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Abstract

Read alignment is the central step of many analytic pipelines that perform variant calling. To reduce error, it is common practice 
to pre- process raw sequencing reads to remove low- quality bases and residual adapter contamination, a procedure collectively 
known as ‘trimming’. Trimming is widely assumed to increase the accuracy of variant calling, although there are relatively few 
systematic evaluations of its effects and no clear consensus on its efficacy. As sequencing datasets increase both in number 
and size, it is worthwhile reappraising computational operations of ambiguous benefit, particularly when the scope of many 
analyses now routinely incorporates thousands of samples, increasing the time and cost required. Using a curated set of 17 
Gram- negative bacterial genomes, this study initially evaluated the impact of four read- trimming utilities (Atropos, fastp, 
Trim Galore and Trimmomatic), each used with a range of stringencies, on the accuracy and completeness of three bacterial 
SNP- calling pipelines. It was found that read trimming made only small, and statistically insignificant, increases in SNP- calling 
accuracy even when using the highest- performing pre- processor in this study, fastp. To extend these findings, >6500 publicly 
archived sequencing datasets from Escherichia coli, Mycobacterium tuberculosis and Staphylococcus aureus were re- analysed 
using a common analytic pipeline. Of the approximately 125 million SNPs and 1.25 million indels called across all samples, the 
same bases were called in 98.8 and 91.9 % of cases, respectively, irrespective of whether raw reads or trimmed reads were 
used. Nevertheless, the proportion of mixed calls (i.e. calls where <100 % of the reads support the variant allele; considered 
a proxy of false positives) was significantly reduced after trimming, which suggests that while trimming rarely alters the set 
of variant bases, it can affect the proportion of reads supporting each call. It was concluded that read quality- and adapter- 
trimming add relatively little value to a SNP- calling pipeline and may only be necessary if small differences in the absolute 
number of SNP calls, or the false call rate, are critical. Broadly similar conclusions can be drawn about the utility of trimming 
to an indel- calling pipeline. Read trimming remains routinely performed prior to variant calling likely out of concern that doing 
otherwise would typically have negative consequences. While historically this may have been the case, the data in this study 
suggests that read trimming is not always a practical necessity.

DATA SUMMARY
All analyses conducted in this study used publicly available 
third- party software. All data and parameters necessary to 
replicate these analyses are provided within the article or 
through supplementary data files. A total of >6500 Sequence 
Read Archive (SRA) sample accession numbers, representing 
Illumina paired- end sequencing data from Escherichia coli, 
Mycobacterium tuberculosis and Staphylococcus aureus, and 
used to evaluate the impact of fastq pre- processing, are listed 
in Tables S1, S2 and S3 (available with the online version of 

this article). This study makes use of Illumina, Oxford Nano-
pore Technologies (ONT) and PacBio sequencing data from 
a study by De Maio et al. [1], available via the National Center 
for Biotechnology Information (NCBI) SRA under BioProject 
PRJNA422511 (https://www. ncbi. nlm. nih. gov/ bioproject/ 
PRJNA422511). The associated Illumina/ONT and Illumina/
PacBio assemblies are available via FigShare (https:// doi. org/ 
10. 6084/ m9. figshare. 7649051). The Illumina reads were used 
in a previous evaluation of 209 SNP- calling pipelines [2], for 
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which the SNP call truth sets, also used here, are available via 
the GigaDB repository (http:// dx. doi. org/ 10. 5524/ 100694).

INTRODUCTION
Read alignment is the central step of many analytic pipelines 
that perform variant calling. To reduce error, it is common 
practice to pre- process raw sequencing reads to remove low- 
quality bases and residual adapter contamination, a procedure 
collectively known as trimming. This is because, assuming 
Illumina sequencing data, errors are non- randomly distrib-
uted over the length of the read, clustering towards the 3′ 
end (which is also where adapters are located). These poorer- 
quality flanking regions are frequently trimmed to leave only 
the higher- quality internal bases.

Numerous pre- processing tools (‘read trimmers’) exist for this 
purpose, which often simultaneously perform both quality- 
and adapter- trimming. However, previous studies differ as to 
whether the effect of trimming on downstream SNP calling 
is generally beneficial [3, 4], generally minimal [5], or condi-
tional on the genome and aligner used [6]. Similarly, quality 
trimming was reported to have little effect on the complete-
ness of de novo genome assembly [7] and be detrimental to 
de novo transcriptome assembly unless comparatively gentle 
(i.e. trimming on the basis of quality score <5) [8] although 
for assembly purposes, adapter trimming is generally recom-
mended [9]. Taken together, the benefits of trimming do not 
appear universal and in many situations may not be realized 
at all.

As sequencing datasets increase both in number and size, it is 
worthwhile reappraising computational operations of ambig-
uous benefit, particularly when the scope of many analyses 
now routinely incorporate thousands of samples. To that end, 
this study evaluates the effect of several read- trimming strate-
gies on the subsequent accuracy and completeness of various 
bacterial variant- calling pipelines. Four commonly used read 
trimmers – fastp [10], Trimmomatic [11], Atropos [12] and 
TrimGalore (the latter two employing Cutadapt [13]), each 
of which applies a different strategy to adapter detection and 
removal – were evaluated across a range of stringencies.

To assess the effect of pre- processing stringency upon the 
precision (positive predictive value) and recall (sensitivity) of 
SNP calling, I quality- and adapter- trimmed 17 sets of 150 bp 
Illumina HiSeq 4000 paired- end reads before calling SNPs 
relative to a set reference genome using three different pipe-
lines (the pairwise combination of one read aligner, bwa- mem 
[14], and three variant callers, LoFreq [15], mpileup [16] and 
Strelka [17]). These reads represent environmentally sourced 
samples of the genera Citrobacter, Klebsiella, Escherichia and 
Enterobacter, and were obtained from a previous study [1] 
and curated for use in a large- scale comparison of bacterial 
SNP- calling pipelines [2]. The three pipelines chosen for the 
present study were previously found to be among the highest 
performing when tested on divergent bacterial data [2].

