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Abstract

Recent studies have drawn attention to the evolution of protein dynamics, in addition to sequence and structure, based
on the premise structure-encodes-dynamics-encodes-function. Of interest is to understand how functional differentia-
tion is accomplished while maintaining the fold, or how intrinsic dynamics plays out in the evolution of structural
variations and functional specificity. We performed a systematic computational analysis of 26,899 proteins belonging to
116 CATH superfamilies. Characterizing cooperative mechanisms and convergent/divergent features that underlie the
shared/differentiated dynamics of family members required a methodology that lends itself to efficient analyses of large
ensembles of proteins. We therefore introduced, SignDy, an integrated pipeline for evaluating the signature dynamics of
families based on elastic network models. Our analysis confirmed that family members share conserved, highly coop-
erative (global) modes of motion. Importantly, our analysis discloses a subset of motions that sharply distinguishes
subfamilies, which lie in a low-to-intermediate frequency regime of the mode spectrum. This regime has maximal impact
on functional differentiation of families into subfamilies, while being evolutionarily conserved among subfamily mem-
bers. Notably, the high-frequency end of the spectrum also reveals evolutionary conserved features across and within
subfamilies; but in sharp contrast to global motions, high-frequency modes are minimally collective. Modulation of
robust/conserved global dynamics by low-to-intermediate frequency fluctuations thus emerges as a versatile mechanism
ensuring the adaptability of selected folds and the specificity of their subfamilies. SignDy further allows for dynamics-
based categorization as a new layer of information relevant to distinctive mechanisms of action of subfamilies, beyond
sequence or structural classifications.
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Introduction
Studies in recent years have established the role of structural
dynamics, also called intrinsic dynamics, in facilitating, if not
driving, the interactions and function of biomolecular systems
in the cell. Many biological events, including substrate recog-
nition, binding and transport, allosteric signaling, communi-
cation and regulation, and mechanochemical responses,
shortly referred to as protein actions, take advantage of the
proteins’ intrinsic dynamics (Bahar et al. 2017). Intrinsic dy-
namics refers to collective thermal fluctuations in the confor-
mational space, uniquely defined by the 3D architecture, or
fold, under physiological conditions. Among the spectrum of
motions intrinsically accessible to a structure, the modes of
motions with the lowest frequency, called global modes, are
often distinguished by their cooperativity and easy accessibil-
ity, hence their involvement in allosteric responses
(Townsend et al. 2015), and qualification as soft modes.

Rapid evaluation of intrinsic dynamics with the help of
elastic network models (ENMs) introduced around the turn
of the century (Tirion 1996; Bahar et al. 1997; Hinsen et al.
2000; Atilgan et al. 2001) has enabled a deeper understanding
of the functional significance of global motions (Tama and

Sanejouand 2001; Ma 2005; Delarue 2008; Zheng et al. 2009;
Fuglebakk et al. 2012, 2015; Tirion 2015; Hsieh et al. 2016;
Lopez-Blanco and Chacon 2016). ENMs present the impor-
tant advantage of yielding a unique analytical solution for the
collective dynamics of each structure, thus overcoming the
sampling inaccuracies or computational time/memory limi-
tations of conventional molecular dynamics simulations
(Dror et al. 2012; Luitz et al. 2015; Bottaro and Lindorff-
Larsen 2018; Srivastava et al. 2018), and lending themselves
to large-scale analyses of ensembles of proteins. ENM-based
studies revealed a close correspondence between the struc-
tural changes stabilized upon ligand binding and the intrinsic
motions already accessible to the “unbound” protein prior to
ligand-binding (Tobi and Bahar 2005; Skjaerven et al. 2011).
This led to the concept of pre-existing paths of collective
structural changes selectively favored upon specific substrate
binding (Zheng et al. 2009; Meireles et al. 2011).

In parallel, the evolutionary significance of global modes of
motion became clear (Carnevale et al. 2006; Maguid et al.
2006, 2008; Hollup et al. 2011; Bahar et al. 2017).
Computations highlighted the coupling between sequence
evolution and intrinsic dynamics (Liu and Bahar 2012;
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Zou et al. 2015; Echave et al. 2016), and experiments demon-
strated that the changes in structure (or oligomerization
state) stabilized by mutations bear close resemblance to
structural changes that accommodate ligand binding
(Perica et al. 2014). Evolvability of intrinsic dynamics thus
emerged as a major mechanism enabling adaptability to en-
vironmental changes, intermolecular interactions, or even
mutations (Tokuriki and Tawfik 2009; Haliloglu and Bahar
2015). Recent work further showed that intrinsic dynamics
is a major determinant of the impact of missense mutations
on function, and that the inclusion of ENM-based features in
a machine learning classifier improves the accuracy of path-
ogenicity predictions (Ponzoni and Bahar 2018).

These observations call for a rigorous evaluation of the
conservation/differentiation of structural dynamics in rela-
tion to the evolution of sequence and structure in protein
families/subfamilies using sufficiently large data sets, and dis-
secting the contribution of collective motions in different
frequency regimes; and the need for a tool to accomplish
this task. The present study aims at addressing these needs.
We introduce a new interface, SignDy, for evaluating the
Signature Dynamics of protein families, building on ENM the-
ory and methods implemented in the application program-
ming interface (API) ProDy (Bakan et al. 2014). Application to
116 superfamilies of proteins discloses basic principles for
functional fitness and diversification: exploiting the robust
global dynamics of a versatile fold, and gaining specificity
via localized, yet impactful, fluctuations conserved among
subfamily members but divergent across subfamilies. We fur-
ther illustrate the utility of SignDy by way of application to
three families of folds: 1) leucine transporter (LeuT), 2)
periplasmic-binding protein type-1 (PBP-1), and 3) triose-
phosphate isomerase (TIM) barrel. SignDy proves to be an
effective tool for quantitative evaluation of both generic dy-
namics of families, and specific dynamics of subfamilies, iden-
tifying the specific modes of motions that distinguish
subfamilies (shared by subfamily members but sharply differ-
ent across subfamilies), and learning how evolutionarily se-
lected folds exploit collective modes of motions in different
frequency regimes to reconcile a diversity of sequences and
functions with the same architecture.

New Approaches
The results in this study are generated using a new computing
and visualization interface, SignDy, designed to enable and
automate the evaluation and comparison of the dynamics
of structures belonging to evolutionarily related proteins.
SignDy is built upon the Protein Dynamics (ProDy) API
(Bakan et al. 2014) launched for bridging biomolecular struc-
ture and function via characterization of dynamics (Bakan et al.
2011). With more than 100,000 unique visitors and�1.7 mil-
lion downloads (reported by Google Analytics), ProDy serves
as a major resource for exploring a wide range of phenomena,
from collective dynamics to sequence coevolution. SignDy
benefits from 1) theory and methods of ENMs (Bahar et al.
2017; Li et al. 2017), mainly the Gaussian network model
(GNM) (Bahar et al. 1997) and the anisotropic network model

(ANM) (Atilgan et al. 2001; Eyal et al. 2015); 2) the reconcil-
iation (Chennubhotla and Bahar 2007) of physics-based the-
ories of polymer statistical mechanics and machine learning
(ML) algorithms of spectral graph theory; 3) the consolidation
of theory and experiments to extract information on motions
that facilitate ligand binding, molecular machinery, or alloste-
ric signaling (Tobi and Bahar 2005; Zheng et al. 2009;
Fuglebakk et al. 2012; Lopez-Blanco and Chacon 2016); 4)
the Evol module (Bakan et al. 2014) for evaluating sequence
(co)evolution and comparison with structural dynamics (Liu
and Bahar 2012); and 5) NMWiz, an interactive visualization
GUI that interoperates with VMD (Humphrey et al. 1996) and
Chimera (Yang et al. 2012).

