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Abstract: The objective of this study was to evaluate the beneficial effect of Saccharomyces cerevisiae
(SC) on growth, intestinal morphometric characteristics, blood indices, redox balance, expression
of immune-related genes, and their involvement in disease resistance in sea bream (Sparus aurata).
Three hundred healthy sea bream fingerlings were allocated into equal four groups (15 fish per hapa).
The first group was served as a control and received a basal diet, while the other three groups were
fed diets containing 1, 2, and 4 g/kg diet SC, respectively. At the end of week 16, the daily weight
gain, specific growth rate, and feed utilization were significantly higher in the SC2 and SC4 groups
than the control (p < 0.05). SC dose-dependently improved intestinal morphology, and the 4 g/kg diet
significantly increased dry matter, crude fat, and crude protein percentage of body composition when
compared with the control group. The 4 g/kg SC boosted innate immune response and phagocytic
activity, and all SC-supplemented diets improved total protein, glucose, triglycerides, and urea
concentrations, as well as intestinal digestive enzymatic activities. All estimated oxidative markers
were significantly enhanced in the group that received 4 g/kg SC when compared with the control and
other SC groups (p < 0.05). Feeding the fish a diet supplemented with 4 g/kg SC markedly regulated
the expression of HSP70, IGF1, and IL-1β genes. In addition, the 4 g/kg SC-supplemented diet
was the most effective in protecting the fish against Vibrio parahaemolyticus challenge. In conclusion,
SC-enriched diet improved growth performance, intestinal morphology, redox homeostasis, and
immune response of S. aurata with the 4 g/kg concentration as the most effective.

Keywords: Sparus aurata; Saccharomyces cerevisiae; Vibrio parahaemolyticus; growth; immunity

1. Introduction

Several challenges are now confronting marine aquaculture. Microbial infection
outbreaks and excessive feeding costs are the two primary constraints that the farmed
fish sector may suffer [1]. Moreover, farmed fish are often subjected to different types
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of stressors as a result of farm management and environmental variables, which may
result in oxidative stress [2,3] and immunosuppression [4,5]. Therefore, the use of a proper
feeding system that supports fish immunity might have a substantial beneficial influence on
boosting performance and promoting the profitability of cultured fish throughout the whole
production cycle [6]. There is a clear link between improving gut microbiota biodiversity
and fish productivity and health [7]. The manipulation of gut microbiota throughout the use
of dietary supplements enriched with beneficial microbes (probiotics) is currently receiving
a significant scientific and commercial interest. The beneficial microorganisms colonize
the host gut and multiply with several beneficial impacts on both the host and its ambient
environment [8]. In aquaculture, the probiotics examined for use were found to include
both Gram-positive and Gram-negative bacteria as well as bacteriophages, unicellular
algae, and yeast [9,10].

Saccharomyces cerevisiae (SC) is one of the most popular probiotics in extract or whole cell
form. Yeast has the capability to stimulate bile and regulate acidic pH, as well as being free of
all types of plasmid-encoded antibiotic resistance genes and non-pathogenic [11,12]. Dietary
SC is the most common single cell protein that is incorporated into aqua feeds with the aim
of efficiently reducing the need of protein of animal origin [13]. It is effective in promoting
the growth efficiency and feed utilization in seabass fry [14], rainbow trout frys [15], Nile
tilapia [16,17], and gilthead seabream [18]. It can contribute to improving gut health by
producing some energy substrates for intestinal cells from the yeast cell. Moreover, there
are many benefits related to brewer’s yeast nutritional nucleotides, such as rapid repair of
intestinal mucosal surfaces with relative elongation as well as the improvement of intestinal
mucosal flora [19]. The cell wall components of SC, including chitin, mannoprotein, and
glucan are immunostimulants and their growth-promoting effects have been evidenced
in sea bream [20]. Enriching rainbow trout diets by mannan-oligosaccharide has (MOS)
improved the average daily gain and feed efficiency as well as the density of posterior gut
microvilli [21,22]. β-glucan-supplemented diets improved growth performance of Labeo
rohita [23], but failed to increase the average daily gain in Nile tilapia [24]. However, some
studies have observed that MOS had no influence on the growth of gilthead seabream and
catfish [25,26].

The present study was conducted to examine the potential effects of SC on growth
performance, intestinal morphometric parameter, hemato-biochemical parameters, oxida-
tive status, and immune-related genes and to determine its role in the disease resistance in
cultured sea bream (Sparus aurata).