To determine the effect of trimming upon indels as well 
as SNPs, and upon a larger- scale dataset, I applied the 

highest- performing strategy identified for the Gram- negative 
dataset to a set of >6500 publicly archived Escherichia coli, 
Mycobacterium tuberculosis and Staphylococcus aureus 
sequencing reads. This represents a substantive, and diverse, 
range of Illumina sequencing platforms, library preparation 
strategies, read lengths, insert sizes and coverage depths. 
In this dataset, I have no a priori knowledge of which SNP 
and indel calls are accurate, although for the purpose of this 
analysis this is not relevant – the intention was to compare 
two sets of variants called before and after a common set of 
pre- processing steps were applied, and so I was not interested 
in the correctness of each call but whether the same calls 
were made in each condition. This dataset is sufficiently large 
(approximately 125 million SNPs and 1.25 million indels) 
that I can generalize about the benefits of read trimming as 
a routine procedure.

METHODS
Evaluating the effect of read trimming on SNP-
calling accuracy
To evaluate the effect of read trimming upon SNP calling, 
I first required a truth set of SNPs against which compari-
sons could be made. These were generated as previously 
described [2] and briefly recapitulated here. Firstly, a dataset 
was obtained from a published study [1] that comprised 17 
parallel sets of 150 bp Illumina HiSeq 4000 paired- end short 
reads, and both Oxford Nanopore Technologies (ONT) and 
SMRT Pacific Biosciences (PacBio) long reads for four Entero-
bacter spp., four Klebsiella spp., four Citrobacter spp. and 
three E. coli (all environmentally sourced), plus subcultures 
of stocks from two reference strains, Klebsiella pneumoniae 

Impact Statement

Short- read sequencing data is routinely pre- processed 
before use, to trim off low- quality regions and remove 
contaminating sequences introduced during its prepara-
tion. This cleaning procedure – read trimming – is widely 
assumed to increase the accuracy of any later analyses, 
although there are relatively few systematic evaluations 
of trimming strategies and no clear consensus on their 
efficacy. In this study, real sequencing data from 17 bacte-
rial genomes was used to show that several commonly 
used read- trimming tools, used across a range of strin-
gencies, had only a minimal, statistically insignificant, 
effect on later SNP calling. To extend these results, >6500 
publicly archived sequencing datasets were re- analysed, 
calling SNPs and indels both with and without any read 
trimming. Using a common analytic pipeline, it was found 
that of the approximately 125 million SNPs within this 
dataset, 98.8 % were identically called irrespective of 
whether raw reads or trimmed reads were used. Taken 
together, these results question the necessity of read 
trimming as a routine pre- processing operation.

http://dx.doi.org/10.5524/100694
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subsp. pneumoniae MGH 78578 and E. coli CFT073. Sample 
accession numbers are listed in Table S4.

To assess how divergence between the source and reference 
genomes affected the performance of SNP- calling pipelines, I 
used this Gram- negative dataset to generate truth sets of SNPs. 
To do so, whole- genome alignments were made between each 
closed assembly and each species’ reference genome using 
both nucmer (from MUMmer v4.0.0beta2) [18] and Parsnp 
v1.2 [19] with default parameters, with common SNPs then 
identified within one- to- one alignment blocks. The set of 
SNPs identically called by both nucmer and Parsnp in both 
de novo assemblies were considered the truth set and used 
to evaluate the performance of each trimmer/aligner/caller 
pipeline, as follows.

I first adapter- and quality- trimmed each of the 17 sets of 
Illumina reads using four different read trimmers – Atropos 
v1.1.25 [12], fastp v0.20.1 [10], TrimGalore v0.5.0 (https:// 
github. com/ FelixKrueger/ TrimGalore, accessed 1 April 
2020) and Trimmomatic v0.38 [11] – as well as retaining an 
‘untrimmed’ control. Read trimmers often have rich feature 
sets, although my concern with this study was not to system-
atically evaluate the broad range of parameters by which a 
read may be trimmed but to assess, in general, the added- 
value benefit of trimming when a minimum- effort applica-
tion was made for each program. In this respect, I considered 
trimming to encompass two simultaneous pre- processing 
operations: the removal of adapter sequence (using default 
parameters where possible) and 3′ quality- trimming (across 
a range of stringencies).

I configured each trimmer to automatically detect and remove 
adapter sequence, where this was the default setting (fastp, 
TrimGalore), or to remove the Illumina universal adapter, 
should specification be required (Atropos, Trimmomatic). 
As Illumina reads degrade in quality towards the 3′ end, 3′ 
trimming is by far the most commonly applied pre- processing 
operation. Alongside adapter removal, I removed trailing 
bases should they fall below Phred quality thresholds of 
2, 5, 10, 20 or 30 (the Phred scale being logarithmic, this 
represents base- call accuracies of 37, 68, 90, 99 and 99.9 %, 
respectively). I also required a minimum post- trimming 
read length of 50 bp and, where possible, for each trimmer to 
output both paired and unpaired reads, i.e. those reads where 
both ends of a pair are retained after trimming, and those 
where one end is discarded (by default, fastp and TrimGalore 
discard the entire pair if only one end meets the acceptance 
criteria). Finally, I did not explicitly disable any filter crite-
rion implemented automatically, considering this to be the 
default recommendation for general- purpose use. The specific 
parameters used for each trimmer are detailed in Table S5.

Using the trimmed (or, as a control, untrimmed) Illumina 
reads, and the reference genome for each species (listed in 
Table S4), SNPs were then called using the pairwise combina-
tion of the aligner bwa- mem v0.7.17 [14] with three variant 
callers, LoFreq v2.1.2 [15], mpileup v1.7 [16] and Strelka 
v2.9.2 [17], each used with default parameters. Each pipeline 
applied a common set of post- processing steps: BAM files 

were cleaned, sorted, had duplicate reads marked and were 
indexed using Picard Tools v2.17.11 [20], and VCF records 
were regularized using the vcfallelicprimitives module of 
vcflib v1.0.0- rc2 (https:// github. com/ ekg/ vcflib, accessed 1 
April 2020) to ensure different representations of the same 
variant were presented in the same way (this module does 
so by, for example, left- aligning indels and splitting complex 
variants into individual VCF records). Finally, VCF records 
were filtered using BCFtools v1.7 [16] to retain only biallelic 
SNPs with call quality >20 and >5 reads mapped at that posi-
tion, >75 % of which, including at least one in each direction, 
supporting the alternative allele (as in [21], and broadly 
similar to those recommended by a previous study for maxi-
mizing SNP- calling precision [22]).

To evaluate each pipeline, I calculated precision (positive 
predictive value), recall (sensitivity) and F- score, a summary 
measure which considers precision and recall with equal 
weight, producing a value between 0 and 1 (perfect preci-
sion and recall). Precision was calculated as TP/(TP+FP), 
recall as TP/(TP+FN) and F- score as 2×[(precision×recall)/
(precision+recall)], where TP, FP and FN are the number 
of true- positive, false- positive and false- negative SNP calls, 
respectively.