SignDy is designed as a pipeline composed of seven steps
depicted in figure 1, described in the Materials and Methods
and the supplementary methods, Supplementary Material
online (additional information can be found in online tuto-
rials; http://prody.csb.pitt.edu/signdy/; last accessed April 26,
2019): 1) selection of protein family members to be used as
input; 2) structural alignment of members and identification
of core residues; 3) refinement of the resulting ensemble and
its associated multiple sequence alignment (MSA) based on
sequence and structure similarity criteria to select a represen-
tative set of homologues; 4) computation of mode spectra
using the GNM or ANM, identification of mode–mode
matches between family members, and evaluation of the col-
lectivity of modes; 5) characterization of signature dynamics,
that is, mechanisms of global movements and interresidue
cross-correlations shared among family members; 6) quanti-
tative assessment of the conservation/divergence of struc-
tural dynamics between family members or subfamilies,
broken down into different frequency regimes, and identifi-
cation of specific modes that unify subfamily members and
maximally discriminate between subfamilies, toward gaining
insights into the mechanistic basis of functional differentia-
tion of fold families into specific subfamilies; 7) classification of
family members based on their dynamics in different fre-
quency regimes, and comparison of the dynamics-based (fre-
quency-dependent) distributions of family members with the
distributions based on their sequence, structure, and subfam-
ily function.

We use as metrics of conservation/divergence of structural
dynamics among family members the correlation cosines
cck A; Bð Þ between each matching mode k of members A
and B, and the spectral overlap SOij A; Bð Þ for sets of
modes (i � k � j) in various frequency regimes.
Averages over all pairs of members A and B belonging to
specific pairs of subfamilies provide quantitative informa-
tion on the conservation or differentiation of structural
dynamics between subfamilies in different frequency
regimes. We analyze the evolution of motions in the global
(1 � k � 3), low-frequency (LF; 4 � k � 20), low-to-
intermediate frequency (LTIF; 21 � k � 60), and high-
frequency (HF; k > 60) regimes by assessing which type
of motions (global, LF, LTIF, or HF) are shared among family
members, how mode collectivity and conservation relate
to each other, and which modes accompany, if not control,
the differentiation of families into subfamilies.
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Results

A Unique Signature Dynamics Defined by Conserved
Global Motions Characterizes Each Family
Figure 2a–c illustrates the signature dynamics for three folds,
LeuT, PBP-1, and TIM barrel. Information on the correspond-
ing data sets of proteins (Data Sets 1–3) can be found in the
respective supplementary tables S1–S3, Supplementary
Material online; their sequence, structure, and function
distributions are presented in supplementary figure S1,
Supplementary Material online. The average mobility pro-
file of residues resulting from global modes of motion (up
to k¼ 3 [blue]) and LF motions (up to k¼ 10 [orange] and
20 [green] modes) are displayed, along with their standard
deviation (SD) and range within each family. Minima and
maxima can be traced back to secondary structural ele-
ments (indicated by colored bars along the abscissa in a
and c) and loops (or disordered regions), respectively. This
is due to the high-packing density at secondary structural
elements manifested by small-amplitude fluctuations at
those regions. The minimal difference between the three
curves in each panel indicates the robustness of the signa-
ture dynamics defined by global modes. The LF modes in
the range 10 � k � 20, which are usually less collective
than those in k� 10, induce increased variations (shades)
indicative of a differentiation among members while pre-
serving the signature dynamics.

To assess the level of conservation of global modes within
families, we evaluated the mode–mode correlation cosines
cckh i averaged over all family members for each equivalent

mode k. The results are presented in figure 3a–c (green curves

and shades for the respective averages and SDs). Sharp peaks
at the lowest frequency end of the spectra and rapid decays
with increasing mode number confirm the conservation of
global modes.

Robust Global Modes Define Signature Dynamics
To confirm the dominance of global modes as a determinant
of family signature dynamics, we examined their level of con-
servation within CATH superfamilies. To this aim, we consid-
ered 116 highly populated superfamilies (Data Set 4) which
overall include 26,899 Protein Data Bank (PDB) structures
(supplementary table S4 and fig. S2, Supplementary
Material online). For each superfamily, we computed the
mode–mode correlation cosine curves, and then evaluated
the average over all superfamilies. The resulting master curve
and its SD (shown in fig. 3d, green curve and shade for
1 � k < 100) consistently show that global modes are
highly conserved. The average correlation cosine for the
top-ranking mode (k¼ 1) of superfamily members is
0.80 6 0.19 and drops to 0.20 6 0.07 for k¼ 20 (supplemen-
tary fig. S3a and b, Supplementary Material online). Higher
modes display a plateau with minimal (0.1–0.2) correlation.

Larger proteins/domains have access to a broader confor-
mational space and a wider spectrum of motions. One might
expect their dynamics to be more heterogeneous, leading to
weaker mode conservation among members. Computations
(supplementary fig. S3, Supplementary Material online)
showed, however, that the dependency of mode conservation
propensity on protein size is minimal. The top-ranking modes
exhibit strong correlations, irrespective of the size of the

FIG. 1. SignDy workflow. The workflow is separated into two main parts: data set preparation (left; steps 1–3) and SignDy operations and outputs
(right; steps 4–7), described in the text and supplementary methods, Supplementary Material online. Cylinders and light gray rectangular boxes
represent databases and corresponding query inputs, respectively.
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protein, again confirming that a handful of global modes ro-
bustly define the signature dynamics of the family.

Motions in the LTIF Regime Differentiate the
Dynamics of Family Members
Figure 3a–c illustrates the spectral overlaps (blue curves) for
the three example folds. In each case, the cumulative spectral
overlap SO1nh i is plotted as a function of the total number of
modes, n, included in the analysis, together with the corre-
sponding variation among family members (lighter blue
band). The curves reflect two counter effects: first, there is a
peak at the lowest frequency end, consistent with the con-
servation of global modes. The overlap rapidly decreases with
increasing n, due to the dissimilarity of the newly added
modes. This differentiation between family members is con-
sistent with the rapid drop in mode conservation (green
curve) shown in figure 3a–c for LeuT, PBP-1, TIM barrel fam-
ilies as well as that for CATH superfamilies (fig. 3d). Then, a

new regime is observed, the LTIF regime, which includes
modes 20–60 approximately, where the spectral overlap is
minimized (minima indicated by dashed vertical lines). Finally,
an opposite effect takes over, manifested by an increase in
overlap. This arises from the increased coverage of the space
of conformational changes (shown in the orange curve), con-
sistent with the theoretical limit of SO1n A; Bð Þ ! 1 as the
complete space of motions is considered. The minimum in
SO1nh i occurs for n � 50.