2. Materials and Methods
2.1. Experimental Rearing Conditions and Diet Preparation

The experimental diets were prepared by thoroughly mixing the dry ingredients of
each diet, followed by adding 200 mL of water per kg diet. The mixture was blended
to make a paste and pelleting was carried out by passing it through a laboratory pellet
machine with a 1 mm diameter. The resulting wet pellets were dried at room temperature
and were stored in plastic bags at 4 ◦C until use. All formulated diets were prepared to meet
the macronutrient and essential amino acid requirements of sea bream according to the
published literature [27]. The components of the formulated diet were listed in Table 1 and
the chemical composition of diet samples was evaluated using AOAC techniques [28]. New
test pellets were made weekly to maintain the actual SC incorporated in the experimental
diets. The survival of the supplemented SC in the diet was assessed following storage at
4 ◦C by culturing diluted samples on yeast-extract-peptone-dextrose (YPD) agar plates.
The medium contained 2% peptone, 1% yeast extract, 2% glucose, and 1.5% agar [29].
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Table 1. Diet formulation and chemical composition of the experimental diets.

Ingredient %

Fish meal (Crude protein, 70%) 58
Wheat flour 27.4

Fish oil 11.2
Lecithin 1

a Minerals + Vitamin mix 0.4
Fish protein soluble 2

Total 100

Chemical composition

Crude protein 45.1
Crude Lipids 18.3

Ash 8.8
Starch 20.3

b Gross Energy, GE, kJ/g 22.7
a Providing, per kg of mix: Vitamin E, 5.8 g; vitamin K3, 3.3 g; thiamin, 3.3 g; riboflavin, 6.6 g; pyridoxine (as
pyridoxine hydrochloride), 3.3 g; niacin, 16.6 g; folic acid, 3.3 g; vitamin B12 (cyanocobalamin), 0.01 g; D-biotin,
0.1 g; vitamin c (ascorbic acid), 33.3 g, calcium pantothenate, 13.3 g; Cu as copper sulfate, 3 g; I as calcium iodine,
0.4 g; Co as cobalt carbonate, 0.3 g; Mn as manganese sulfate, 10 g; zinc oxide, 30 g; sodium selenite, 0.08 g;
calcium, 0.8 g. b Estimations of GE were based on protein, lipid, and carbohydrate content analyzed in feed raw
materials multiplied by the energy content of the previous: GE = protein × 23.62 kJ/g + lipid × 39.52 kJ/g +
carbohydrates × 17.2 kJ/g.

Apparently healthy fingerlings of S. aurata (average weight 31.23 ± 1.2 g) were ob-
tained from a private farm EL-Mussallas (Damietta, Egypt), transported and were main-
tained in 1000 L tanks for adaptation for 15 days, and fed the basal diet. At the end of
acclimatization period, apparently healthy fish were allocated randomly into 20 enclosures
(hapa) (1 × 2 × 1.25 m) 15 fish per hapa. The experimental fish were distributed into
four equal groups within 5 replicates as follows: The 1st group was fed the basal diet
(control), while the 2nd, 3rd, and 4th groups were fed diets containing 1, 2, and 4 g/kg SC,
respectively, for 16 weeks. Fish were hand-fed to apparent satiation twice per day (09:00
and 15:00 h), and feed intake was recorded daily. Water quality parameters were monitored
twice per week during the trial, and a photoperiod regime (12:12 h light:dark), water
temperature (19 ◦C), pH (7.18), salinity (27.45 ppt), NO2 (0.029 mg/L), NO3 (0.037 mg/L),
NH3

+ (0.038 mg/L), DO2 (5.7 mg/L), K+ (2.47), Na+ (215.11), Mg2+ (59.85), Ca2+ (73.15),
SO4 (168.1), Cl− (175.01), HCO3

− (4.38), and CO3
2− (0.00). All physicochemical characteris-

tics evaluated in water were considered appropriate for S. aurata growth as reported by
Faggio et al. [30].

2.2. Growth Performance and Feed Utilization Indices

Hand feeding was used to ensure that no food remained on the aquarium bottom.
Daily remaining unconsumed food was carefully removed from each aquarium 30 min after
each feeding period. The actual feed intake (FI) was calculated by subtracting the dry mass
of leftover diet from the total afforded feed. The body weight of S. aurata was recorded at
the beginning and end of the experiment. Growth performance was determined and feed
utilization was calculated as follows:

Weight gain (WG) = final body weight (g) − initial body weight (g)

Feed conversion ratio (FCR) = feed intake (g)/weight gain (g)

Specific growth rate (SGR) = 100 × [ln final body weight (g) − ln initial body
weight (g)/duration of feeding (day)]

2.3. Blood Sampling

Blood samples were collected from the caudal vertebral vein of 15 fish per group,
anaesthetized with 40 mg/L olive oil according to Feldman et al. [31]. Each collected blood
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sample was divided into two tubes, one containing EDTA for hematological examination,
and the other was used for serum separation by centrifugation at 4000 rpm for 15 min. The
collected serum was stored at −20 ◦C until used.

