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Abstract: Genetically encoded biosensors based on fluorescent proteins (FPs) allow for the real-time
monitoring of molecular dynamics in space and time, which are crucial for the proper functioning
and regulation of complex cellular processes. Depending on the types of molecular events to be
monitored, different sensing strategies need to be applied for the best design of FP-based biosensors.
Here, we review genetically encoded biosensors based on FPs with various sensing strategies, for
example, translocation, fluorescence resonance energy transfer (FRET), reconstitution of split FP, pH
sensitivity, maturation speed, and so on. We introduce general principles of each sensing strategy
and discuss critical factors to be considered if available, then provide representative examples of
these FP-based biosensors. These will help in designing the best sensing strategy for the successful
development of new genetically encoded biosensors based on FPs.

Keywords: fluorescent protein; genetically encoded biosensor; FRET; ddFP; BiFC; split FP; circular
permutation; fluorescent timer

1. Introduction

After the historical discovery of green fluorescent protein (GFP) which is genetically
encodable to be tagged to a protein of interest (POI) in mammalian cells [1,2], advances
in the field of fluorescent protein (FP) engineering and live-cell imaging techniques have
made remarkable progress in the field of cell biology [3,4]. In particular, different colors of
FP have been engineered from GFP, allowing for the monitoring of multiple POIs in live
cells [4]. The discovery of a red fluorescent protein dsRed [5], and the generation of mFruit
progeny further expanded the color palettes of FPs [6].

In addition to fluorescent spectra, the FPs with special characteristics and different
physicochemical properties have been engineered and applied to design genetically en-
coded biosensors for the monitoring of dynamic molecular interactions in live cells [3,7].
Here, we review the FP-based biosensors with various sensing strategies: (1) translocation
of FP, (2) fluorescent resonance energy transfer (FRET), (3) dimerization-dependent FP, (4)
reconstitution of split FP, (5) circularly permuted FP, (6) fluorescent timer, (7) pH-sensitive
FP, and (8) photoactivatable, photoconvertible, and photoswitchable FPs.

2. Sensing Strategies of FP-Based Biosensors
2.1. Translocation of FP

The first strategy for sensing dynamic molecular interactions is to monitor the translo-
cation or distributional change of the FP-tagged protein of interest. In many signaling
events, the signaling molecules translocate to different subcellular regions to be functional
or interact with downstream signaling molecules [8]. Thus, visualizing the location of the
POIs or the protein that specifically binds to the POIs can be used to report on the particular
molecular events in live cells (Figure 1a).

Sensors 2021, 21, 795. https://doi.org/10.3390/s21030795 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21030795
https://doi.org/10.3390/s21030795
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21030795
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/3/795?type=check_update&version=2


Sensors 2021, 21, 795 2 of 18

Figure 1. Sensing strategies of genetically encoded biosensors based on fluorescent proteins (FPs).
(a) Example of translocation-based biosensor. The production of PtdIns at plasma membrane can be
detected by the PtdIns-sensing biosensor. (b) Representative design of fluorescence resonance energy
transfer (FRET)-based biosensor. The signal-induced conformational change of the biosensor increases
the FRET between donor and acceptor FP. (c) Principle of ddFP-based caspase-3 biosensor. The
cleavage of the substrate by caspase induces the changes of distribution (cytosol to nucleus) as well
as color of fluorescence (red to green). (d) Principal of BiFC-based biosensor. Upon oligomerization
of protein of interest (POI), BiFC fragments can be reconstituted to generate fluorescent signals.
(e) Scheme of fluorescence reconstitution by self-assembly of split FP fragments, GFP1-10 and GFP11.
(f) Principle of cpFP-based biosensor. The signal-induced conformation change of the biosensor
increases the intensity of cpFP. (g) Scheme of time-dependent color change of fluorescent timer.
(h) Design of autophagy flux sensor based on pH-sensitive FP. Autophagic vesicles become acidic
during the progression of autophagy, resulting in a decrease of the intensity of the pH-sensitive FP,
but not reference FP.