The command lines used for these pipelines were also previ-
ously implemented [2] within a suite of Perl scripts (so as 
to handle subsidiary data manipulation operations and 
calculate summary statistics), available at https:// github. com/ 
oxfordmmm/ Geno micD iver sity Paper. The SNP call truth sets 
are available via the GigaDB repository at http:// dx. doi. org/ 
10. 5524/ 100694.

Finally, when SNP calling using publicly sourced E. coli,  
M. tuberculosis and S. aureus data (see below), I used only one 
of the above pipelines, fastp (with trailing Q <20) /bwa- mem/
mpileup, aligning all reads relative to E. coli K-12 substrain 
MG1655 (RefSeq assembly accession no. GCF_000005845.2), 
M. tuberculosis H37Rv (RefSeq assembly accession no. 
GCF_000195955.2) and S. aureus subsp. aureus NCTC8325 
(RefSeq assembly accession no. GCF_000013425.1). This 
fastp/bwa- mem/mpileup pipeline was as previously used 
upon the Gram- negative dataset, although to reduce runtime 
was modified to omit the BAM file cleaning (i.e. Picard 
CleanSam), VCF regularization and VCF filtering steps (regu-
larization in any case only necessary when comparing VCF 
records produced by different variant callers). Command 
lines are detailed in Table S5.

Evaluating the effect of trimming upon a diverse 
range of publicly archived sequencing datasets
To obtain a broad range of sequencing data across multiple 
laboratories, I downloaded the daily updated National Center 
for Biotechnology Information (NCBI) Sequence Read 
Archive (SRA) BioProject summary file (n=417 689 BioPro-
jects; ftp:// ftp. ncbi. nlm. nih. gov/ bioproject/ sumrefseqmary. 
txt, accessed 22 March 2020), parsing it to extract BioProject 
IDs with a data type of ‘genome sequencing’ and associated 
NCBI taxonomy IDs of 562 (E. coli), 1773 (M. tuberculosis) 

https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
https://github.com/ekg/vcflib
https://github.com/oxfordmmm/GenomicDiversityPaper.
https://github.com/oxfordmmm/GenomicDiversityPaper.
http://dx.doi.org/10.5524/100694.
http://dx.doi.org/10.5524/100694.
ftp://ftp.ncbi.nlm.nih.gov/bioproject/summary.txt
ftp://ftp.ncbi.nlm.nih.gov/bioproject/summary.txt
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and 1280 (S. aureus). These are ‘top level’ taxonomy IDs, 
encompassing samples for which an additional level of 
strain- specificity could not be made. These top level IDs were 
chosen so that, alongside the criteria detailed below, a set of 
samples would be obtained that was large enough to draw 
sound conclusions (E. coli, M. tuberculosis and S. aureus being 
three of the more commonly sequenced bacteria), but not so 
large as to be computationally expensive to analyse [which 
would be the case if obtaining all whole- genome sequencing 
(WGS) data from every E. coli, M. tuberculosis and S. aureus 
strain]. These three species were chosen to represent different 
degrees of genomic diversity, from, broadly speaking, high  
(E. coli) to low (M. tuberculosis). I used the Entrez Direct 
suite of utilities (https://www. ncbi. nlm. nih. gov/ books/ 
NBK179288/, accessed 1 May 2019) to associate each BioPro-
ject ID with a list of SRA sample and run IDs (a ‘RunInfo’ 
file). RunInfo files were parsed to retain only those runs 
where ‘Platform’ was ‘ILLUMINA’, ‘Model’ (i.e. sequencer) 
contained ‘HiSeq’ or ‘MiSeq’ (all of which use TruSeq3 
adapters), ‘LibrarySource’ was ‘GENOMIC’, ‘LibraryStrategy’ 
was ‘WGS’, ‘LibraryLayout’ was ‘PAIRED’, ‘LibrarySelection’ 
was ‘RANDOM’, ‘avgLength’ was ≥150 (i.e. mean read length 
of 150 bp) and ‘spots’ was >1 and <5 (i.e. approximating a 
read depth of >1 and <5 million reads). The upper limit on 
read depth was chosen to minimize the computational cost 
of processing, although read depth remains sufficiently high 
as to not compromise SNP calling. For instance, as the E. coli 
genome is approximately 5 million bp in length, sequencing 
1–5 million 150 bp paired- end reads represents a mean base- 
level coverage of approximately 60- to 300- fold. These criteria 
generated sets of 1661 E. coli, 4416 M. tuberculosis and 1156 
S. aureus sequencing reads, detailed in Tables S1, S2 and S3, 
respectively.

Publicly archived sequencing data often does not contain 
computationally accessible metadata regarding any infor-
matic pre- processing and nor is it immediately apparent 
whether pre- processing has already been performed. As 
such, I excluded from consideration all samples where <1 % 
of the original bases could be trimmed, reasoning that in these 
circumstances the sample had already been pre- processed 
using broadly similar trimming criteria to those applied here. 
The final E. coli dataset comprised 1606 samples, representing 
a particularly diverse set of strains. Relative to the E. coli 
reference, K-12 substrain MG1655, the majority of samples 
contained between approximately 10 000 and 100 000 SNPs, 
and 100 and 500 indels, although with outliers containing 
as few as 15 SNPs and 3 indels and as many as 308 000 SNPs 
(>103 million SNPs, and >500 000 indels, in total), with a 
mean of 64 476 SNPs and 316 indels per sample (Table S6). 
The final M. tuberculosis dataset comprised 3946 samples, 
incorporating subsets from two large- scale studies from South 
Africa (representing >2000 of the original 4416 samples) [23] 
and Canada (>1000 samples) [24]. Each sample contained 
between approximately 170 and 2500 SNPs, and 20 and 500 
indels (approx. 5 million SNPs and approx. 0.5 million indels 
in total). Across all samples, the mean number of SNPs and 
indels relative to the M. tuberculosis reference, H37Rv, was 

1238 and 121, respectively (Table S7). The final S. aureus 
dataset comprised 1100 samples, each of which contained 
between approximately 1000 and 60 000 SNPs, and 70 and 550 
indels, relative to the S. aureus reference genome, NCTC8325 
(mean 15 167 SNPs and 223 indels per sample, with approx. 
17 million SNPs and approx. 250 000 indels in total) (Table 
S8).