The LTIF regime where the cumulative spectral overlap is
minimized emerges as a determinant of the specificity of fam-
ily members. The percent contribution of the modes in this
regime to the overall spectrum amounts to �25% (see the
increase in the cumulative weight of modes [orange curves in
fig. 3a–c] in this interval), which means a substantial contri-
bution to alter dynamics, while retaining the generic behavior.

Further calculations performed for CATH superfamilies
(fig. 3d) corroborated the same trends. Supplementary

FIG. 2. Signature dynamics of each family is robustly defined by global motions uniquely defined by the fold. Panels (a–c) display the distributions of
mean-square fluctuations (MSFs) of residues for the respective fold families LeuT, PBP-1, and TIM barrel. Mobility profiles driven by k¼ 3 (blue), 10
(orange), and 20 (green) modes are presented, along with their SDs and ranges (bands in lighter shades). Horizontal bars along the abscissa indicate
1) the transmembrane (TM) helices of LeuT, 2) the upper lobe (UL) and lower lobe (LL) of PBP-1, and 3) the secondary structure (orange, b-strands;
red, a-helices) of TIM barrel. Residue numbers along the abscissa refer to those retained in the ensemble (i.e., sequence positions whose occupancy
in the MSA is 0.7 or higher), and deletions are not explicitly shown. (d–f) Ribbon diagrams of representative members, with core residues color-
coded by their mobilities in global modes (1� k� 3; blue, minimal; red, maximal).
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table S4, Supplementary Material online, lists the spectral
overlap calculated for n¼ 3, 20 and all (N�1) modes for
each superfamily, along with their SDs, and supplementary fig-
ure S3c, Supplementary Material online, displays their histo-
gram. The spectral overlap achieved by global modes,
SO1�3h i, averaged over all superfamilies, is 0.556 0.25, despite

the low (<0.10) cumulative weight of this small set of modes.
The addition of modes in the LF regime lowers the cumulative
overlap to 0.456 0.15, even though a larger subspace of con-
formational changes is sampled, indicating the dissimilarities in
conformational motions among members in this regime. A
high overlap ( SOallh i ¼ 0.846 0.02) is recovered by the ensem-
ble of all modes, which, by definition, forms a complete basis set
that spans all possible conformational changes.

Overall, these data underscore the role of motions in the
LTIF regime in differentiating family members within a given
fold family, which will be further elaborated below.

Increased Sequence Heterogeneity in a Given Fold
Family Manifests Itself by Higher Differentiation of
Dynamics, Especially in the LTIF Regime
Our earlier work showed that sequentially conserved
sites are also distinguished by their restricted

fluctuations; or the mobility of residues, reflected by
their mean square fluctuations (MSFs) around their
mean positions, increases with increasing Shannon en-
tropy (H) at the corresponding sequence position (Liu
and Bahar 2012). That study established the correlation
between sequence variation and conformational flexibil-
ity (RMSF). Here, we investigated one further property,
the change in flexibility, DRMSF, at a given position
among family members, which is a metric of the extent
of differentiation in the equilibrium dynamics between
family members.

To this aim, we first evaluated the level of sequence het-
erogeneity within each family, using Shannon entropy as a
metric. The resulting distribution among 13,648 residues be-
longing to 77 CATH families (after excluding the small folds
with N< 100 residues) is shown by the histogram (gray bars)
in figure 3e. The histogram perfectly fits a lognormal distribu-
tion in support of the accurate sampling of sequence varia-
bilities by the examined set (supplementary table S4,
Supplementary Material online). The changes in residue fluc-
tuations, D RMSFh i (where the triangular brackets indicate
the averages over residues with sequence entropy in the
bin corresponding to the bar underneath), exhibit a smooth
increase with increasing sequence entropy (four curves in

FIG. 3. Mode conservation and spectral overlap analysis shows the high conservation of global modes and differentiation of LTIF modes among
(super)family members. (a–c) Mode conservation profile given by mode–mode correlation cosines cckh i averaged over all family members (green),
cumulative spectral overlaps (blue), and cumulative weights of individual modes (orange) plotted as a function of mode index for LeuT, PBP-1, and
TIM barrel folds, respectively. The curves display the averages over all members in each family and the bands show the SDs. In all three cases, the
mode conservation decreases sharply from 0.96 6 0.03 for mode 1, to 0.63 6 0.23 for mode 5, and 0.18 6 0.15 for mode 30. Dashed vertical blue lines
indicate the region where the cumulative spectral overlap is minimal, and dashed orange horizontal lines indicate the corresponding cumulative
weight. (d) Same result for first 100 modes obtained for 77 CATH superfamilies with N> 100 (see supplementary table S4, Supplementary Material
online). The range 1� k� 100 covers four regimes of motions: global/softest (k� 3), LF (4� k� 20), LTIF (21� k� 60), and HF (k� 60). (e)
Change in root-mean-square fluctuations, DRMSF, computed for all residues in each of the 77 CATH superfamilies as a function of sequence
variations (sequence entropy) evaluated for four frequency regimes (labeled). The corresponding average values are shown by colored bars in the
inset. The colored curves are weighted least square fits to computed data using cubic regression, with respective correlation coefficients>0.99. The
distribution of sequence entropy for the 77 superfamilies, shown by the gray bars (right ordinate) with a bin size of 0.15 and an average value is 2.0,
fits a lognormal probability distribution (black curve) with a correlation coefficient of 0.997.
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fig. 3e), confirming that sequentially diverse families exhibit
higher differentiation in their dynamics.

The results are presented for different subsets of modes:
global (k � 3), LF (4 � k � 20), LTIF (21 � k � 60),
and HF (k � 60) regimes. The bar plot in the inset displays
the D RMSFh i averaged over all sequence entropies for the
four respective groups. These results clearly show the domi-
nant role of LTIF motions in imparting the member-specific
differences in the fluctuation spectrum of individual family
members, except for the high-sequence entropy region. In
this case, differentiation of the modes shifts toward slower
modes, as can be seen from the crossover between the LF and
LTIF curves. The shift to LF modes reflects the earlier diver-
gence of modes along the mode spectrum, in tandem with
the higher divergence of sequence.

A closer examination shows that D RMSFh i contributed by
the global modes is relatively flat with respect to sequence
entropy in the range H � 1:5. This insensitivity to sequence
variations suggests that global dynamics are more conserved
compared with sequence, presumably consistent with the
slower divergence of structure, compared with sequence.
Supplementary figure S3d, Supplementary Material online,
further shows that diverging structures encode diverging dy-
namics despite the rather narrow root-mean-square devia-
tion (RMSD) range. This dependency is stronger when all
modes (red dots) are considered, as opposed to global modes
(orange dots), confirming the increased differentiation of
mode spectra with addition of higher modes. There is, how-
ever, some variation of spectral overlap with sequence iden-
tity (supplementary fig. S3e, Supplementary Material online),
indicating that diverging sequences encode diverging dynam-
ics too, which will become even clearer by focusing on sub-
family dynamics next.

