersion with conduction(blue) and valence(black) bands. The confining potential profile is designed to

tune the local chemical potential such that the valence band is completely occupied near the trap center(band insulating state) and only partially

occupied(metallic state) near the trap peripheries. This results in a flow of entropy(green arrow) from the center to the periphery; the metal ‘‘cools’’ the

band insulator. The system around the trap center, in the band insulating state with one particle per site, has exponentially low entropy. (c) Stage 3:

Adiabatically turning on attractive interaction causes the band insulator to form a high transition temperature superfluid by pairing of opposite spin

fermions.

Figure 2 | Proposed Setup: Hologram H1 modulates Beam 1, to encode
the lattice pattern and hologram H2 encodes the confining potential into
Beam 2. Beam splitter(BS) combines the outputs from H1 and H2. Lenses

L1–3 stand for the optics appropriate for obtaining the required potential

at F.
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where ~Ri~n1~a1zn2~a2, where n1, n2 are integers. The significant
advantage of using a hologram to generate this potential is that it
allows greater freedom in the tuning of parameters b/a and c/a and h.
For a sufficiently deep lattice V?ER, the low energy physics can be
described by a tight binding model with the hopping parameters td

(intra dimer), t and tp (inter dimer). The flexibility in the design of the
hologram allows us to choose b 5 c as this obtains a superfluid with
a high transition temperature (see below). This requires h~

cos{1 1
2

1{
a
b

� �� 	
, making tp 5 t.

For a given set of parameters (V, a, b etc.), we numerically solve for
the Bloch states and their energy dispersion. By fitting the energy
dispersion to a tight binding parametrization we obtain td, t and tp; as
expected, excellent fits are obtained in the deep lattice limit (V?ER).
The tight binding model allows for an analytical expression for the
valance (V) and conduction (C) band dispersions:
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where k1,2 g [21/2, 1/2],~k~k1
~b1zk2

~b2,~b1 and~b2 are reciprocal
lattice basis vectors. As is seen in fig. 3(b), the two bands are separated

by a gap which occurs at two points in the Brillouin zone. For the
parameters shown in fig. 3(b), the bands are nearly particle-hole
symmetric. The density of states is finite at the band edges, but has
a van Hove singularity inside the band (see fig. 3(c)). Fig. 3(d) shows
the momentum k0 (fig. 3(b)) where the direct band gap occurs. If the
valance bands corresponding to both up and down spin fermions are
filled, a band insulating state with one particle per site (two particles
per unit cell) is obtained. It is this state that we exploit to obtain an
optical lattice superfluid. This entails designing a confining potential
that allows the realization of this band insulating state at the center of
trap, and we now turn to the discussion of such a confining potential.

The choice of the in-plane confining potential plays a crucial role
in the redistribution of entropy in the trap. Here we use an azimuth-
ally symmetric trapping potential, encoded using the hologram H2
(see, for example34) that has a form

Vconf rð Þ~Vh 1{exp {
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where r~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2zy2

p
is the radial coordinate. The potential (fig. 4(a))

has a central ‘‘harmonic region’’ where the band-insulating state is to
be realized (in the region 0 # r # lh), a ‘‘slowly rising’’ region (lh # r
# rd) which will hold the ‘‘metallic’’ state and a relatively sharp

Figure 3 | Dimerized Holographic Lattice: (a) Lattice pattern of the dimerized holographic lattice with the tight binding model overlayed on top. Double

lines are dimer bonds with hopping td. Single line slanted bonds have t and single line horizontal bonds have tp hoppings.~a1,~a2 are lattice basis vectors.

The distances a, b, c can be chosen by a suitable design of the hologram to obtain desired values of t/td and tp/td. (b) Conduction(C) and valence(V)

band dispersions showing the energy gap; blue(C) and black(V) bands correspond to that shown in fig. 1(b). The gap occurs at 6k0 along k1 5 k2, as

shown by the dashed line in the Brillouin zone plot(inset) of eC 2 eV (see equation (3)). Holographic lattice parameter values are V/ER 5 5.0, w/a 5 0.3

and b/a 5 1.04. The area around 6k0 is highlighted with lighter contours. The resulting tight binding model has t/td 5 tp/td 5 0.64. (c) One particle

density of states around the band gap, showing the van Hove singularities. (d) Dependence of wavevector k0 (at which peaks in time-of-flight images are

expected) on t/td.~b1,~b2 are reciprocal lattice vectors.
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upturn at r 5 rd (A simple harmonic trap is ill suited for this purpose
since it holds relatively fewer atoms in the metallic state). Similar
confining potentials have been considered in the literature21.