2.4. Hematological Analysis

The erythrocytes and leukocytes were counted according to the method described by
Stoskopf [32] using hemocytometer and Natt-Herrik solution. Hemoglobin concentration
was determined using the cyanomethemoglobin method. In this method, hemoglobin was
converted into methemoglobin using ferricyanide and cyanide ion. Methemoglobin is a
stable red compound and can be measured colormetrically. The micro hematocrit method
was used for estimation of PCV% [33]. Differential leukocytic count (DLC) was determined
using a thin blood film that was air-dried, fixed with methanol for 3–5 min, and stained
with Giemsa for 8–10 min. The stained film was rinsed with distilled water and left to
dry. The white blood cells were counted and absolute DLC was calculated according to
Thrall et al. [34] formula:

Absolute DLC = number of each white cell × number of total leukocytic count/100

2.5. Determination of Phagocytic Activity

The bacterial strain (1 × 106 CFUs/mL Aeromonas hydrophila A5216) was supplied
by Department of Fish Diseases and Management, Sakha Aquaculture Research Unit,
Central Lab. for Aquaculture Research (Kafr El Sheikh, Egypt). The bacterial strain was
selected based on the study by Reyes-Becerril et al. [35]. Leukocyte phagocytic function
was determined following the method of Cai et al. [36] after slight modifications. Briefly,
0.5 mL of blood was mixed with 0.25 mL Aeromonas hydrophila suspension in glass tubes,
which was maintained at 28 ◦C in a water bath for 30 min. The tubes were shaken every
10 min and then centrifuged [36]. Blood smears were carried out in duplicates and stained
with Giemsa/May-Grunwald [37]. The number of leukocytes that engulfed bacteria was
counted and represented as the percentage of total leukocytes in the smear.

Phagocytic activity (PA) = number of phagocytic cells with engulfed
bacteria/total number of phagocytic cells × 100.

Phagocytic index (PI) = total number of engulfed bacteria in 100 phagocytic
cells/100.

2.6. Biochemical Assays

Serum total protein (TP) was determined with commercially available kit (Spectrum,
Cairo, Egypt). Albumin (Alb) was assayed with a reagent kit supplied by Biodiagnostic
(Giza, Egypt), and globulin was calculated mathematically. Activities of aspartate amino-
transferase (AST) and alanine aminotransferase (ALT), and concentrations of creatinine,
urea, triglycerides, and cholesterol were assayed with Biodiagnostic (Giza, Egypt) kits.
Glucose level was determined with a kit supplied by Vitro Scient (Cairo, Egypt). Cortisol
was measured by fluorescence immunoassay rapid quantitative test using a commercial
kit and FIA meter (Finecare FIA meter plus, Wondfo Biotech Co., Guangzhou, China).
Lysozyme activity was assayed using ELISA kit (Sigma, St. Louis, MO, USA) according to
the manufacturer’s instructions.

2.7. Determination of Malondialdehyde (MDA) and Antioxidants

Superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and MDA were
assayed in serum according to the methods described by Nishikimi et al. [38], Aebi [39],
Paglia and Valentine [40], and Ohkawa et al. [41], respectively, using reagent kits supplied
by Biodiagnostic (Egypt).
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2.8. Determination of Digestive Enzymes Activity

After the fish were anesthetized with eugenol (1: 10,000; Shanghai Reagent Corp.,
Shanghai, China), the gut was directly dissected from 5 fish per hapa (25 fish per treated
group) and stored in liquid nitrogen. The samples were homogenized using an electric
homogenizer (XHF-D, Xinzhi, China) and the homogenate was centrifuged under cooling
for 15 min at 5000 rpm. The supernatant was collected for assaying lipase and amylase
activities according to the methods of Moss and Henderson [42] and Caraway [43] using
kits supplied by Spectrum (Cairo, Egypt) and Biodiagnostic (Giza, Egypt), respectively.

2.9. Gene Expression

The fish were dissected and liver samples (10 per group) were collected in sterile
Eppendorf tubes and maintained in liquid nitrogen for RNA isolation. One hundred mil-
ligrams were used for total RNA extraction using Trizol (iNtRON Biotechnology, Seongnam-
Si, Korea) according to the manufacturer’s instructions. The Nanodrop (UV-Vis spectropho-
tometer Q5000, Quawell, San Jose, CA, USA) was used to confirm the quality and quantity
of the isolated RNA. Samples with OD260/OD280 ≥ 1.8 were used for cDNA synthesis
using a SensiFAST™ cDNA synthesis kit (Bioline, Nottingham, UK), following the man-
ufacturer’s instructions. Insulin-like growth factor I (IGF-I), interleukin-1β (IL-1β), and
heat shock protein 70 (HSP70) specific primers were used to amplify the selected genes
(Table 2) with β-actin as a housekeeping gene. Amplification was carried out using TOP
real™ preMIX SYBR Green qPCR master mix (Enzynomics, Daejeon, Korea) on Stratagene
MX300P PCR system. The data were analyzed according to the 2−∆∆CT method [44].