Differentiation of Protein Families into Specific
Subfamilies Is Accompanied by the Evolution of LTIF
Motions
Consider a family composed of m subfamilies (or a superfam-
ily of m families). For example, the currently considered TIM
family contains eight subfamilies (with at least four members).
Subfamily classification is based on the specific functions of
family members, for example, in the case of TIM barrel, we
have aldolases class 1 (ALD1), glycosidases (GLYC), and phos-
phenolpyruvate binding domains (PEPE). Of interest is to
assess to what extent subfamily members share similar modes
among themselves, and to what extent they differ from other
subfamily members. In other words, is the differentiation of
fold families into specific subfamilies accompanied, if not
driven, by a subset of modes that typifies the subfamily,
and distinguishes it from all other subfamilies?

Note that subfamily members are not necessarily sequen-
tially close or structurally close, but they belong to the same
subfamily because of their shared biological (e.g., specific en-
zymatic) activities. In this respect, it is of interest to see if their
common functions are supported by common mechanisms
of action, or shared modes. Another way of asking the same
question is which particular modes, or modes in which

frequency regime, unify members within subfamilies, while
ensuring maximal differentiation between subfamilies them-
selves. Toward this goal, we evaluated the spectral distances

dij

� �
mp; ms

between subfamilies p and s, composed of mp and
ms members, respectively, based on the similarity of their
modes i � k � j (see Materials and Methods and
Supplementary Material online).

Figure 4a–d and supplementary figure S4a–d,
Supplementary Material online, illustrate the respective results
for TIM and PBP-1 families. Results are presented for the
global, LF, LTIF and HF frequency regimes (respective panels
a–d) by color-coded matrices. Diagonal elements describe the
level of conservation of dynamics within subfamilies; whereas
off-diagonal terms represent the distances between pairs of
subfamilies, with dark red entries indicating a strong diver-
gence. We note that the LTIF modes are maximally distinctive
across families, followed by LF modes, while the global modes
and, interestingly, HF modes retain similarities. The strong
discrimination provided by the LTIF regime between subfami-
lies—a feature apparent in the large-scale examination of
CATH superfamilies, is now clearer with the subfamily–sub-
family distance maps based on subfamily dynamics.

Further comparison of the conservation/divergence of
structural dynamics across subfamilies with their sequence
and structure similarities (panels e–g in fig. 4 and supplemen-
tary fig. S4, Supplementary Material online) reveals that the
correlations (or lack thereof) between the mode spectra of
subfamilies in different regimes closely parallel sequence
properties, rather than structural similarities/dissimilarities.
The latter was assessed by two metrics, average RMSD be-
tween subfamilies and average Template Modeling score
(TM-score) (Zhang and Skolnick 2004), which yielded almost
identical results. In other words, the division of families into
subfamilies relates to the differentiation of their dynamics,
more than the differentiation of their structure, in support
of the direct relevance of motions/dynamics to subfamily
function. Overall these results demonstrate that the specific
mechanisms that distinguish subfamilies can be traced back
to the intrinsic modes in the LTIF regime.

Evolutionary Conservation of Modes Shows a Unique
Dependency on Their Collectivity
Global modes are usually known to be highly collective, that
is, they cooperatively embody large portions of the structure.
HF modes, on the other hand, are highly localized. In order to
understand whether the conserved and not conserved modes
in the same frequency range are characterized by different
levels of collectivity, we compared the conservation profile of
the modes and their collectivity profile observed in super-
families. The results are illustrated for an example CATH su-
perfamily (3050-cyclic nucleotide phosphodiesterase catalytic
domain) in figure 5a, and similar results are shown for a series
of CATH superfamilies in supplementary figure S5,
Supplementary Material online. In each case, the green curve
displays the conservation profile ( cckh i similar to fig. 3a–c)
and the red curve the collectivity profile (jk) for all modes
(1 � k � N� 1) obtained by the GNM. All the curves
practically show the same trend: a positive correlation
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between conservation and collectivity in the global and LF
regimes, followed by the negative correlation in the LTIF
and HF regimes, and strikingly an increase in conserva-
tion, accompanied by a decrease in collectivity at the
fastest end of frequency spectrum, designated here as
the very high-frequency (VHF) regime, already discerned
in figure 3a–c.

Systematic analysis of all 77 CATH superfamilies led to the
plots in figure 5 (panels b–f). In the case of global modes, the
more collective modes are also those that tend to be evolu-
tionarily conserved (panel b), and the same trend can also be
seen in LF modes (in panel c) although we can detect some
modes that exhibit the opposite behavior, that is, they exhibit
high conservation despite having low collectivity. This type of
anticorrelation dominates the rest of the spectrum, including
the LTIF, HF, and VHF modes (panels d–f). Panel (g) displays
all the results, thus allowing us to clearly view the complex
relationship between collectivity and conservation, broken
down into different regimes.

Conserved Local Motions Specific to Subfamilies Can
Be Detected among HF Modes
It is interesting to observe peaks at relatively higher modes in
the mode conservation curves (figs. 3a–c and 5a and supple-
mentary fig. S5, green curves, Supplementary Material online).
These signal the conservation of local events among subsets
of members. Figure 4d and supplementary figure S4d,
Supplementary Material online, further support the conser-
vation of HF modes within subfamilies, and even across sub-
families. Early applications of the GNM pointed to
evolutionarily conserved sites distinguished by HF modes rel-
evant to stability, even though the high sensitivity of HF
modes to structural details would preclude us from general-
ization (Bahar et al. 1998). The consolidation of such modes
over all family members by SignDy provides a framework for
identifying such critical sites, illustrated in supplementary fig-
ure S6, Supplementary Material online for the TIM barrel and
PBP-1 families, which may assist in assessing the pathogenicity
of single amino acid variants (SAVs) (Ponzoni and Bahar
2018).

Dynamics-Based Dendrograms Distinguish between
Substates and Subfamilies of Structural Homologs
Using sequence-, structure-, and dynamics-based dis-
tance metrics, we generated the maps and dendrograms
presented in figure 6 and supplementary figure S7,
Supplementary Material online, for the PBP-1 family,
named after periplasmic binding proteins (PBPs) in bac-
teria that capture solute in the periplasm and supply
them to ABC transporters (Quiocho and Ledvina 1996).
This fold has been used in a number of other proteins,
where it is involved in signal transduction in a variety of
eukaryotic multidomain receptors (Felder et al. 1999) as
well as bacterial transcription regulators (TRs) such as
LacI (Swint-Kruse and Matthews 2009). The maps in fig-
ure 6 show the pairwise distances between the sequences
(a), structures (b), and dynamics (c) of the family mem-
bers, which are used for constructing the dendrograms

(d–f) under each map. They are colored from most sim-
ilar in dark blue to most different in dark red. The mem-
bers are reordered along the axis based on the
dendrograms to aid with visualization and the number-
ing of family members along the axes corresponds to that
in supplementary table S2, Supplementary Material on-
line, which is based on the structure dendrogram. The
color-code along the two axes refers to function annota-
tions in supplementary figure S1b and table S2,
Supplementary Material online.

At the sequence level (fig. 6a and d), we observe a clear
separation between bacterial and eukaryotic family members
(highlighted in orange and pink, respectively). Smaller clusters
with higher sequence similarity within these two groups (yel-
low, green, and blue boxes in the fig. 6a) correspond to func-
tional groups such as different iGluRs (AMPA, kainate, delta,
and NMDA receptors), class C G-protein-coupled receptors
(GPCRs), and natriuretic peptide receptors (NPRs). The
structure-based dendrogram (fig. 6e) reveals more heteroge-
neity including a splitting of the bacterial, GPCR, and NPR
structures into open and closed forms but performs less well
at distinguishing subfamilies.