RESULTS AND DISCUSSION
Read trimming has minimal effect on SNP-calling 
accuracy
It has previously been described how the performance of 
a bacterial SNP- calling pipeline is affected by divergence 
between the genome from which reads are sequenced and 
the genome to which reads are aligned, the latter often being 
the NCBI ‘reference genome’, a high- quality (albeit often 
arbitrary) species representative [2]. To do so, I obtained 
data from a diverse range of environmentally sourced Gram- 
negative bacteria (as described in [1] and summarized in Table 
S4) and used it to generate truth sets of SNPs for evaluation 
purposes, as previously detailed [2] (and briefly recapitulated 
in Methods). I chose three SNP- calling pipelines found to be 
generally higher performing, even when reads were aligned 
to particularly divergent genomes [2]: the pairwise combina-
tion of the aligner bwa- mem [14] with three different variant 
callers, LoFreq [15], mpileup [16] and Strelka [17], each used 
with a common set of post- alignment processing operations.

I used these three pipelines to call SNPs across the range of 
Gram- negative bacteria, both in the absence of read pre- 
processing and after prefixing to each pipeline one of four 
different read trimmers: Atropos, fastp, TrimGalore and 
Trimmomatic. Each trimmer was configured to remove 
adapter sequence as well as to trim bases from the 3′ end of 
each read, on the basis of Phred quality score (Q) thresholds 
2, 5, 10, 20 and 30 (the Phred scale being logarithmic, this 
represents base call accuracies of 37, 68, 90, 99 and 99.9 %, 
respectively). In total, this dataset contained 1071 records, 
comprising 17 species × 4 read trimmers × 5 Phred score 
thresholds × 3 variant callers, plus 17 species × 3 variant 
callers provided untrimmed data (i.e. not including the latter, 
50 records per trimmer/Phred threshold combination).

I found that across the full range of genomes and aligner/caller 
combinations, trimming had minimal effect on overall SNP- 
calling accuracy, with only miniscule, insignificant, changes 
observed in F- score relative to untrimmed data (these changes 
visible only in the third decimal place of F- score; see Fig. 1, 
Table S5). It appeared that the highest- performing trimming 
strategy employed fastp, which, relative to untrimmed data, 
produced consistent, albeit statistically insignificant, increases 
in F- score irrespective of trailing Phred threshold (the median 
F- score using untrimmed data was 0.9579 and, using fastp 
with a threshold of Q <20, 0.958; Mann–Whitney U P=0.976). 
This pattern appears driven by relatively small decreases in 
precision (Fig. S1) compensated by slightly larger increases 
in recall (Fig. S2), which suggests that fastq pre- processing 

https://www.ncbi.nlm.nih.gov/books/NBK179288/
https://www.ncbi.nlm.nih.gov/books/NBK179288/
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enables a small proportion of reads to map that otherwise 
would not, allowing lower- coverage SNPs to be called that 
would otherwise be omitted. It is important to note that 
fastp differs from the other trimmers in that, unless explic-
itly disabled, it implements several filters by default – that is, 
it performs more quality- trimming operations than simply 
3′ trimming (discussed below). Notably, 3′ trimming alone 
(as implemented by the other three trimmers) appears to 
uniformly, albeit marginally, improve precision (Fig. S1), 
although at the expense of recall (Fig. S2) and thereby overall 
F- score (Fig. 1). This is also the case for fastp if repeating the 
analysis with the default filters disabled (Fig. S3).

Nevertheless, if considering SNP calling in absolute terms, 
these results suggest that there is no overt disadvantage to 
trimming, but little substantive benefit either. To ensure this 
conclusion is not generalized on the basis of a small number 
of samples, I selected one SNP- calling pipeline (bwa- mem/
mpileup) and then applied one of the higher- performing 

trimming strategies (fastp with trailing Q <20) to hundreds 
of publicly sourced, and genomically diverse, E. coli samples 
(Table S1), calling SNPs in all cases relative to a single refer-
ence genome and applying a common set of post- processing 
operations to restrict analysis only to higher- confidence 
calls (see Methods).

I found that trimming, in general, improved the proportion of 
reads that could be aligned (Fig. 2a), although SNP calling – that 
is, the interpretation of those alignments – was not substantially 
altered. In 1579 of the 1606 E. coli samples, >99 % of SNPs could 
be identically called irrespective of read trimming (>99.9 % in 
385 samples, 24 % of the total) (Fig. 2b, Table S6). Of the total 
set of >103 million E. coli SNPs, 99.85 % were identically called 
irrespective of any read trimming. It is important to clarify 
that by identically called I am referring only to whether the 
base calls are the same, e.g. G/A, and do not distinguish here 
between a G/A homozygote and a G/A heterozygote, this being 
a matter of VCF post- processing criteria (see below).

Fig. 1. Effect of read trimming upon F- score, a measure of overall SNP- calling accuracy, in a curated Gram- negative dataset. Median 
difference in F- score per trimmer relative to untrimmed data, across a range of trimming stringencies (i.e. varying the Phred score 
threshold for trimming 3′ bases). Boxes represent the interquartile range of the F- score, with midlines representing the median. Upper 
and lower whiskers extend, respectively, to the largest and smallest values no further than 1.5× the interquartile range. Data beyond the 
ends of each whisker are outliers and plotted individually. Columns are ordered according to median F- score and coloured according to 
the trimmer used. The dashed line y=0 is marked in black. The raw data for this figure are available in Table S5. Boxplots showing the 
effect of read trimming upon precision and recall are shown, respectively, in Figs S1 and S2. Note that fastp implements quality filters 
other than 3′ trimming by default, which for the data in this figure were retained. A version of this figure with these filters disabled is 
available in Fig. S3.



6

Bush, Microbial Genomics 2020;6

The negative correlation between the percentage of bases 
removed by trimming and the percentage of identically called 
SNPs (Fig. 2b) likely reflects reduced sequencing depth in 
the more extreme cases – some samples are evidently lower 
quality (according to the filter criteria applied), with >20 % 
of bases trimmed. In one of the more extreme cases, sample 
SRS3938880 (collected during a transnational survey of veter-
inary pathogens [25]), 40 % of its original set of 1000 million 
bases were discarded, although compared to the raw data, 
99.1 % of the total set of 53 701 SNPs could still be called (Table 
S6).

In absolute terms, it also appears that approximately as many 
SNPs per sample were called only when using trimmed reads 

as when using raw reads (Fig. 2c). However, even if I was to 
assume that every SNP called only when using raw reads was 
erroneous (that is, it is an error that trimming will resolve), 
this remained <200 SNPs for 1598 of 1606 samples (Table S6).