Table 2. Primers used for qRT-PCR.

Gene Forward (5→3′) Reverse (5→3′) GenBank Accession No.

β-actin CGACGGACAGGTCATCACCA AGAAGCATTTGCGGTGGACG AF384096.1
IGF1 AGTGCGATGTGCTGTATC CAGCTCACAGCTTTGGAAG- EF563837.1

HSP70 AATGTTCTGCGCATCATCAA CCAACCTTTTTGTCCAATCC EU805481.1
IL-1β GGGCTGAACAACAGCACTCTC TTAACACTCTCCACCCTCCA 115592467

2.10. Morphometry of Intestinal Villi

The histological examination was adopted according to Gewaily et al. [45]. Five fish
were randomly selected from each treatment. After deep anaesthesia, the intestine samples
were obtained and cut into pieces of approximately 0.5 cm. The samples were fixed in
10% neutral buffered formaldehyde for 24 h, dehydrated in ascending grades of alcohol,
cleared with xylene, and embedded in paraffin wax. Five-µm thick sections were cut using
a rotatory microtome (RM 20352035; Leica Microsystems, Wetzlar, Germany) and stained
with hematoxylin and eosin (H&E), then examined using a BX50/BXFLA microscope
(Olympus, Tokyo, Japan).

2.11. Experimental Infection

A previously identified virulent strain of Vibrio parahaemolyticus was used for the
experimental infection. Total bacterial count, determined using the drop plate method,
was used in demonstration of the inoculum dose for the experimental studies according to
Cruickshank et al. [46]. The LD50 was assessed before the final challenge up to 10 days [47].
At the end of the 16th week of the feeding trial, fish of each group were maintained in
12 glass aquaria (60 L) (n = 30 per diet) for acclimatization for 7 days. V. parahaemolyticus
was propagated in brain heart infusion broth (BHI) at a temperature of 25 ◦C for 24 h. The
bacterial suspension was performed by the addition of a sterile saline solution [48]. Each
fish was intraperitoneally injected with 0.2 mL of LD50 dose of V. parahaemolyticus strain,
which was determined previously (2 × 107 CFUs). All fish groups fed the control and
experimental diets were challenged in triplicates. All injected fish were observed for a
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period of 7 days post-inoculation. Mortalities were recorded daily and freshly dead fishes
were moved for further post-mortem examination.

2.12. Statistical Model and Analysis Procedure

Prior to statistical analysis, any heterogeneity of variances was adjusted using the
appropriate data transformation when necessary. For estimated significance variance
between means, one-way analysis of variance (ANOVA) was used, followed by Tukey’s
post-hoc test. The statistical significance was accepted at a probability value less than
0.05. Kaplan-Meier survival data were analyzed using the log-rank (Mantel-Cox) test with
GraphPad Prism 8 (GraphPad Software, San Diego, CA, USA).

3. Results
3.1. Effect of Dietary SC on Growth Performance

FBW, DWG, and SGR in the SC groups were significantly higher than the control
group (p < 0.05). FCR and PER in SC2 and SC4 groups were significantly lower than other
treated groups and the control (p < 0.05). The changes in FBW, DWG, SGR, and PER were
non-significant in SC2 when compared with SC4 (Table 3).

Table 3. Effect of dietary SC on growth performance and feed utilization of sea bream (S. aurata).

Parameters Control
Dietary Treatments

SEM p-Value
SC1 SC2 SC4

IBW (g) 31.233 32.600 31.233 31.833 1.254 0.0963
FBW (g) 109.737 b 126.053 a 129.460 a 129.767 a 1.287 <0.001

DWG (g/day) 0.700 c 0.834 b 0.877 a 0.874 a 0.012 <0.001
SGR (g/d−1%) 1.120 c 1.207 b 1.270 a 1.254 a 0.013 <0.001

FCR (g/g) 2.624 b 2.525 bc 2.502 c 1.916 a 0.038 <0.001
PER (g/g) 1.312 a 1.179 b 1.125 c 1.136 bc 0.017 <0.001

IBW, initial body weight; FBW, final body weight; DWG, daily weight gain; SGR, specific growth rate; FCR,
feed conversion ratio; PER, protein efficiency ratio; abc values with different superscripts in the same row differ
significantly (p < 0.05).

3.2. Effect of Dietary SC on Whole Body and Muscle Composition

The dry matter, crude fat, and ash contents in the SC groups were significantly higher
than those in the control (p < 0.05), while the dietary treatments decreased the moisture
content significantly (p < 0.05) when compared with the control. The crude protein in the
SC4 group was higher than the control group (p < 0.05). Non-significant differences were
detected between the control group and both of the SC1 and SC2 groups (Table 4).

Table 4. Effect of dietary SC on whole body chemical analysis (on dry weight basis) of sea bream
(S. aurata).