Dynamics-based classification based on global ANM or
GNM modes (fig. 6f and supplementary fig. S7a,
Supplementary Material online, respectively) enables us to
discriminate between active and inactive states, distinguished
by conserved opening/closing and twisting motions
(Krieger et al. 2015) driven by the two signature ANM modes
(fig. 6g and supplementary movies 1 and 2, Supplementary
Material online). This also results in a mixing of bacterial and
eukaryotic proteins, because active (or inactive) states of bac-
terial PBPs rather resemble their eukaryotic counterparts in
the same state. This can be seen more clearly in panel h where
we project the classification onto these two signature ANM
modes, which may be compared with the structural classifi-
cation (panel i) based on the principal component analysis of
the structures. Dissecting of mode spectra into different fre-
quency regimes (supplementary fig. S7b–d, Supplementary
Material online) provides better classification of subfamilies.
Especially the dendrograms based on LTIF modes 21–60 (sup-
plementary fig. S7c, Supplementary Material online) provide a
clear separation of subfamilies, consistent with supplemen-
tary figure S4, Supplementary Material online.

Application to LeuT Fold Family Shows How Signature
Dynamics Favors Functional and/or Multimerization
Mechanisms
The LeuT fold, first resolved for a bacterial leucine transporter
(Yamashita et al. 2005), is shared by many prokaryotic and
eukaryotic secondary transporters despite their low-sequence
identity (Shi 2013; Drew and Boudker 2016). It is composed of
12 TM helices that alternate between outward-facing (OF)
and inward-facing (IF) conformations during the transport
cycle. The former favors the uptake of substrate from the
extracellular (EC) region, and the latter its release to the in-
tracellular (IC) region, accompanied by the cotransport of
Naþ ions, and in some cases by the antiport of other sub-
strates/ions (Kazmier et al. 2017). Family members include
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dopamine transporter (DAT), multihydrophobic amino acid
transporter (MhsT), benzyl-hydantoin transporter (Mhp1),
sodium/galactose transporter (vSGLT), glycine betaine trans-
porter (BetP), carnitine/butyrobetaine antiporter (CaiT), and
arginine/agmatine antiporter (AdiC). See supplementary ta-
ble S1 and figure S1a, Supplementary Material online, for
sequence and structure properties of the 85 members studied
here, figures 2a and 3a for signature dynamics, mode conser-
vation, and spectral overlap between family members.

Here, we focus on transport and multimerization mecha-
nisms of LeuT members. Figure 7 and supplementary movies
3–5, Supplementary Material online, reveal how the three
global modes operate in a complementary way to enable
substrate transport: they divide the fold into two parts
from three orthogonal perspectives, resulting each in con-
certed opposite-direction (anticorrelated) fluctuations (or
breathing motions) of the respective parts. Their combination
allows for the cooperative opening and closing of the central
substrate/ion-binding pocket (supplementary fig. S8,
Supplementary Material online). The close-to-zero values in

figure 7a (indicated by vertical pink shades) indicate pivotal
sites at the interface between oppositely moving
substructures.

Closer examination reveals large displacements in EC loop
3 (EL3; known as helix H7 in BetP and CaiT) (black arrows in
fig. 7a). The transporters exhibit large structural heterogene-
ities at this region (supplementary fig. S9a, Supplementary
Material online). However, the movement of EL3 is not ran-
dom. On the contrary, it is driven by a cooperative mode
(ANM mode 2) that enables the transition between OF and IF
states of the transporter; and further motion of BetP H7 along
the same direction/mode allows for intersubunit contacts
that stabilize the trimer (Ponzoni et al. 2018) (supplementary
fig. S9c and movie 6, Supplementary Material online). H7 also
takes part in the trimerization interface of CaiT (supplemen-
tary fig. S9d, Supplementary Material online).

Another region distinguished by its conformational adapt-
ability is IC loop 2 (IL2; red arrow in fig. 7a and c). This region
undergoes large rearrangements during the OF$ IF transi-
tions of LeuT (Krishnamurthy and Gouaux 2012), Mhp1

FIG. 4. Low-to-intermediate frequency modes discriminate between subfamilies with different functions belonging to the TIM barrel fold family.
(a–d) Subfamily–subfamily distance matrices based on structural dynamics, evaluated for eight TIM subfamilies. Subfamily acronyms are listed
along the axes (see full names in supplementary table S3, Supplementary Material online, and their distribution in supplementary fig. S1c,
Supplementary Material online). Spectral distances dij

� �
mp ; ms

averaged over all mp and ms members of respective subfamilies (see supplementary
methods, Supplementary Material online) are shown by color-coded elements (red: long; blue: short; see the bar on the right). Results are displayed
for four frequency regimes, global, LF, LTIF, and HF, in the respective panels (a–d), as indicated by the ranges i�mode� j. Diagonal terms show
the average distances between members within subfamilies based on the motions in the particular frequency window; and the off-diagonal terms
show those across subfamilies. The LTIF regime (modes 21–60) provides the sharpest discrimination between subfamilies; whereas modes in both
the global (a) and HF (d) regimes are relatively conserved. For comparison, we present the sequence distances (e) and structural distances (f and g,
using RMSD and TM-score as metrics) between subfamilies. Note that the subfamily–subfamily spectral distances in the LTIF regime (panel c)
conform closely to their functional classification (panel h) defined by CATH, rather than their structural similarities (panels f and g), in strong
support of the significance of LTIF motions in the evolution of function.

Zhang et al. . doi:10.1093/molbev/msz102 MBE

2060

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz102#supplementary-data


(Shimamura et al. 2010), MhsT (Malinauskaite et al. 2014),
and BetP (Perez et al. 2012), the directions and the sizes of the
deformations varying between members. The departure from
the generic signature profile at this region suggests a role in
imparting specificity (see also fig. 7c). Finally, the cross-
correlation maps (fig. 7b and supplementary fig. S10,
Supplementary Material online) highlight the structural ele-
ments that undergo coupled same-sense (red) or opposite-
sense (or anticorrelated; blue) motions. The largest variations
in cross-correlations (lower map in fig. 7b) take place in the
motions of TM6 with respect to TMs 1–3 and 10. These
interhelical distances have been noted to define the extent
of opening/closure of the EC and IC vestibules (Cheng and
Bahar 2014; Drew and Boudker 2016). TM1 movements are
shown here to be anticorrelated with respect to TM10 which
forms a coherent block with TM5 and TM7. These observa-
tions are consistent with recent H/D exchange mass spec-
trometry experiments where partial unwinding of TM1, 5, 6,
and 7 drives the OF! IF transition (Merkle et al. 2018).