Although I was unable to ascertain the accuracy of any of the 
SNP calls in the publicly sourced dataset, and thereby which 
were true positives, I can nevertheless assume that mixed 
calls (those where <100 % of reads mapped at that position 
support the variant allele) are a proxy of false positives, as in 
a previous study [3]. As the proportion of mixed SNP calls is 
marginally higher for raw than trimmed data, this suggests 
that SNP calling using raw data may introduce a number of 
errors that trimming would resolve (the median percentage 

Fig. 2. Effect of read trimming upon SNP calls made using publicly archived E. coli sequencing data. Trimming marginally increases the 
proportion of successfully aligned reads (a), although the interpretation of those alignments (i.e. SNP calling) is not substantially altered, 
with the vast majority of SNPs (>99 %) called irrespective of trimming (b). This value is 100 % for a number of samples containing very 
few SNPs (approximately 15) relative to the E. coli reference genome. A relatively small number of SNPs (in the majority of cases <200) 
are only called when using either raw or trimmed data, but not both (c). The proportion of mixed SNP calls, considered a proxy of false- 
positive calling, decreases when using trimmed data (d). The raw data for this figure are available in Table S6 and represent 1606 E. coli 
samples, with a mean of 64 476 SNPs per sample. The red lines denote y=x.
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of mixed SNP calls is 10.26 % when using untrimmed data, 
and 9.05 % when using trimmed data; Mann–Whitney U 
P=9.1×10−7; Fig. 2d).

Taking the above results together, I can conclude that 
compared to raw reads, the use of trimmed reads rarely 
changes the variant base called (see Fig. 2b), but does alter 
the level of support for a given variant in approximately 1 % 
of cases. However, it is worth noting that the identification of 
(potentially spurious) mixed calls is by definition a VCF post- 
processing operation and so could be applied regardless of 
any fastq pre- processing, and at varying levels of stringency.

E. coli is a characteristically diverse species, and so in this 
analysis the mean number of SNPs per sample was relatively 
high, at approx. 70 000 (Table S6). A consequence of this 
genomic diversity is that it minimizes the variance introduced 
by small differences in SNP calling, before and after trimming, 
which in another situation could be critical. To explore the 
effect of trimming on a clonal system, where only a small 
number of SNPs are expected (and so trimming- associated 
differences would have greater impact), I repeated the analysis 
using 3946 publicly sourced M. tuberculosis samples (Tables 
S2 and S7).

Unlike E. coli, which is sufficiently diverse that only approxi-
mately 75 % of reads per sample could be aligned to the 
reference genome (this proportion marginally increased after 
trimming; Fig. 2a), virtually all M. tuberculosis reads could 
be successfully aligned to the reference, H37Rv, regardless of 
trimming (although, as with E. coli, trimming also increased 
the proportion of aligned reads, as shown in Fig. 3a). Similar 
results were observed for M. tuberculosis as for E. coli with, in 
the majority of cases, >98 % of SNPs identically called irrespec-
tive of read trimming (Fig. 3b), a small number of SNPs (often 
<50) only called when using raw reads or trimmed reads, but 
not both (Fig. 3c), and a small but significant decrease in the 
number of mixed calls made after trimming (the median 
percentage of mixed calls is 18.9 % when using untrimmed 
data, and 14.1 % when using trimmed data; Mann–Whitney 
U P <2.2×10−16; Fig. 3d). Quantitatively similar results were 
again observed if expanding the analysis to incorporate 1100 
publicly archived S. aureus samples (Tables S3 and S8, Fig. 
S4), with the exception that there was no significant decrease 
in the number of mixed calls made by trimming (the median 
percentage of mixed calls is 12.7 % when using untrimmed 
data, and 12.6 % when using trimmed data; Mann–Whitney 
U P=0.48; Fig. S4). Across the combined set of approximately 
125 million SNPs from all three species, 98.8 % of SNPs could 
be identically called irrespective of any read trimming.

Read trimming has slightly greater effect on indel 
calling compared to SNP calling
For the purpose of this study, my primary focus has been 
SNP calling, although the same pipelines simultaneously call 
indels. Read trimming appears to have a slightly greater effect 
on indel compared to SNP calling, although I interpret this 
data with caution. Across the combined set of approximately 
1.25 million indels from the 1606 E. coli, 3946 M. tuberculosis 

and 1100 S. aureus samples, 91.9 % of indels could be iden-
tically called irrespective of any read trimming (Tables S6, 
S7 and S8), a lower proportion than observed with SNPs. 
However, there are fewer indels per sample than there are 
SNPs (in some cases, as few as three), so it is important to note 
that measurements of the percentage of ‘identically called 
indels’ are inherently noisier. Furthermore, it is reasonable 
to believe that compared to SNP calls, a greater proportion of 
the indel calls are incorrect, irrespective of whether reads are 
trimmed or not. This reflects the technical difficulty in indel 
calling, which often necessitates dedicated algorithms (see 
performance reviews [26, 27]). In my dataset, the majority 
of indel calls are mixed (Fig. S5), suggesting a greater degree 
of ambiguity in real alignment around indels than SNPs, and 
thereby false- positive calling (across the three species, 93.1 % 
of the total indel calls are mixed, even when using trimmed 
reads; Tables S6, S7 and S8). I conclude that broadly similar 
findings can be seen with indels as with SNPs – that trimming 
has little effect on the accuracy and completeness of a set of 
variant calls – although note that as indel calling is more tech-
nically challenging than SNP calling, it may be argued that 
any means of reducing error, including trimming, is of value.

Recommendations for read trimming prior to SNP 
calling
I found that read trimming, in general, had minimal effect on 
the performance of a bwa- mem/mpileup SNP- calling pipe-
line (a finding corroborated with other pipelines; discussed 
below). This suggests that when analysing isolated bacterial 
strains, routine read trimming is not always a practical neces-
sity. If the purpose of SNP calling is to construct large- scale 
bacterial phylogenies (for instance, to infer transmission), 
then trimming appears of little value given the majority of 
SNPs in a sample are identically called regardless of whether 
reads are trimmed or not. By contrast, if reducing the likeli-
hood of even a small number of false- positive calls is essential 
(for instance, when predicting antimicrobial resistance) then 
trimming may yet prove critical: not all SNPs are equally 
important when it comes to drawing biological conclu-
sions. Supporting this point, I found that after re- analysing a 
large number of publicly archived datasets there were small 
(approx. 1 %) but significant decreases in the proportion of 
mixed SNP calls made when using trimmed compared to 
untrimmed data (Figs 2d and 3d), these considered a proxy 
for false- positive calls.