When we design a genetically encoded sensor for this strategy, it is important to make
sure that the fusion of the FP does not disturb the original localization or function of the
attached POIs. For example, when we monitor focal adhesion dynamics by FP-tagged
paxillin, a FP should be fused to the N-terminal of the paxillin because its targeting motif,
i.e., four LIM domains, is located at the C-terminal [9].
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In addition, to detect the distribution of POIs accurately, the fused FP should be
monomeric [10]. The original GFP is a weak dimer [1] and dsRed is a tetramer [11]. If
the POI is fused to a dimeric or tetrameric FP, the FP-tagged POI may be mislocalized or
aggregated due to the oligomerizing tendency of the FP itself [10]. Continuous efforts to
engineer monomeric FPs are being made such as A206K mutation of GFP [12], thus various
colors of monomeric FPs are currently available [3,13].

As representative examples, phosphoinositides (PtdIns)-sensing biosensors have been
designed to detect their translocation or distributional change [14] (Figure 1a). PtdIns
are lipid-signaling molecules that play crucial roles in membrane trafficking and diverse
cell signaling pathways [15]. Depending on the site and number of phosphate groups
attached to the inositol ring, PtdIns can be classified into seven different forms, i.e., PtdIns3P,
PtdIns4P, PtdIns5P, PtdIns(3,4)P2, PtdIns(3,5)P2, PtdIns(4,5)P2, and PtdIns(3,4,5)P3. Each
form interacts with particular downstream molecules via its PtdIns binding domains, such
as the PH, FYVE, PX, and PDZ domains [16]. Thus, the PtdIns biosensors are designed
to comprise the PtdIns binding domain tagged with a monomeric FP. For example, the
PtdIns(4,5)P2 sensor contains a PH domain from PLC-δ1 and a monomeric GFP [17].
In addition, the FP-tagged PH domain from Akt or Btk has been used to monitor the
translocation of PtdIns(3,4,5)P3 [18,19]. Likewise, the FP-tagged PX domain of the p40phox
protein and the tandem of FYVE domains from EEA1 or Hrs proteins have been used as
biosensors detecting the distribution of PI(3)P [20,21].

These PtdIns sensors can report the real-time activities of their metabolizing enzymes,
e.g., kinases and phosphatases. For example, when phosphoinositide 3-kinase (PI3K) is
activated at the plasma membrane, it specifically phosphorylates PtdIns(4,5)P2 generating
PtdIns(3,4,5)P3. Thus, the distributional change of PtdIns(3,4,5)P3 from the cytosol to the
plasma membrane reports the real-time activity of PI3K. In addition, when PtdIns(3,4,5)P3
is dephosphorylated by a phosphatase SHIP2, PtdIns(3,4)P2 is generated which can initiate
endocytosis [22]. Thus, a PtdIns(3,4)P2 sensor consisting of the PH domain from TAPP1 [23]
can be applied to monitor the SHIP2 activity in live cells [24]. Tandem PH domains from
TAPP1 can enhance the sensitivity of the translocation-based PtdIns(3,4)P2 biosensor [25].

Another interesting example of a translocation-based FP biosensor is the conformation
sensor for the G-protein coupled receptor (GPCR). For example, an active conformation of
the beta-2 adrenergic receptor (B2AR), a prototypical GPCR, can be specifically captured
by a nanobody-based sensor Nb80-GFP [26]. The Nb80-GFP is composed of a recombinant
single-domain antibody from camelid that specifically binds to the intracellular pocket
of the active state of B2AR at the plasma membrane [27]. Thus, in response to agonist
treatment, the translocation of cytosolic Nb80-GFP to the plasma membrane indicates
the active conformation of B2AR. Nanobodies can be synthetically created with excellent
antibody specificity; thus, these nanobody-based FP sensors can be further applied to
visualize various molecular dynamics.