The strategy now is to start from a cloud of cold gas with a given
initial entropy per particle and load it into the confining potential as
shown in fig. 1(a). The lattice potential is now adiabatically ramped
up, and this will redistribute the particles and the entropy in the trap.
The key point is that for suitably chosen parameters (which depends
on the number of particles Np, equal number of up and down spins),
the central region of the trap will be in a band insulating state with a
very low entropy density (owing to its exponentially small heat capa-
city). The outer metallic regions will be the ‘‘entropy dump’’ since it
has a larger heat capacity (see fig. 1(b)). The final temperature of the
system will be determined by total entropy and number balance.

We now estimate the final trap temperature and the entropy redis-
tribution for a noninteracting system, keeping in mind that some
interaction is, of course, necessary to equilibrate the system. The
estimation proceeds through a local density approximation which
begins with the definition of the local chemical potential mloc(r) 5 m
2 Vconf(r), (m is the global chemical potential). The local number and
entropy densities are

r r, mloc, Tð Þ~
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where nF is the Fermi function. The two unknowns, i.e., the final
temperature T and the global chemical potential m are now obtained
using

Np~2p

ð?
0

dr r r r, mloc rð Þ,Tð Þ

S~2p

ð?
0

dr r s r, mloc rð Þ,Tð Þ

ð6Þ

where S 5 Nps0, s0 is the initial entropy per particle before ramping
up the lattice potential.

We use the set of values mentioned in fig. 3(b), and adjust the
confining potential parameters (Vh, lh, rd and c), to obtain a low value
of trap temperature, for a typical number of loaded atoms(Np < 0.48
3 106) and entropy per particle(S/Np < 0.6, 0.5, 0.4). Fig. 4(b) shows
the final entropy density in the trap as a function of the radial dis-
tance r for the lattice considered in fig. 3, with a starting entropy per
particle, s0 5 0.4. Both the entropy and number densities show a
sizable core region which is in the band insulating state. It is heart-
ening to note that the final trap temperature is less than a factor of
two smaller than the temperature required to obtain superfluidity
TBKT (see below) in this band insulator. These calculations have
assumed that the process of ramping of the lattice is adiabatic. To
investigate if these encouraging results are spoiled by possible non-
adiabatic effects; we can start with systems at even higher initial
entropy s0 to investigate how the trap temperature and central
entropy vary. The results of Table I show that if the process of turning
on the lattice is reasonably well controlled, then the additional
entropy of this process will not be debilitating. We further show that
the scheme is robust to changes in the particle number, in that a
variation of Np by 610% results in trap temperatures(T) well below
the superfluid transistion temperature(TBKT).

Having obtained a low entropy band insulating state, we now tune
an onsite attractive interaction U of the Hubbard type (using, e.g., a
Feshbach resonance36,37) to drive the band insulating state into a
superfluid state25,38–43. The emergent superfluid state can be modeled
by the action

Figure 4 | Confining Potential: (a) Radial profile of the confining potential (see equation (4)). The lengths lh and rd can be tuned to adjust the relative

size of band insulator and metallic regions. (b) Entropy density s(r) and number density per site n(r) (inset) plots, for s0 5 0.4. The lattice potential

considered corresponds to that discussed in fig. 3. The trap temperature T/td < 0.057. Confining potential parameters are Vh/ER 5 0.0045, lh/a 5 450,

rd/a 5 1700.

Table I | Trap temperature(T) and trap center entropy for various
values of initial entropy per particle(s0) and number of atoms(Np)
loaded into the trap(N0 5 0.48 3 106). In all cases the final trap
temperature(T) is well below the transisiton temperature(TBKT 5

0.15td) of the superfluid, for the parameters shown in fig. 3

Np 5 N0 Np 5 0.9N0 Np 5 1.1N0

s0 T trap s center s0 T trap s center s0 T trap s center

0.4 0.057td 0.010 0.4 0.066td 0.023 0.4 0.050td 0.008
0.5 0.073td 0.027 0.5 0.081td 0.046 0.5 0.066td 0.021
0.6 0.089td 0.051 0.6 0.097td 0.075 0.6 0.083td 0.041
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where c~kas
tð Þ stands for the fermion Grassman variable associated

with momentum~k, sublattice flavour a, b 5 A, B; s is the spin label, t
is the imaginary time, N is the number of unit cells of the homogen-

eous system, and "ab
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� �

is a 2 3 2 matrix, defined as
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are the bands eV,C(equation (3)), when t