Further to this, I found that some SNPs were only called 
when using trimmed reads. It is possible these SNPs reside 
within complex regions of the genome more susceptible 
to error- prone alignment, and which trimming can help 
mitigate. Nevertheless, when considering the E. coli dataset 
(n=1606 samples), the number of SNPs only called using 
trimmed reads is low in absolute terms (<200 per sample 
for the majority of samples, collectively representing 83 820 
calls; Fig. 2c). This set of 83 820 calls comprises 31 164 unique 
SNPs, of which 24 681 (79 %) were called only in one sample 
(Table S6). This high proportion suggests that trimming does 
not for the most part help align reads around specific SNPs, 
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those found within regions more prone to alignment error 
(because if it did, SNPs only detectable using trimmed reads 
would be called across multiple samples). Nevertheless, some 
exceptions were apparent, including 5 SNPs within a 46 bp 
region (bases 607 640–607 686), that were each called in >100 
samples, but only after trimming (Table S6).

Many of the justifications for routine read trimming relate 
to its simplicity: it is an easily performed procedure. In this 
respect, if it is only necessary to process a limited number of 
samples and computational resources are not at a premium, 
there appears little detriment to trimming – albeit, as I 
have shown, not necessarily much benefit either. However, 

if computational resources are at a premium, then various 
factors may be taken into consideration before attempting to 
trim reads. Firstly, when a trimmer is provided paired- end 
reads as input, it can produce both paired- and single- end 
reads as output, the latter when only one end of a pair is 
discarded. Directing paired and unpaired reads to separate 
sets of output files is necessary as, in general, a read aligner, 
if aligning paired- end reads, requires an identical number of 
reads in each input fastq. However, as numerous aligners 
do not allow the simultaneous provision of paired- end 
and unpaired input (with some exceptions, such as hisat2 
[28]), any subsequent alignment step would need to be run 

Fig. 3. Effect of read trimming upon SNP calls made using publicly archived M. tuberculosis sequencing data. This figure recapitulates 
patterns seen in Fig. 2 and illustrates the effect of read trimming upon SNP calls made in a clonal species, M. tuberculosis, for which 
relatively high alignment accuracy is expected and the impact of misalignment (i.e. false- positive SNP calls) accordingly greater. 
Trimming marginally increases the proportion of successfully aligned reads, albeit from a high baseline value, >98 % (a). The vast 
majority of SNPs (>98 %) are nevertheless called irrespective of any trimming (b). A relatively small number of SNPs (often <40) are only 
called when using either raw or trimmed data, but not both (c). The proportion of mixed SNP calls, considered a proxy of false- positive 
calling, decreases when using trimmed data (d). The raw data for this figure are available in Table S7 and represent 3946 M. tuberculosis 
samples, with a mean of 1238 SNPs per sample. The red lines denote y=x.
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twice and the output BAM files merged, an additional (and, 
therefore, time- consuming) set of operations. The default 
parameters of fastp and TrimGalore are to output only the 
trimmed paired- end reads which, although convenient, does 
discard a small proportion of otherwise useable single- end 
data. I found, however, that these single- end reads were often 
few in number and negligibly informative, and so in many 
cases could reasonably be dispensed with. I re- processed the 
1606 E. coli samples, discarding those reads unpaired after 
trimming, and found negligible difference in the total number 
of SNPs called using only paired- end reads and using all reads 
(the median number of SNPs called when only using paired-
 end reads and when using all reads are 55 137 and 55 147, 
respectively; Mann–Whitney U P=0.871; Fig. S6). There was 
also a small decrease in the number of mixed calls made when 
discarding the unpaired reads, although this difference was 
not significant (the median percentages of mixed calls made 
when retaining and discarding unpaired reads were 9.03 and 
8.51 %, respectively; Mann–Whitney U P=0.055) (Fig. S6).

Secondly, one needs to consider the computational cost of 
pre- processing. If calling SNPs for a large number of samples, 
this cost may be weighed negatively against the relative speed 
and simplicity of post- processing a VCF record – for instance, 
by masking repetitive regions and applying positional filters 
(both quick operations), SNP- calling precision can easily be 
increased [22]. I reasoned that as trimming had minimal 
effect on the overall number of SNP calls made, then if it was 
to be performed, it should at least be done quickly. While 
no in- depth assessment of runtime was made in this study, 
my experience was that there was very little reason to use a 
comparatively slow trimmer, and so of those considered here, 
fastp, previously benchmarked as up to 5× faster than Trim-
momatic and Cutadapt [10] (and with a richer feature set), 
was greatly preferred. When processing the Gram- negative 
dataset using a bwa- mem/mpileup pipeline, I found that trim-
ming with fastp increased the total runtime by either 5 or 
27 min, should reads unpaired by the trimming process be 
discarded or retained, respectively (Fig. S7).

While trimming extends the runtime of a given pipeline, it 
could conceivably ‘save’ downstream memory as a conse-
quence of there being fewer reads to align. However, in 
practice, I did not find a discernible impact. For example, 
the memory usage (more specifically, maximum resident set 
size) of bwa- mem when aligning the untrimmed and fastp- 
trimmed reads (n=1 591 328 and 1 509 306 pairs, respectively) 
from the K. pneumoniae reference strain MGH78578 was 
reduced from 114.8 to 113.1 Mb, a negligible difference.

In terms of user convenience, both fastp and TrimGalore 
also automatically detect adapter sequence from the reads 
themselves, whereas Atropos and Trimmomatic require 
that the adapter be specified, assuming it is known (while 
Atropos can also predict which adapter sequence is present in 
a set of reads, this function is included as a separate module; 
unlike TrimGalore and fastp, Atropos does not perform 
adapter detection and removal simultaneously). Other fastq 
pre- processing procedures are also in routine use, such as 

sequencing error correction [29–32] and the depletion of 
human contaminants [33], and although the impact these 
have upon SNP calling is beyond the scope of this study, I 
cannot exclude the possibility that they confer greater benefit 
than simply trimming reads. As such, despite the results of the 
present study, I cannot simply recommend that prior to SNP 
calling no fastq pre- processing operations be performed at 
all.