Dietary
Treatments Dry Matter Moisture Crude

Protein Crude Fat Ash

Control 33.630 c 66.370 a 40.820 b 30.273 d 18.433 a

SC1 35.990 b 64.010 b 46.970 ab 32.916 c 17.870 b

SC2 36.273 b 63.726 b 47.060 ab 35.823 b 17.020 c

SC4 36.993 a 63.006 c 52.260 a 37.396 a 16.970 c

SEM 0.192 0.192 2.991 0.366 0.070
p-value <0.001 <0.001 0.0387 <0.001 <0.001

abcd values with different superscripts in the same row differ significantly (p < 0.05).

3.3. Effect of Dietary SC on Intestinal Morphology

The histological structure of the sea bream intestine in the control group appeared
intact and consists of intestinal wall and protruding intestinal villi. The wall of the intestine
comprised of mucosa, submucosa, muscularis, and serosa. The intestinal villi appeared
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intact and were lined by simple columnar epithelium around the connective tissue core
(Figure 1A). The intestinal villi appeared normal, non-branched, and slightly increased in
length in the SC1-supplemented group. The best morphological appearance was found
in the SC4 group followed by the SC2 (Figure 1B–D). The SC2-supplemented group had
slightly branching and longer villus length as well as a thicker epithelial cell wall. Fur-
thermore, the SC2 group had a greater vacuole count. The SC4-supplemented group had
the longest villus length with more branches, and the thickest epithelial cell layer with the
fewest vacuole count (Figure 1B–D).
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Figure 1. Photomicrograph of the intestine of sea bream showing the histological structure in the
control (A) and 1 (B), 2 (C), and 4 g/kg (D) SC-supplemented groups. The intestine appeared intact
and was formed of intestinal wall (arrowhead) and protruding intestinal villi (arrow). The SC-
supplemented groups showed gradual increase in the length and branching of villi. SC supplemented
diets reduced vacuole count and increased the thickness of muscular layer. MF, mucosal folds; LP,
lamina propria; ML, muscular layer; BV, branchial villus; and V, vacoule.

3.4. Effect of Dietary SC on Hematological and Immunological Variables

The RBC count and MCHC did not alter significantly as a result of the dietary supple-
mentation of SC. HGB and PCV values were significantly higher in the SC2 and SC4 groups
than the control (p < 0.05). The values of MCV and MCH were significantly higher in the
SC4 group than the SC1 group and the control (p < 0.05), whereas non-significant differences
were shown between the SC1 and SC2 groups (p < 0.05). WBCs were significantly higher in
the SC4 group than the SC1, SC2, and control groups (p < 0.05). Monocytes, basophils, and
eosinophils were not significantly affected by the dietary treatment. However, lymphocytes
were significantly higher in the SC4 groups than the control group and other SC groups.
Lysozyme and phagocyte activities as well as IgM levels were significantly higher in the
SC2 and SC4 groups than the control (p < 0.05; Table 5).
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Table 5. Effect of dietary SC on hematological and immunological variables of sea bream (S. aurata).

Control
Dietary Treatments

SEM p-Value
SC1 SC2 SC4

Hematological variables

RBCs (×106 µL) 3.610 3.733 3.583 4.003 0.504 0.4326
HGB (g/dL) 10.986 c 11.636 b 11.950 a 12.200 a 0.080 <0.001

PCV (×103 µL) 35.33 c 36.66 bc 38.33 ab 40.00 a 0.645 0.0046
MCV (fL) 89.07 c 97.22 b 97.71 ab 98.20 a 0.153 0.0077

MCH (pg/dL) 30.44 b 30.45 b 30.79 ab 31.15 a 0.158 0.0397
MCHC (g/dL) 31.00 31.88 31.40 31.26 0.120 0.4421

Immunological variables

WBCs (×106 µL) 19.273 c 26.140 b 27.717 b 30.707 a 0.867 <0.001
Monocytes (%) 8.00 9.00 9.00 9.33 0.527 0.3700

Lymphocytes (%) 70.33 a 81.00 a 78.00 a 56.00 b 4.847 0.0307
Basophils (%) 0.666 1.000 1.000 0.666 0.235 0.5954

Eosinophils (%) 1.333 1.333 1.000 1.000 0.372 0.8473
Lysozyme (%) 6.850 d 8.960 c 9.303 b 10.303 a 0.087 <0.001

Phagocytic activity (%) 8.160 c 11.136 b 11.206 b 12.036 a 0.098 <0.001
Phagocytic index 1.000 b 1.103 ab 1.213 a 1.243 a 0.044 0.0164

IgM (ng/mL) 3.040 c 4.340 b 4.610 b 5.220 a 0.153 <0.001
RBCs, red blood cells; HGB, hemoglobin; PCV, packed cell volume; MCV, mean corpuscular volume; MCH, mean
corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; WBCs, white blood cells; IgM,
immunoglobulin M; abcd values with different superscripts in the same row differ significantly (p < 0.05).