5 tp. We analyze the superfluid state and its transition temperature
by introducing a Hubbard-Stratanovic pairing field Da for each site-
flavour and looking for a uniform saddle point solution. When
the saddle point is non-zero, we consider Gaussian fluctuations
about it and obtain the collective excitations of the superfluid which
govern the transition temperature, owing to the 2D nature of our
system. In the following we shall only discuss the final physics, see25

for details.
Unlike in a system with a ground state Fermi surface, our band

insulator does not undergo a pairing instability for an arbitrary small
attractive interaction. In fact, a finite critical Uc,
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defined in equation (3)) is required to drive the pairing instab-

ility. Uc 5 1.96td for the case considered in fig. 3. If U . Uc, then the
pairing instability sets in at a temperature TP determined by
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Even for T , TP, superfluid long range order is discouraged by
collective excitations of this system. Indeed, there exists a Beresinskii-
Kosterlitz-Thouless temperature TBKT below which a critical super-
fluid phase arises44–46. We calculate TBKT by a study of the collective
modes of the broken symmetry superfluid phase. In our system,
owing to the presence of two sites per unit cell, there are four distinct
collective modes. Two of these are gapped amplitude modes which do
not enter the low energy physics. The other two are phase modes that
correspond to phase fluctuations that are either in-phase between the
two sites of the unit cell (symmetric phase mode), which is gapless,
or out-of-phase (anti-symmetric mode, Leggett mode47), which is
gapped. In our system these modes are coupled, and an effective
superfluid stiffness rSF tensor can be obtained by integrating out
the amplitude modes and the Leggett mode. From this the critical
temperature can be calculated as

TBKT~
p

4
Tr rSF½ �: ð10Þ

Interestingly, the temperature regime TBKT , T , TP corresponds
to a state with uncondensed fermion pairs displaying pseudogap like

features3. For the system considered in fig. 3, we find that TP 5 0.55td

and TBKT 5 0.15td (see fig. 5). We emphasize here that these large
temperature scales are obtained by design of the kinetic energy oper-
ator which is encoded in the hologram H1. The superfluid stiffness
which determines TBKT is determined by the effective hoppings of
the pairs which in turn is determined by the topology of the lattice.
Here the holographic lattice allows the possibility to choose designs
that maximize the superfluid stiffness, leading to the choice of

h~cos{1 1
2

1{
a
b

� �� 	
. The same idea is used to enhance the pairing

scale TP to produce a significant regime of pseudogap physics (see
fig. 5) and simultaneously mitigate other uninteresting competing
orders. For example, the large density of states near the band edges
helps in enhancing TP. Further, the gap in the one particle spectrum
occurs at two lattice incommensurate k- vectors ~k0(see fig. 3(b,c))
which renders a competing state like a charge density wave unfavor-
able, particularly in a trap.

Having demonstrated a scheme that meets the two desiderata out-
lined earlier, viz. redistribution of entropy to create a low entropy
state, and production of an interesting many body state with a high
characteristic temperature by tuning an interaction in this state, we
now turn to the detection of the high temperature superfluid phase
realized. Pairing in this system takes place by promoting opposite
spin particles from the valance band to the conduction band near
momenta~k0 (see fig. 3(b,c,d)). Pairing that occurs will therefore be
evident in time of fight images where two peaks of equal intensity will
appear at 6k0 corresponding to the states in the conduction band
(with a concomitant dip in the states corresponding to the valance
band). These can be separately detected using band mapping tech-
niques11,48,49. Our proposal is particularly suited for detecting the
superfluid phase by direct imaging in a quantum gas microscope10.
It will also be quite interesting to explore the possibility of using
methods like RF spectroscopy50, photoemission spectroscopy51 and
spatially resolved Bragg spectroscopy52 to detect superfluidity.

It is interesting to compare the present scheme with earlier works.
The present proposal hinges on the concurrent use of two ideas
namely (i) the creation of conditions such that the central region
of the trap is a state with low characteristic entropy, and (ii) the
design of a system that allows for an interesting quantum state (a
fermionic superfluid) with high characteristic temperature to emerge
at the trap centre, upon tuning of an interaction. Our proposal
achieves the first goal by using a ‘‘metallic’’ state at the periphery
of the trap to cool the band insulating state at the centre of the
trap. This can be effectively viewed as, using the terminology of

Figure 5 | Temperature Regimes of the Band Insulator Superfluid: Plot of

TP (dashed red line), the temperature below which pairing of fermions is

favored and TBKT (solid blue line), the Beresinskii-Kosterlitz-Thouless

temperature below which superfluidity emerges, as a function of t/td, for

U/td 5 3.0.
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ref. 14, a combination of ‘‘spatial filtering’’21,22,53 and ‘‘immersion
cooling’’20,54–57 used simultaneously. The metallic regions being in
the periphery of the trap achieves spatial filtering; alternately, this
can also be viewed as immersion cooling achieved by placing the
band insulating region in contact with a metallic bath which sucks
up the entropy. A crucial new aspect of our proposal is the use of a
holographic lattice to produce a band insulating state in the tight
binding limit with an occupancy of one particle per site. This state
allows the realization of the second key ingredient, i. e., a superfluid
state with a high transition temperature. The key advantage of the
present proposal is that two ideas (i) and (ii) stated above are
achieved simultaneously in our system. Indeed, while the conceptual
demonstration of our proposal provides encouraging results, the
scheme clearly can be further optimized for an actual laboratory
realization, providing a route to the long awaited lattice fermionic
superfluid in a cold atomic system.
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discussions regarding experimental realization of the proposal.
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