Discussion
In recent years, there has been an increasing interest in inter-
preting sequence evolutionary trends in the light of

biophysical models, reconciling evolutionary biology, and
structural biophysics (Liberles et al. 2012; Echave and Wilke
2017). Structural stability and related functions such as resi-
due packing density are key constraints in sequence conser-
vation and evolutionary change rate (Echave et al. 2016). Yet,
stability alone is not sufficient for functionality. Many proteins
achieve their function by virtue of their conformational flex-
ibility (Zheng et al. 2009; Skjaerven et al. 2011; Haliloglu and
Bahar 2015). While the conservation of sequence, or sequence
evolution rate, closely relate to structural stability and ther-
modynamics, the conservation of structure and its evolution
might be closely determined by its adaptability to functional
requirements. The present study aimed at shedding light to
the relation between biomolecular dynamics and evolution of
structure and function. We examined subfamilies from the
perspective of their structural dynamics and identified which
frequency windows of the mode spectrum naturally provide
the most discriminative description of subfamilies, that is,
which modes entail motions shared among subfamily mem-
bers but sharply divergent between subfamilies.
Decomposition of the mode spectrum into the contribution
of different frequency windows unambiguously revealed the
evolutionary significance of a well-defined subset of modes,
those lying in the LTIF regime. These modes endow subfamily

FIG. 5. Correlation between mode conservation and mode collectivity. (a) Comparison of the conservation (green) and collectivity (red) profiles of
all modes, illustrated for 3050-cyclic nucleotide phosphodiesterase, catalytic domain (CATH id: 1.10.1300.10). The different frequency regimes of the
mode spectrum are indicated by semitransparent color-coded shades (red: global; blue: LF; green: LTIF, orange: HF and violet: VHF). (b–f). Mode
conservation versus mode collectivity scatter plots for the GNM mode spectra of 15,636 proteins belonging to 77 CATH superfamilies, in five
different frequency regimes, as labeled. Panel (g) displays all modes (from b to f) on the same plot, with the abscissa and ordinate representing the
collectivity and conservation, respectively, of the modes in each family.
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members with subfamily-specific motions, or mechanisms of
action, and they provide maximal discrimination between
subfamilies in accord with their functional categorization in
the CATH database.

Pioneering studies that introduced the concept of evolu-
tion of structural dynamics and/or its relation to sequence
evolution traditionally focused on experimental data, for ex-
ample, a-carbon fluctuations (B-factors) (Maguid et al. 2006,
2008), the coupling between sequence variability and struc-
tural dynamics (Liu and Bahar 2012; Nevin Gerek et al. 2013),
or diversity of conformers resolved for well-studied proteins
in the PDB (Juritz et al. 2013). The present study, inspired by
earlier observations and motivated by the need to gain a
deeper understanding of the principles that control the con-
servation/divergence of structural dynamics led to design and
implementation of a new interface, SignDy. SignDy permitted
us to systematically analyze 15,636 proteins in 77 CATH

superfamilies, and revealed features that could not be dis-
cerned if it were not for serial analysis of large ensembles of
CATH superfamilies. We discerned for the first time the differ-
ences in the conservation of modes in different frequency
regimes, and the close relationship between the dissimilarities
in the LTIF modes and the structural variations and specific
mechanisms of action that distinguish subfamilies.

Distinctive Evolution of Modes in Different Frequency
Regimes and Relation to Differentiation into
Subfamilies
We have conducted a thorough examination of the evolution
of structural dynamics by focusing on four windows of mode
spectra: global modes (k¼ 1–3), slow (low frequency, LF)
modes (k¼ 4–20), LTIF modes (k¼ 21–60), and fast (high
frequency, HF) modes (k> 60). These ranges are estimated
from the average behavior of 77 CATH superfamilies, and the

FIG. 6. Categorization of family members based on their sequence, structure, and dynamics. (a–f) Distance matrices (a–c) and corresponding
dendrograms (d–f) for PBP-1 family members based on (a and d) Hamming distance between sequences, (b and e) RMSD between structures and
(c and f) spectral distance between global ANM modes (k¼ 5). The numbers and colors along the axes correspond to the order of the conformers
based on RMSD clustering and the subfamilies to which they belong (see supplementary table S2, Supplementary Material online). In the trees,
each node represents a member and the colors and labels correspond to subfamilies along with conformational/functional states. In the sequence
case (a and d), there is a clear distinction between bacteria and eukaryotes, highlighted in blue and orange, respectively. (g) The first two global
signature ANM modes are shown with arrows illustrating the opposite motions of the upper and lower lobes. Mode 1 (left) shows a twisting/
untwisting motion and mode 2 (right) shows an opening/closing motion as shown in supplementary movies 1 and 2, Supplementary Material
online. (h) Projection of family members onto a 2D space spanned by the first two signature ANM modes clusters family members based on global
mode spectra akin to panels (c) and (f). (i) Projection of family members onto a 2D space spanned by the first two principal components of
structural variation clusters family members akin to panels (b) and (e).
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boundaries between these regimes may vary slightly among
different protein families. Notably, different frequency
regimes exhibited different relationships to the evolution of
structure and function. The global modes are highly con-
served across all members of the family, that is, they are re-
silient to change throughout evolution, presumably due to
their role in defining the signature dynamics of the family. The
LF regime, on the other hand, exhibits a dependency on the
type of subfamily, thus underlying the differentiation of sub-
family members in terms of their dynamics. This effect is

further pronounced in the LTIF regime. The LTIF regime
ensures maximal discrimination between the dynamics, or
accessible mechanisms of action, of subfamily members, while
also accomplishing the highest similarity among members
within subfamilies. Major contribution to the specificity of
subfamilies originates in the LTIF regime. Finally, the HF re-
gime makes little contribution to structural divergence
(fig. 3e). Yet, the same regime has several “conserved” modes,
similar to the global modes, but completely different in terms
of their collectivity (see figs. 3a–c and 5 and supplementary

FIG. 7. Generic and specific features of LeuT fold dynamics. (a) Global mode shapes and displacements along the global modes shared by family
members (mean profiles, solid curves), and their differentiation (SDs; darker shaded area), and the full range of variations (lighter shaded area).
Colored bars along the upper abscissa indicate the TM domains. Pink vertical bands indicate the residues lining the substrate-binding pocket, which
show minimal spatial displacements. Red and black arrows indicate the locations of IL2 and EC3/H7, respectively, the high flexibility of which is
essential to substrate recognition and multimerization. The ribbon diagrams generated for a representative LeuT structure (PDB ID: 2A65) are
color-coded (from blue to red) by the size and direction of motions (from negative to positive) in each mode. (b) Generic covariance map (top) and
its SD (bottom), based on k� 20 modes. See more details in supplementary figure S10, Supplementary Material online. Specific residue pairs whose
cross-correlations significantly depart from the generic covariance are indicated by white arrows (bottom). The curve along the left ordinate shows
the row-average. The peak at TM6 suggests a driving role in eliciting cooperative changes. (c) Detailed view of the global/soft motions (k� 5) for 13
representative structures from 8 transporter families (labeled), in inward-facing (IF; dashed) and/or outward-facing (OF; solid) states. Differences in
peaks/minima reveal member-specific features, for example, IL2 fluctuations (red arrow) are prominent in the IF states of LeuT, Mhp1, and CaiT,
but not in the IF state of MhsTs, BetP, and vSGLT nor the OF states; EL3/H7 (black arrow) motions are suppressed in most IF conformers except in
vSGLT, BetP, and to some extent CaiT, where this specific region facilitates trimerization (see also supplementary fig. S9d, Supplementary Material
online). The curves are vertically shifted for visual clarity.
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figs. S5 and S6, Supplementary Material online). While HF
motions are usually viewed as noise in molecular simulations,
the current approach that yields an analytical solution
(unique to each fold) reveals the evolutionary conservation
of selected HF fluctuations among family members, across all
subfamilies. In sharp contrast to global modes, HF modes are
highly localized, but presumably important enough to biolog-
ical function such that they are retained across subfamilies
throughout evolution of sequence and structure. These find-
ings link biomolecular structural dynamics (topology-
encoded collective modes of motion) to the evolution of
structure and function.