2.2. Fluorescent Resonance Energy Transfer

Fluorescent resonance energy transfer (FRET) is a physical phenomenon of energy
transfer between two chromophores with overlapping spectra in proximity (<10 nm) [28].
The signaling pathways during various cellular processes are dependent on the proximal
interactions between signaling molecules, thus, FRET-based biosensors have been widely
utilized for the monitoring of these molecular interactions [29,30] (Figure 1b).

For efficient FRET between the donor and acceptor FPs, the emission spectrum of the
donor FP should overlap with the excitation spectrum of the acceptor FP [31]. The distance
between donor and acceptor FPs and their relative orientation should be also considered.
In addition, several parameters, such as the quantum yield (QY) of the donor and the
extinction coefficient (EC) of the acceptor can contribute to the efficiency of FRET [32].

The best-known FRET pair in FRET-based biosensors is cyan fluorescent protein
(CFP) and yellow fluorescent protein (YFP) due to its overlapping spectrum. However,
the CFP–YFP pair have some limitations, for example cross-talk between their excitation
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and emission spectra [33], the low QY of CFP, and the relatively poor photostability and
pH-stability of YFP [34,35]. After engineering efforts to improve these issues, a CFP
variant (mTurquoise2) with relatively high QY (0.93) [35] and a bright green–yellow FP
(mNeongreen) with improved stability have been shown to be a great FRET pair [36].

The green–red FRET pair displays greater spectral separation and less phototoxic-
ity [29]. However, red FPs are less bright and their property of forming tetramers interferes
with the proper measurement of FRET, thus monomeric red FPs with enhanced brightness
and photostability have been further engineered for the better FRET [37].

In addition, FPs with a large Stokes shift (LSS), which display a large gap between
the excitation and emission spectra [38], are useful to apply dual FRET imaging for the
investigation of multiple molecular events in live cells. For example, the combination of
LSSmOrange-mKate2 and CFP–YFP pairs was successfully applied for the simultaneous
monitoring of caspase-3 activity and intracellular Ca2+ level [39]. In that experiment, both
donors, CFP and LSSmOrange, were excited at 440 nm, and the resulting FRET to the
acceptors could be detected at 530 nm for YFP and 630 nm for mKate2, thus allowing dual
FRET imaging of two different biosensors.

To measure protein–protein interactions by the FRET biosensors, one POI is tagged
by a donor FP and the other by an acceptor FP, thus the FRET signals can be detected
when these POIs physically interact with each other in proximity. This simple strategy
can be applied to intermolecular or intramolecular FRET sensors [29,40] (Figure 2a,b).
Intermolecular FRET-based biosensors can be applied to detect protein–protein interaction
or molecular proximity [41,42] (Figure 2a). However, in the case of intermolecular FRET
sensor, the donor and acceptor FP-containing parts may display different expression
levels and/or distribution at different subcellular regions. In addition, each part may be
able to interact with endogenous proteins. These limitations interfere with the accurate
measurement of the FRET.

Figure 2. Designs of FRET biosensors (a) Representative design of an intermolecular FRET biosensor.
The signal-induced interaction of the modified substrate and the sensory domain results in the
increase of FRET between donor and acceptor FP. (b) Representative design of an intramolecular
FRET biosensor. The signal-induced conformational change of the biosensor increases the FRET
level. (c) Design of a FRET-based tension sensor. Its FRET level is designed to decrease by the
applied tensional force. (d) Design of a FRET-based protease sensor. The activated protease cleaves
its substrate, resulting in the decreased FRET of the biosensor.

In contrast, intramolecular FRET sensors contain both the acceptor and donor FPs,
thus their expression and distribution can be equally controlled. Various designs of in-
tramolecular FRET biosensors can be developed depending on the molecular events to
be monitored. The first design is composed of the specific substrate for target signaling



Sensors 2021, 21, 795 5 of 18

molecule and the sensory domain between a FRET pair (Figure 2b). As a representative
example, the FRET-based kinase biosensor contains the specific substrate sequence, which
can be phosphorylated by the target kinase, and the sensory domain that binds to the
phosphorylated substrate such as SH2 domain resulting in the changes of FRET [43,44]. In
addition, FRET-based biosensors detecting the activation of small Rho GTPase include the
Rho GTPase itself as a substrate of the biosensor. When Rho GTPase is activated, its bound
GDP is exchanged to GTP, thus, it can subsequently bind to the sensory domain from its
downstream molecule, resulting in the changes of FRET [45,46].