3.5. Effect of Dietary SC on Circulating Biochemical Parameters

Transaminases (ALT and AST) and cortisol were not significantly affected by dietary
SC (p < 0.05). TP, Alb, and globulin were significantly higher in the SC2 and SC4 groups
than the control group. Glucose, TG, Chol, and urea concentrations were significantly
higher in the SC2 and SC4 groups than the control group (p < 0.05), whereas non-significant
differences were observed between the SC2 and SC4 groups (p < 0.05). Amylase activity
was higher in the SC4 group than the control and other treated groups. Lipase activity was
higher in the SC2 and SC4 groups than the control group (p < 0.05), while non-significant
differences were observed between the SC1 and SC2 groups (p < 0.05; Table 6).

Table 6. Effect of dietary SC on biochemical parameters of sea bream (S. aurata).

Parameters Control
Dietary Treatments

SEM p-Value
SC1 SC2 SC4

TP (g/dL) 4.906 d 5.020 c 5.206 b 5.300 a 0.015 <0.001
Alb (g/dL) 1.310 b 1.334 b 1.340 b 1.400 a 0.017 0.031

Globulin (g/dL) 3.596 d 3.683 c 3.863 b 3.906 a 0.007 <0.001
Glucose (mg/dL) 12.336 d 14.010 c 15.070 a 15.970 a 0.114 <0.001

TG (mg/dL) 88.020 c 91.256 b 97.560 a 99.733 a 1.607 <0.001
Chol (mg/dL) 91.430 c 97.220 b 104.523 a 107.860 a 1.982 <0.001
Urea (mg/dL) 1.680 a 1.670 a 1.560 b 1.583 b 0.007 <0.001

AST (IU/L) 20.026 20.006 18.763 18.836 0.582 0.310
ALT (IU/L) 30.186 29.213 29.380 28.626 0.359 0.0822

Amylase (U/L) 40.623 d 46.600 c 52.183 b 58.270 a 1.037 <0.001
Lipase (U/L) 34.550 c 49.980 b 51.407 ab 52.883 a 0.758 <0.001

Cortisol (ng/mL) 26.080 25.333 25.626 24.893 0.337 0.0674
TP, total protein; Alb, albumin; TG, triglyceride; Chol, cholesterol; AST, aspartate aminotransferase; ALT, alanine
aminotransferase; abcd values with different superscripts in the same row differ significantly (p < 0.05).



Life 2022, 12, 1013 9 of 17

3.6. Effect of Dietary SC on Redox Status

SOD and CAT activities were significantly higher in the SC4 groups than the control
and other SC groups (p < 0.05), whereas non-significant differences were observed between
the SC1 and SC2 groups. Conversely, MDA levels were remarkedly lower in the SC2 and
SC4 groups than the control and SC1 groups (p < 0.001; Table 7).

Table 7. Effect of dietary SC on MDA and antioxidant enzymes in sea bream (S. aurata).

Parameters Control
Dietary Treatments

SEM p-Value
SC1 SC2 SC4

MDA (mmol/L) 14.650 a 11.303 b 10.040 c 9.773 c 0.327 <0.001
CAT (U/mL) 11.130 b 11.343 b 11.410 b 12.513 a 0.277 0.0423
SOD (U/mL) 9.470 c 10.100 b 10.290 b 10.716 a 0.105 0.0002

MDA, malondialdehyde; CAT, catalase; SOD, superoxide dismutase; abc values with different superscripts in the
same row differ significantly (p < 0.05).

3.7. Effect of Dietary SC on HSP70, IGF1, and IL-1β Expression

HSP70 was downregulated and IGF1 and IL-1β genes were upregulated significantly
in the treated groups when compared with the control as depicted in Figure 2A–C. In
comparison with other treated groups, the SC4-supplemented fish displayed significant
upregulation of both IGF1 and IL-1β and downregulation of HSP70 expression (Figure 2).
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3.8. SC Increased Survival Rate in Sea Bream Challenged with V. parahaemolyticus

S. aurata survival rate was calculated for 7 days after V. parahaemolyticus challenge.
The number of deaths started at day 3 post infection and SC supplementation increased the
survival rate. The survival rate of the SC4 group was significantly higher than the control,
SC1, and SC2 groups (p < 0.05). Non-significant differences were observed between the
control group and both the SC1 and SC2 groups (Figure 3).
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4. Discussion