Finally, one needs to consider an appropriate set of trim-
ming criteria. It was not my intention to exhaustively test all 
possible ways to trim a read and so I restricted analysis to 3′ 
quality- trimming across a range of stringencies, by far the 
most commonly applied operation (because Illumina reads 
degrade in quality towards the 3′ end). It was found that the 
greatest apparent benefit to SNP- calling performance (evalu-
ated as an increase in F- score) was when using fastp to trim 
3′ bases at Phred score thresholds of 20 or lower (as illustrated 
in Fig. 1), although it should be re- iterated that the differ-
ence in F- scores when SNP calling using untrimmed data, 
and data trimmed using these approaches, was statistically 
insignificant.

It is also important to note while the four read trimmers used 
in this study share the same core functionality of adapter- 
and quality- trimming, they differ in several respects, having 
different feature sets and, in the case of fastp, implementing 
several additional filters by default (which I did not explicitly 
disable). Irrespective of additional 3′ quality- trimming, by 
default, fastp automatically detects and remove adapters, 
discards reads with >5 N bases, performs polyG trimming 
(should it detect NextSeq or NovaSeq input), and requires a 
minimum ‘qualified quantity’ per read, i.e. that >40 % of the 
bases in each read have Phred >15 (disabling the qualified 
quantity filter renders the performance of fastp similar to 
other trimmers, especially in terms of precision; see Fig. S3). 
That more filters are applied by default explains why fastp is 
the only trimmer for which recall (and thereby F- score) was 
found to increase after trimming (Fig. S2). By contrast, the 
other three trimmers, in only performing 3′ trimming, more 
directly affect an improvement to precision (Fig. S1), although 
as this occurs at the expense of recall, the overall effect on 
F- score appears detrimental (note, however, that in absolute 
terms, these differences were statistically insignificant; Fig. 1).

For any given trimming program, it is possible to apply the 
same set of filters, as well as to add others, such as trimming 
leading as well as trailing bases or to clip reads should the 
mean quality within a sliding window advanced from the 
5′ to 3′ end fall below a minimum threshold (a feature of 
Trimmomatic and fastp, but not TrimGalore or Atropos). 
However, although drawing from a richer set of filters 
seems intuitively superior, in practice they are unlikely 
to make a substantive difference to the set of SNPs called. 
I have already shown that even after removing >20 % of 
the (lower- quality) bases from E. coli, M. tuberculosis and  
S. aureus reads, essentially the same variant bases are still 
called. It is reasonable to believe that extra filters would for 
the most part act as complementary methods of removing 
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the same set of lower- quality bases. By way of illustration, I 
re- calculated F- score for the set of Gram- negative bacteria 
after pre- processing each sample using fastp with four 
parameters in addition to those used previously (the default 
settings, plus 3′ quality- trimming using a threshold of Q20; 
see Table S5). Compared to the previous use of fastp (i.e. 
to perform adapter- trimming, 3′ quality trimming, and to 
require a minimum read length of 50 bp and a qualified 
quantity of bases), the addition of four extra parameters, 
including base correction and a ‘low complexity’ filter, made 
no significant difference to overall SNP- calling performance 
(the correlation between F- scores when using the two sets 
of filters was Spearman’s rho=0.999, P <2.2×10−16; Fig. S8). 
It is important to note that the pipeline used to process the 
Gram- negative data applied numerous VCF filtering criteria 
to reduce error (see Methods). These post- alignment opera-
tions could conceivably have a similar effect on performance 
as pre- alignment read trimming, resulting in similar F- scores 
for the trimmed and untrimmed data. To account for this, I 
also applied this expanded set of fastp parameters to the set 
of 1606 E. coli samples (Table S6). For this analysis, I directly 
compared the contents of the untrimmed and trimmed VCF 
records, without any VCF filtering (see Methods). Consistent 
with the above findings, I found no significant difference in 
the percentage of SNPs identically called before and after 
trimming, although there was a significant – and pronounced 
– reduction in the percentage of mixed calls made (Fig. S9). 
This suggests that when reducing SNP- calling error, it is not 
necessarily 3′ trimming that adds the greatest value, but a 
combined set of read pre- processing operations – which, in 
Fig. S9, include the base correction function of fastp.

For simplicity, I have used trimming to refer to all functions 
performed by a read pre- processing tool, which for conveni-
ence I call a read trimmer. However, it is important to note 
that many trimmers are multipurpose and simultaneously 
clip (cut reads at a point other than their end), trim (remove 
bases from the ends) and perform other functions. This latter 
category of functions can include procedures for ‘read scrub-
bing’ [34], the removal or revision of low- quality segments 
from a read. The base correction feature of fastp could be 
considered an example of this.

These functions are important because SNP calling is not 
always performed on isolated strains, and the absolute 
number of true SNP calls is not necessarily the most critical 
user requirement. Multiple strains of a particular species 
may be sequenced simultaneously (for instance, from patient 
blood cultures), and if the purpose of doing so is to assess the 
differences between them, significantly reducing even a small 
number of mixed calls – which these functions facilitate – may 
be beneficial. For the most part, however, the data suggests 
that read trimming (used in the general sense to mean trim-
ming, clipping, scrubbing or any other pre- processing) makes 
minimal difference to the set of SNPs called, and to whether 
they are considered homozygous or heterozygous.

In general, overly conservative trimming parameters 
may also prove counterproductive. Especially stringent 