New Insights by Serial Examination of Large Ensembles
of Protein Families
SignDy differs from existing computational methods for ex-
ploring structure-based dynamics and its evolution in several
ways: first, it is fundamentally different from full atomic mod-
els and simulations, which do not lend themselves to system-
atic comparative analysis of hundreds, if not thousands, of
proteins’ dynamics, even with technological advances that
permit to up to milliseconds dynamics of small proteins
(Dror et al. 2012). Second, at the heart of the methodology
is the prediction of structural dynamics and in particular, the
global modes of motions and correlations by a model (ENM)
that lends itself to analytical solutions. The adoption of such a
method that dissects structural dynamics was essential to
distinguishing conserved and divergent motions of families
and superfamilies.

Many ENM-based predictive studies of comparative dy-
namics provided valuable insights on the evolution of
motions in selected systems (Carnevale et al. 2006;
Micheletti 2013; Dutta et al. 2015; Zou et al. 2015; Tiwari
and Reuter 2016, 2018; Ponzoni et al. 2018). Other compar-
ative studies highlighted the bridge between structural dy-
namics and sequence evolution (Liu and Bahar 2012; Nevin
Gerek et al. 2013). Significant efforts have been deployed for
developing interfaces that enable principal component anal-
ysis of structurally known sequence homologues, compari-
sons with ANM predictions (Bakan et al. 2011; Skjaerven
et al. 2014), and comparison with sequence coevolution prop-
erties (Bakan et al. 2014). More recently, Reuter and cow-
orkers (Tiwari and Reuter 2016) performed an insightful
ENM analysis of 23 proteins belonging to five different families
that share the TIM barrel fold, to highlight the adaptability of
the fold to various functions by virtue of its intrinsic signature
dynamics. However, a large-scale systematic study of super-
families of protein folds that share very low-sequence identity
and accommodate a diversity of functions has been a chal-
lenge due to many obstacles, starting from the selection/re-
trieval of (super)family members (which cannot be done by
PDB BLAST search due to low-sequence identity), and the
optimal structural alignment of members. SignDy provides
automated tools that surmounts these obstacles and allows
for comparing the dynamics of CATH superfamily members
that share similar structures but minimal sequence identity
and a broad range of functional diversity. Another strength of
SignDy is the use of GNM (in addition to ANM), which has

been shown in numerous applications to yield results in bet-
ter agreement with experiments than ANM (Bahar et al.
2017). The tool highlights features that could not be unam-
biguously detected upon examination of individual cases,
such as the trade-off between adaptability and specificity as
discussed next.

Compromise between Adaptability and Specificity
It is well known that sequence diverges much faster than
structure. In other words, the sequence space is much larger
than the structure/fold space. The mapping of various
sequences into a small number of folds, or a relatively small
set of fold superfamilies (e.g.,�100 examined here that cover
almost 1=4 of PDB structures), does not, however, prevent
proteins from achieving a broad diversity of functions. The
latter is enabled by conformational dynamics.

The present study suggests that conformational dynamics
supports the selection of folds in two ways: first, all family
members share the fold-encoded global modes, or signature
dynamics, that presumably underlie the versatility of the fold,
for example, the different members may exhibit different
levels of interdomain opening, or global twisting, but these
are all slight rearrangements along the shared soft modes,
which facilitate the adaptation to different substrates. These
signature modes are largely conserved across different struc-
tures of the same protein as observed in previous studies
(Batista et al. 2010, 2011; Krieger et al. 2015; Ponzoni et al.
2018). Secondly, motions in the LTIF regime define the spe-
cificity of subfamilies. Members of subfamilies are unified by
their shared motions, or mechanisms of actions, in that par-
ticular regime, and they are maximally differentiated from
other subfamily members precisely by virtue of the differences
in their specific motions in this regime.

In summary, robust global dynamics is a unifying feature in
favor of the selection of the family fold; whereas LTIF dynam-
ics is the way the specificity requirement copes with common
fold. An earlier study demonstrated that global modes are
robust to perturbations, which could explain their conserva-
tion (Echave and Fernandez 2010). Their robustness to per-
turbation does not preclude the fact that these modes are
also functionally significant, as confirmed in numerous stud-
ies. To the extent that functionality is a driving force for
selecting structures, these robust modes that are functional
would be expected to play a role in the selection or evolution
of the structures that favor these modes.

Convergent versus Divergent Evolution
Despite the wealth of data on well-studied proteins such as
TIM barrel proteins, it is still not clear whether their shared
fold originates from common ancestry, or results from con-
vergent evolution. Protein folds are presumed to be more
susceptible to evolutionary convergence than sequences,
but sequence-profile-based phylogenetic analysis can detect
evolutionary relationships even among sequentially distant
members of a given superfamily, in support of divergent evo-
lution (Theobald and Wuttke 2005). Other studies show that
fitness constraints enforce evolutionary paths that preserve
protein structure despite sequence divergence down to 30%
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sequence identity (Gilson et al. 2017). Yet, the currently ex-
amined superfamilies contain members with much lower se-
quence identity, and other studies suggest that there is a limit
to amino acid divergence while maintaining the contact to-
pology/fold of the protein (Porto et al. 2005). While the cur-
rent study cannot ascertain whether the shared structures are
maintained during divergent evolution of sequences, or se-
lected by convergent evolution, we clearly distinguish robust
signature dynamics shared by family members, as well as LF
and LTIF modes that characterize subfamilies. It remains to be
established whether the prevalence of robust global motions,
and accessibility to selected LTIF modes drive the selection of
these folds.

Future Directions
Current models and methods explain�60% of the observed
variance in site-specific substitution rates in proteins,
highlighting the limitations of state-of-the-art approaches
(Echave et al. 2016), which are often based on machine learn-
ing methods of sequence analysis and other structure-based
considerations such as local packing density and solvent ac-
cessibility. Previous analysis demonstrated that local packing
density is a major determinant of evolutionary rate, while
flexibility, as described by RMSFs is not. ENMs inherently ac-
count for packing density, but also provide a higher level of
description of the complete topology. Notably, an ENM-
based mechanistic study has been shown to account for
site-specific evolutionary rates and their relationship with
packing density and flexibility (Huang et al. 2014), and an-
other assisted in improving our assessment of the impact of
SAVs (Ponzoni and Bahar 2018). While the current study does
not aim at inferring causal relationships between structural
dynamics and sequence evolution rate, the signature profiles
and covariances obtained here upon mathematically exact
evaluation and dissection of the coupled dynamics of all
residues provide information furthering our understanding
of site-specific evolutionary rates or impact of mutations.