In aquaculture, one of the most prominent methods to improve the growth perfor-
mance and enhance the health status is the use of probiotics as nutritional supplements,
which is both protective and eco-friendly [49]. Merrifield et al. [50] reported that probiotics
could be beneficial to the host by boosting the immune response and intestinal microflora.
SC is considered an important source of products with probiotic activity [51]. SC is rich
in valuable nutrients, which can play roles in promoting growth performance, such as
vitamin B, proteins, amino acids, and carbohydrates [52,53]. In particular, β-glucan and
MOS found in the yeast cell wall have the capability of improving growth performance
and animal health [54]. In the present study, 2 and 4 g/kg SC-supplemented diets showed
a growth-promoting effect on sea bream evidenced by the improved FBW, DWG, SGR, and
feed utilization (FCR and PER). In accordance, Zhang et al. [55] reported that 1–3% yeast-
enriched diets improved DWG and SGR in shrimps. The addition of 1% yeast products in L.
vannamei diets enhanced growth performance and FCR [56]. The study by Chaitanawisuti
et al. [57] showed that the dietary supplementation of yeast nucleotides at levels of 1% and
2% improved the growth performance and feed utilization of Babylonia areolata. The growth
performance could be linked to the improved feed utilization and digestibility of nutrients.
Probiotics could participate in digestive processes by producing enzymes, such as amylases,
lipases, and proteases [58,59]. In the present study, SC (4 g/kg) promoted the secretion of
digestive enzymes, which might improve nutrient digestibility, leading to improvement
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of feed efficiency and growth performance in sea bream. In contrast, under cage culture
system, diets enriched in yeast extract did not improve growth performance or FCR in
hybrid tilapia [60]. In addition, Jarmołowicz et al. [59] demonstrated that supplementing
diets with yeast extract did not significantly affect the growth rate of juvenile European
pikeperch. The discrepancies among these studies could be attributed to the difference
in culture systems, fish species, physiological conditions, and nutrient composition of
the diets. Growth is recognized as a polygenic and environmentally controlled trait with
the most influential genes being those of IGF1 and growth hormone [61]. IGF1 secretion
is affected by insulin, growth hormone, and other hormones as well as metabolic and
nutritional conditions [62]. As a result, IGF1 gene expression could be strongly regulated by
nutrients. In the current study, supplementation of the sea bream diets with SC, particularly
the 4 g/kg diet, resulted in a significant increase in IGF1 mRNA, which supported the
aforementioned results related to FBW, SGR, and FCR.

Morphometric parameters related to intestinal villi dimensions can help in predicting
the digestion and absorption mechanisms in the fish gut [63]. SC-supplemented diets
showed a gradual increase in the length and branching of villi. The beneficial effect of SC
on intestinal morphometric parameters in the current study could be attributed to MOS
found in the cell wall of yeast, which showed a positive effect on the morphology of villi
and microvilli in several fish species [64]. Furthermore, dietary live yeast has the potential
to produce polyamines, which help in enhancing fish gut health [65]. This effect might be
caused during the growth phase in the SC-treated groups since the integrity and density of
the intestinal mucosa and intestinal villi require a long time to develop. In the same context,
Islam et al. [66] reported that the intestinal mucosal fold, lamina propria width, enterocyte
count, and the number of goblet cells were improved in Nile tilapia fed diet supplemented
with 4 g/kg SC. Moreover, previous studies have demonstrated that yeast improved the
intestinal morphological parameters in the Nile tilapia [67] and carp [68].

Imbalanced feed composition can undoubtedly have a negative impact on the function,
viability, and body composition of the fish. Enzyme production could be increased by
dietary yeast supplementation, which promotes the nutrient composition and growth of
aquatic animals. In this study, positive effects of the SC-supplemented diets on protein, dry
matter, crude protein, moisture, ash, and lipids content in the whole body of sea bream have
been observed. Similarly, Abu-Elala et al. [12] showed positive effects of yeast supplemen-
tation on the nutrient composition and growth of Nile tilapia. Moreover, Ayiku et al. [52]
reported similar results in shrimp, and Ebrahimi et al. [69] reported increased crude protein
content in common carp fingerlings that received a diet supplemented with a combina-
tion of MOS and β-glucan (2.5 g/kg). These findings indicated that the physiological
performance of aquatic animals could be enhanced by the yeast culture supplementation.

Hematological and biochemical markers can provide useful information on the health
status of aquatic organisms [70]. The improved hematological (HGB, PCV, MCV, and
MCH) values in the current study indicated that SC feeding can protect fish from anemia.
Significant improvements in the WBC and LYM following SC supplementation highlighted
the immune-stimulatory effects of yeast and positive effects on the health of sea bream.
Globulin is a crucial component of the innate immune system of aquatic animals to protect
the body against invasive organisms [71]. Here, dietary SC ameliorated not only globulin,
but also serum TP and Alb. In accordance, dietary SC may serve as an immuno-stimulant
for sea bream. Zhang et al. [72] showed a significant improvement in blood protein of
grass carp fed diets supplemented with yeast culture, which modulated immune activities.
Dawood et al. [73] reported increased TP in Nile tilapia fed probiotic-based diets, suggesting
immuno-modulatory effects of SC.