Another design of intramolecular FRET biosensor is a FRET-based tension sensor
which includes a tension sensing module consisting of donor and acceptor FPs connected
by an elastic linker [47] (Figure 2c). This tension sensing module is further attached to the
head and tail of vinculin, which is a key molecule to connect the focal adhesions to actin
cytoskeleton [48]. Thus, the tensional force at focal adhesions extends the elastic linker in
this sensor causing the decrease in FRET, allowing for the visualization of cellular tension
in live cells.

The other design of intramolecular FRET biosensor is a protease sensor consisting of
specific substrate for a target protease between a FRET pair (Figure 2d). The strong FRET
between the FRET pair will be decreased when the activated proteases cleave the substrate
in the biosensor and thus separate the donor and acceptor FPs. Specific protease sensors
have been developed based on particular substrate sequences, for example caspase-3/7
(DEVD; Asp-Glu-Val-Asp) [49], caspase-8 (IETD; Ile-Glu-Thr-Asp) [50], and caspase-9
(LEHD; Leu-Glu-His-Asp) [51]. However, this protease-mediated cleavage of substrate
sequence is irreversible reaction, thus the FRET measurement with these FRET biosensors
is not reversible.

2.3. Dimerization-Dependent FP

Dimerization-dependent fluorescent proteins (ddFPs) can be an alternative method
for sensing protein–protein interactions. Similar to FRET-based biosensors, a ddFP system
is composed of two copies of FPs as a pair [52]. One copy in the ddFP pair contains a
chromophore (copy-A), while the other copy does not (copy-B). When they exist separately,
the fluorescence of copy-A is dim; however, the ddFP system becomes bright when copy-
A and copy-B form heterodimers. Thus, we can detect protein–protein interactions by
measuring the increase in the fluorescence brightness of the ddFP system (Figure 1c).

The first ddFP system was red ddFP, which was developed using a red FP, dTomato [52].
Green and yellow ddFP were followed, expanding the color palette of the systems [53]. As
the copy-A in different colors of ddFPs competes to bind the same copy-B, a fluorescent
protein exchange (FPX) strategy can be applied to design the biosensors, which show
protein activity in terms of color changes. For example, the intermolecular caspase-3 FPX
biosensor is composed of two parts. The first part contains RA (red copy-A)-NES and
copy-B-NLS, connected with the caspase-3 substrate sequence DEVD; the second part
is GA (green copy-A)-NLS [54] (Figure 1c). In the default state, the heterodimer of RA
and the copy-B display red fluorescence in the cytosol. Upon caspase-3 activation, the
substrate DEVD between RA and B is cleaved and the released B-NLS can translocate into
the nucleus, where it binds to GA-NLS and displays green fluorescence. Therefore, the
activity of caspase-3 can be monitored by the FPX-mediated changes of fluorescent colors
at subcellular locations.

In addition, the intramolecular caspase-3 FPX biosensor is composed of RA, copy-B,
caspase-3 substrate DEVD, and GA [54]. In this conformation, the copy-B is designed
to bind to GA, displaying a green color, while the activation of the caspase-3 cleaves the
DEVD sequence changing its color from green to red. Similarly, the intramolecular Ca2+

FPX biosensor is designed to be RA-CaM-B-M13-GA, which can report the Ca2+ levels by
monitoring the red/green fluorescence ratio [54].