Additional studies with SignDy by a wide range of users
with expertise on particular proteins and families would pro-
vide deeper insights into the evolution of dynamics and its
importance for function. A reasonable strategy for utilizing
SignDy in characterizing family/subfamily dynamics vis-�a-vis
structure and function evolution would be: 1) generate the
mode conservation and collectivity profiles for the investi-
gated family (e.g., fig. 5a and multiple profiles in supplemen-
tary fig. S5, Supplementary Material online); 2) identify the
conserved modes (peaks in the same figures, green curves) in
different regimes; 3) examine the corresponding mode shapes
(e.g., figs. 2 and 7 and supplementary fig. S6, Supplementary
Material online) to 4) identify critical sites responsible for the
evolutionarily conserved signature dynamics (minima in
global modes) and stability (peaks in HF modes) as well as
those susceptible to subfamily specific divergence (in con-
served LTIF modes); and 5) generate dendrograms that pro-
vide information on dynamics similarities in different regimes,
complementing sequence and structure similarities, among
family members (fig. 6 and supplementary fig. S7,
Supplementary Material online). While subfamily–subfamily

spectral distances have been analyzed here based on different
frequency windows of structural dynamics (fig. 4 and supple-
mentary fig. S4, Supplementary Material online), computa-
tions may be performed for narrower windows or even
individual modes, to identify the most discriminative modes
and infer new design/engineering principles for alterations of
function.

Materials and Methods

SignDy Architecture and Workflow
SignDy is designed as a pipeline composed of seven steps as
depicted in figure 1. We present the steps below. Technical
details are presented in the supplementary methods,
Supplementary Material online, and online tutorials.

(1) Selection of protein family members. The input to
SignDy can be entered or generated in three ways: 1)
entering a Pfam (Finn et al. 2016) or CATH-Gene3D
(Dawson et al. 2017) ID representative of a family; 2)
providing a query PDB (Burley et al. 2017) or UniProt
(The UniProt 2017) ID, or a sequence in FASTA format,
so as to extract the corresponding structural homo-
logues using either existing ProDy functions or a new
protocol designed to retrieve homologues from the
Dali server (Holm and Laakso 2016); or 3) submitting
a list of PDB codes for homologous proteins.

(2) Structural alignment and definition of core residues. This
task is conceptually simple but not trivial and critically
important. We structurally aligned family members us-
ing sequence alignments, the CE structural alignment
algorithm (Shindyalov and Bourne 1998), and the
alignments output from the Dali server (Holm and
Laakso 2016). Comparison of CE and Dali shows the
closer superposition of structures achieved by Dali, and
hence its use is suggested whenever available (see sup-
plementary methods and supplementary fig. S11,
Supplementary Material online). A “core” of N residues
is identified for each fold, composed of those sites with
high-sequence occupancy (>70%), and structurally
aligned among all members.

(3) Assessment of sequence and structure similarities
among family members and selection of a refined rep-
resentative set of homologues. Overrepresented sequen-
ces and structures as well as highly dissimilar ones are
filtered out as described in the supplementary meth-
ods, Supplementary Material online. Typically, the av-
erage sequence identity over all pairs within the family
is around 0.20 6 0.12, while pairwise RMSDs remain
<7.0 Å. This step yields a refined ensemble of M mem-
bers, including a reference structure R. Supplementary
figures S1 and S2, Supplementary Material online, dis-
play the distributions of the average sequence identi-
ties and average RMSDs calculated for the three
example families and the 116 CATH superfamilies ex-
amined here, respectively.

(4) Evaluation of mode spectra and conserved mechanisms,
using the GNM (Bahar et al. 1997; Li et al. 2016) or
ANM (Atilgan et al. 2001; Eyal et al. 2015). Two
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properties characterize each mode: shape/mechanism
(i.e., distribution of residue movements), and fre-
quency/rate. The modes are ordered from LF (slow/
soft, global) to HF (fast, local). We quantify the
mode–mode matches between R and each of the other
M �1 members of the family/ensemble. The resulting
equivalent modes for each member are reordered to
match the mode order of R, and the collectivity of each
mode is computed (see supplementary methods,
Supplementary Material online).

(5) Identification of signature dynamics. The spatial mobil-
ity of core residues driven by global modes averaged
over all members, and its variation across family mem-
bers, define the “signature dynamics” of the family as
illustrated in figure 2a–c for the LeuT, PBP-1, and TIM
barrel families. Another generic property is the cross-
correlations or the N� N covariance map between
residue motions averaged over all M members, which
can be evaluated for different frequency windows.

(6) Quantitative assessment of conservation of individual
modes and spectral overlap between family members,
and between subfamilies. The level of conservation of
mode k within a given family is measured by the
mode–mode correlation cosine computed for the kth
equivalent mode, averaged over all MðM� 1Þ=2 pairs
of members. Another criterion for the extent of simi-
larity between the mode spectra of members
A and B; is the spectral overlap, SOij A; Bð Þ; a cu-
mulative property evaluated for the subset of i � k
� j modes (see supplementary methods,
Supplementary Material online). SO_ij (A,B) is evalu-
ated for different frequency regimes by suitable selec-
tion of the indices i and j. Mode–mode correlation
cosines (for individual modes) and spectral overlaps
(for sets of modes) both serve as metrics for assessing
the conservation of dynamics.

(7) Classification of family members based on their dy-
namics. A dynamics-based dendrogram for the family
(analogous to a phylogenetic tree) is calculated using
the spectral distance between pairs of members A
and B, dij A; Bð Þ ¼ cos�1 SOij A; Bð Þ

� �
; as a metric.

The differentiation of collective motions in different
regimes ði � k � jÞ between the m subfamilies is
obtained by averaging dij A; Bð Þ values over all mem-
bers belonging to each pair of subfamilies. These sub-
family-subfamily distances conveniently displayed in
m � m matrices for each frequency range
i � k � j; matrices provide a clear visualization
of the conservation or differentiation of different
mode regimes across subfamilies (see supplementary
methods, Supplementary Material online and fig. 4a-d
and supplementary fig. S4a-d, Supplementary Material
online). Trees based on structure and sequence
distances, use as metrics RMSDs and Hamming
distances, dH A; Bð Þ ¼ 1� seq identity fraction, re-
spectively. We verified that the RMSDs yield results
similar to those obtained with TM score, another mea-
sure of structural difference that overcomes some

potential problems with the RMSD measure (Zhang
and Skolnick 2004) (supplementary fig. S12,
Supplementary Material online).

Data Availability
The data sets used for generating the results are presented in
supplementary tables S1–S4, Supplementary Material online.

Code Availability
The source code for ProDy can be found on GitHub at https://
github.com/prody/ProDy; last accessed: 04/26/2019. ProDy
and SignDy computing language (Python) is essential to ex-
tensibility and interoperation with a wealth of modeling tools.
Functions for generating ensembles are available in the en-
semble module; those for generating mode ensembles and
analyzing signature dynamics can be found in the SignDy
module; and those for retrieving data from CATH and Dali
are available in the database module. All code for generating
the results and figures presented in the study are available in
the form of tutorials on the ProDy website: http://prody.csb.
pitt.edu/tutorials/signdy_tutorial/; last accessed: 04/26/2019.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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