quality- trimming (for instance, Q <30) could artificially 
reduce coverage depth by discarding a larger proportion of 
reads, as well as shortening many more. In the absence of an 
additional filter on the basis of minimum read length, reads 
that are too short are also more likely to be misaligned. This 
is consistent with a previous study that explored the effects 
of RNA- seq read trimming upon gene expression estimates, 
finding that the majority of differences were driven by the 
spurious mapping of short reads, which could be mitigated by 
requiring a minimum read length [35]. The default minimum 
read lengths for fastp and TrimGalore are 15 and 20 bp, 
respectively, both relatively short given current Illumina 
read lengths (>300 bp). In this study, I consistently required 
a minimum read length of 50 bp, one third of the length of the 
shortest raw read in any sample (150 bp). It would in principle 
be possible to use an aligner optimized for comparatively short 
reads, such as Bowtie [36], to perhaps more accurately map 
those truncated by stringent trimming, although far more 
pragmatic to simply abstain from such stringency to begin 
with. As Fig. 1 illustrates, overall SNP- calling performance 
can actually decrease when using overly conservative filters: 
relative to untrimmed data, F- score is notably reduced when 
using Atropos and TrimGalore with Q thresholds of 30, a 
consequence of marginally improving precision (Fig. S1) at 
the more substantial expense of recall (Fig. S2). Consistent 
with this, a previous study has advocated a more gentle trim-
ming strategy (Q <5) as optimal across a range of metrics 
[8]. At least relative to especially stringent trimming, this 
conclusion appears supported by Fig.  1 – essentially the 
same distribution of F- scores can be seen for Q <5 as for Q 
<20. However, this is to not to say that, prior to SNP calling, 
gentle trimming is necessarily superior to no trimming at all, 
as in my initial Gram- negative dataset the absolute difference 
in F- score for untrimmed reads relative to reads trimmed 
using Q <5 was statistically insignificant (Mann–Whitney U 
P=0.98). However, when re- analysing the larger set of publicly 
archived E. coli reads, I found that the percentage of SNPs 
identically called before and after trimming was fractionally 
higher when trimming at Q <5 compared to Q <20 (median 
percentage 99.91 and 99.87 %, respectively; Mann–Whitney U 
P <2.2×10−16; Table S6). This suggests that more rigorous trim-
ming does allow a small number of additional calls to be made 
– although whether these additional calls represent true SNPs 
not detectable using untrimmed or lightly trimmed data, or 
simply additional errors, cannot be determined. Regardless, 
the percentage of mixed calls was not significantly different 
between the Q <5 and Q <20 data (median percentage 9.02 
and 9.05 %, respectively; Mann–Whitney U P=0.96).

A final consideration is the choice of pipeline used to call 
SNPs. The data generated in this study employed the widely 
used bwa aligner, which ‘soft clips’ reads, in essence incorpo-
rating its own trimming step into the process of alignment (in 
the resulting BAM file, soft clips are seen as mismatch states in 
the alignment, comprising a contiguous section of the end of a 
read [37]). This approach is in contrast to end- to- end aligners, 
such as Bowtie2 [38], which by attempting to align every base 
of a read should be more greatly affected by trimming (as 
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by removing lower- quality bases, the read is more likely to 
successfully align). To demonstrate this, I re- analysed a subset 
(n=200) of the 1606 E. coli samples, substituting bwa for one 
of two alternative aligners, NextGenMap v0.5.5 [39] (which 
soft clips) and Bowtie2 v2.3.4.1 [38] (which does not), each 
used with default parameters. I found that, as with the bwa- 
based pipeline, the majority of SNPs were identically called 
irrespective of whether trimmed or untrimmed reads were 
used (>99 % in the majority of samples, using either aligner; 
Fig. S10, Table S6). However, with Bowtie2, there appears to 
be a sharper decline in the percentage of identically called 
SNPs when a higher number of bases have been trimmed 
(Fig. S10). This suggests that trimming reads has greater effect 
upon SNP calling if the aligner does not perform soft clipping, 
as lower- quality samples (those with a higher proportion of 
bases trimmed) are more strongly affected. As such, a prag-
matic recommendation is to use an aligner which performs 
on- the- fly trimming, or to trim reads if using an aligner which 
does not (such as Stampy [40]). There are many aligners in the 
former category, and so a dedicated trimming step is arguably 
redundant in many SNP- calling workflows. This is particu-
larly apparent with more recent programs, and with long- read 
sequencing technologies. Many long- read workflows do not 
explicitly require trimmed input, for example in an evaluation 
of structural- variant- calling pipelines using Nanopore reads 
[41], or with the Shasta toolkit for de novo Nanopore read 
assembly [42]. Nevertheless, long- read trimmers are available, 
such as the NanoFilt module of NanoPack [43].

Many ‘general purpose’ pre- processing tools perform similar 
functions to those used in this study, including AdapterRe-
moval v2 [44], AfterQC [45], AlienTrimmer [46], Btrim [47], 
fastQ_brew [48], FastqPuri [49], ngsShoRT [50], PEAT [51], 
SeqPurge [52], SeqTrim [53], Skewer [54] and SOAPnuke 
[55], alongside more protocol- specific tools such as NxTrim 
[56] and NextClip [57], both of which were designed to 
remove adaptors from Illumina Nextera mate pairs. I did not 
seek to evaluate a comprehensive range of tools because my 
primary concern was not to identify the highest- performing 
read trimmer per se, but to explore the effect of trimming, in 
general, upon bacterial SNP- calling accuracy. I anticipate my 
findings would be generalizable to a broad range of read trim-
mers, as these essentially share the same core functionality 
although differ in runtime and memory use.

Conclusions
A simple means of improving any particular SNP- calling 
pipeline is to remove minimal- value operations, as this 
decreases the computational time and data manipulation 
required. The benefit of various operations may not be 
universally realized and so in many situations could prove 
an unnecessary computational expense. This has previously 
been demonstrated for several post- alignment processing 
steps, such as local indel realignment and base quality score 
recalibration, when calling variants from exome sequencing 
data [58]. A previous study also demonstrated that PCR 
duplicate removal had minimal effect on SNP calling 
and questioned its necessity as a routine procedure [59]  

(it has not escaped my notice that I duplicate- mask in my 
own pipelines; this perhaps reflects the ease with which such 
analytic habits become ingrained).

By re- analysing >6500 publicly archived sequencing data-
sets from E. coli, M. tuberculosis and S. aureus, I found that 
the retention of lower- quality bases and residual adapter 
contaminants had minimal effect upon SNP calling. Of the 
approximately 125 million SNPs called across all samples, 
98.8 % were identically called irrespective of whether raw 
reads or trimmed reads were used. This suggests that 
quality- and adapter- trimming, although routine fastq 
pre- processing operations, add relatively little value to a 
SNP- calling pipeline and may only be necessary if small 
differences in the absolute number of SNP calls are critical 
(such as, for instance, when predicting antimicrobial 
resistance).

As such, given the majority of read trimmers perform the 
same basic functions with comparable accuracy, there 
seems little practical reason to make use of any other than 
the fastest (of those in this study, fastp [10]), if at all. My 
results also suggest that if pre- processing is performed then, 
in terms of optimal parameters, I would consider not being 
too conservative (trimming at a quality threshold of 20 or 
lower), not retaining reads unpaired as a consequence of 
trimming, and not relying on 3′ trimming alone (as shown 
with fastp, there appeared greater performance when 
supplementing 3′ trimming with a minimum qualified 
quantity per read).

Read trimming remains routinely performed prior to SNP 
calling, likely out of concern that doing otherwise would typi-
cally have negative consequences. While historically this may 
have been the case, the data presented here suggests that read 
trimming is not always a practical necessity.
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