More recently, the ddFP-based biosensors for small GTPases have been introduced [55].
These intermolecular biosensors are composed of two parts; the first part is the GTPase
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itself attached to GA, and the second part is the copy-B-tagged the RBD domain from its
corresponding effector. For example, the activation of KRas can be visualized by the ddFP-
based G-KRas system which is composed of GA-KRas and copy-B-RBDRaf1. When the
activated KRas binds to the RBD domain from its effector Raf1, the heterodimer between
GA and copy-B can be formed to increase the brightness of green fluorescence, representing
the active state of KRas in live cells. These ddFP-based biosensors for small GTPases were
successfully utilized to monitor the spatiotemporal activity of the small GTPases in the
single dendritic spines and brains of freely behaving mice [55].

Unlike the FRET systems, each ddFP system uses only one hue, thus, the green
ddFP-based biosensors can be applied together with red-shifted sensors, allowing the
simultaneous monitoring of multiplex signaling events in the same cell. In addition, the red
ddFP system can be combined with green sensors or blue-light sensitive optobiochemical
tools [56]. Expanding color palettes of the ddFP system will be further beneficial to study
complex molecular dynamics in live cells.

Due to different affinities of GA and RA to the copy B [54], one needs to be careful
to apply multicolor ddFP systems to quantitative assays. In addition to the engineering
efforts for the copy B [55], further engineering on XA (X for different colors) will improve
the multicolor ddFP systems.

2.4. Reconstitution of Split FP

The reconstitution of split fluorescent proteins by the fusion of its non-fluorescent
fragments has been applied to detect the protein–protein interactions [57] (Figure 1d). The
chromophore of GFP is protected by a beta barrel structure composed of 11 beta-strands [58].
Splitting a FP into two fragments, 7 and 4 strands each, results in the loss of fluorescence, but
interestingly, when these two fragments are in proximal they can reconstitute and recover
its fluorescent property [59]. This is called bimolecular fluorescence complementation
(BiFC), and by fusing the POIs to each fragment, we can monitor the protein–protein
interactions or aggregations by detecting the increased fluorescence [60]. The most widely
used BiFC system was developed by splitting Venus, an improved yellow FP, into N-
terminal 1–158 amino acids (VN158) and C-terminal 159–239 residues (VN159) [61], or
VN173–VN155, which showed higher complementation efficiency and signal to noise
ratio [62]. The color palette has been further broadened by the BiFC systems from a cyan
FP Cerulean [62], and from red FPs such as mRFP, mCherry, and mKate [63–65].

The BiFC-based biosensor was first applied to detect the interaction between the basic
region leucine zipper (bZIP) domains of Fos and Jun in live cells [61]. The hypothetical
t1/2 of bZIP association was less than a second while for BiFC formation and fluorescence
maturation it was 50 min, indicating that the BiFC occurs subsequent to the association of
the attached bZIP domains. The BiFC principle has also been applied to detect protein ag-
gregation in neurodegenerative diseases. For example, both N- and C-terminal fragments
of Venus were fused to alpha-synuclein [66], which aggregates to cause Lewy pathology
in Parkinson’s disease (PD) [67,68]. This BiFC-based alpha-synuclein sensor can be ap-
plied to visualize the cell-to-cell transmission of alpha-synuclein during the progression of
PD [66,69]. In addition, tau aggregation, a pathological hallmark of Alzheimer’s disease
(AD), was successfully detected using a BiFC-based biosensor in live cells [70]. Both frag-
ments of Venus were fused to full length tau, allowing for the detection of tau aggregation
by BiFC fluorescence in live cells (Figure 1d). Transgenic mice expressing mutant human
Tau P301L-BiFC were recently generated to monitor pathological tau oligomerization in
AD [71].

Interestingly, it has been shown that the BiFC system and FRET technique can be
combined [72]. In this design, Cerulean and the Venus-based BiFC system were used as
the donor and acceptor FPs for cyan–yellow FRET. This system was applied to visualize
a ternary complex of Fos-Jun-nuclear factor of activated T cells (NFAT) [73]. The BiFC
fragments of Venus were fused to bJun and bFos, and Cerulean was fused to NFAT. The
dimerization of bJun and bFos reconstituted the BiFC fragments of Venus. When NFAT
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interacts with this bJun-bFos complex, the FRET between Cerulean and Venus can be
observed. Thus, the BiFC-FRET system allows the validation of protein interactions and
the monitoring of spatial information of three proteins in live cells.