Yeast possesses anti-obesity effect and is therefore a healthy food additive [74]. In obese
adults, Jung et al. [75] reported that yeast supplementation can reduce and prevent the
accumulation of abdominal fat. In the current study, the groups fed SC showed a significant
decrease in serum Chol and TG, demonstrating the beneficial effect of supplementing
the diet with SC on lipid profile. In this context, Ayiku et al. [52] reported a significant
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decrease in serum Chol and TG in shrimp fed diets containing 2% yeast. In aquatic animals,
increased serum cortisol or glucose is an indicator of stress [76]. In addition to serum lipids,
SC ameliorated glucose levels but had no effect on cortisol. These findings pointed to the
ability of SC to improve energy homeostasis and protect against stress in sea bream.

Reactive oxygen species (ROS) are produced from metabolic activities in animals
and when increased to overcome the antioxidant capacity of the cells, oxidative stress
occur. The activity of antioxidant enzymes is used to examine the antioxidant status in
aquatic animals in response to stressful conditions as well as oxidative stress resulting from
surplus ROS generation [77]. SOD converts superoxide to hydrogen peroxide and oxygen
and thus represents the first line of defense [78], and CAT catalyzes the decomposition of
hydrogen peroxide [79]. In addition to its damaging effect on cellular proteins and DNA,
excessive ROS can provoke lipid peroxidation, leading to membrane destruction and cell
death [80]. In the present study, SOD and CAT activities were significantly increased and
MDA was decreased in the SC-treated groups, demonstrating improved redox homeostasis.
Similar to our findings, Yang et al. [81] reported significant improvement in CAT and SOD
activities in shrimps fed diets supplemented with the yeast Rhodosporidium paludamentum.
Yuan et al. [68] showed enhanced CAT and SOD activities in serum of grass carp fed yeast
hydrolysates-supplemented diets. The yeast cells contain vitamins, which may beneficially
affect antioxidant defenses and immune system of aquatic animals [55]. Along with the
improved antioxidants, SC improved serum AST and ALT activities, enzymes involved in
amino acid catabolism, and their high activities in serum reflect liver damage. In this study,
it was demonstrated that SC had no adverse effect on sea bream.

Lysozyme activity is considered a biomarker for examining the bactericidal activity
of the nutritional value of diets [82]. Saurabh and Sahoo [82] suggested that increased
lysozyme activity in aquatic animals may be linked to abundance of immune system-related
cells, which constitute the main source of proteolytic enzymes. In the present study, there
was a significant increase in lysozyme activity in the SC-fed groups, which could be a
result of increased release from the lysosomes or the proliferating phagocytes. Phago-
cytosis, an immune defensive process against infectious diseases [83], was significantly
improved in SC-fed groups. Additionally, IgM which plays multiple roles in maintain-
ing lymphoid tissue architecture and B cell survival [84] was significantly increased in
the 4 g/kg SC-fed group. These findings supported the vital role of SC in activating the
immune responses in sea bream and improving its resistance to pathogens. Fish fed with
4 g/kg SC-supplemented diet in this study exhibited significant upregulation of the pro-
inflammatory cytokine IL-1β, which has a vital role in adjusting the immune response
of fish [85] similar to what have been reported by Yang et al. [86] in the orange-spotted
grouper. Furthermore, the 4 g/kg SC diet-fed fish showed significant downregulation of
HSP70, which is expressed in fish exposed to environmental stressors [87], pinpointing the
anti-stress activity of SC.

The farming of sea bream can potentially increase the risk of infectious disease out-
breaks owing to the number of individuals living in close proximity to each other. Therefore,
a proactive approach to health management must be adopted at each farm location to miti-
gate and minimize these problems. Vibrio species in aquaculture under intensive culture
causes serious economic loss by increasing mortality [88]. Feeding sea bream with diets
and then challenging it with pathogenic bacteria has been demonstrated as a useful method
to examine disease resistance. SC supplementation enabled sea bream to resist bacterial
infection and increased survival rate. Similar to the present results, Ayiku et al. [52] showed
significant resistance in shrimp fed 2% yeast against V. harveyi infection. Increased resis-
tance of sea bream against V. parahaemolyticus infection provided sufficient evidence for
the dose-dependent role of SC in stimulating the immune response against pathogenic
infections. The study by Yang et al. [86], showing that supplementation grouper diets
with SC extract improved V. harveyi challenge, added a further support to the observed
immunomodulatory role.



Life 2022, 12, 1013 13 of 17

5. Conclusions

This study introduced information on the beneficial effect of SC-supplemented diet in
improving growth performance, energy homeostasis, and immune response in sea bream.
Supplementing sea bream diets with 4 g/kg SC could be an effective intervention that
can positively affect growth performance, intestinal function, hematological indices, redox
homeostasis, and immune response of sea bream in cultures. Therefore, SC could be used
as a potential probiotic in sea bream farming.
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