Furthermore, the BiFC system from large Stokes shift-FP was developed from CyOFP1
(CyOFP1-N151 and CyOFP-C152) and mT-Sapphire (mT-Spphire-N154 and mT-Spphire-
C155) [74]. Utilizing the BiFC systems from mT-Sapphire and Cerulean, two distinct
protein–protein interactions can be monitored by a single violet excitation and two emission
wavelengths, cyan for Cerulean and green for mT-Sapphire. Similarly, cyan light can be
used to excite two BiFC systems from Venus and CyOFP1. These multicolor BiFC systems
allow the simultaneous monitoring of multiple protein interactions in live cells.

The BiFC-based biosensor is based on the irreversible association of non-fluorescent
fragments, subsequent protein folding and chromophore maturation. Thus, it is limited
to investigate the temporal information of protein dynamics. In addition, to accurately
detect the interactions of POIs attached to the BiFC system, it is important to minimize the
nonspecific self-assembly of the FP fragments to avoid a false-positive signal.

Interestingly, this limitation of self-assembly was alternatively applied to measure
the proximity of two membranes or organelles tagged with each FP fragment [75]. The
self-assembling FP fragments were generated by splitting the 1–10 strands (spGFP1-10) and
11th strand (spGFP11) of superfolder GFP (sfGFP) [76] (Figure 1e). These two fragments
were separately fused to pre- or post-synaptic membranes of neurons, thus, when synapse
is formed, these FP fragments can be assembled to reconstitute the green fluorescence.
This technique, called GFP reconstitution across synaptic partners (GRASP), can thus
visualize high-resolution anatomy of synaptic cleft [77,78]. More recently, spGFP11 is
fused to synaptic vesicle protein synaptobrevin and spGFP1-10 is tethered at post-synaptic
membrane, thus the neuronal activity-induced release of synaptic vesicles can be visualized
by this activity-dependent GRASP technique [79].

In addition to green split FP for self-assembly, different colors of split FPs have been
developed. For example, red color of split FP system was engineered from superfolder
Cherry [80]. Cyan and yellow split FPs were developed by introducing key mutations on
spXFP1-10 (X for cyan or yellow), which were applied for multi-color labelling of active
synapses [79]. More recently, the improved multi-color GRASP systems were successfully
applied to identify the specific neuronal sites for memory storage [81].

2.5. Circularly Permutated FP

Because the N- and C-termini of a fluorescent protein are located in the same direction,
they can be connected with a linker creating new termini near the chromophore [82]. In
this circularly permuted FP (cpFP), the new termini can be further fused to the sensing
domains whose conformational rearrangement can modulate the fluorescent intensity of
cpFP (Figure 1f). Compared with the original FP, the cpFP displays lower fluorescence
intensity due to its relatively weak folding near chromophore, thus the conformational
rearrangement of the sensing domains can enhance the brightness of cpFP.

Various biosensors have been developed based on cpFP [83]. For example, the first
cpFP-based biosensors, GCaMP and pericam [84,85], were developed to detect the intra-
cellular Ca2+ levels. These Ca2+ sensors are composed of cpGFP fused to calmodulin and
M13 in each new end. When Ca2+ binds to calmodulin, its subsequent interaction with
M13 causes the conformational rearrangement, resulting in the increased brightness of
the cpGFP (Figure 1f). Different colors of cpFP-based Ca2+ sensors have been also devel-
oped for the simultaneous monitoring of multiple signals. For example, red Ca2+ sensors
R-GECO [86,87] and RCaMP [87,88] were developed from cp-mApple and cp-mRuby, re-
spectively. The Ca2+ sensors were continuously improved; thus, we can currently monitor
dynamic changes of intracellular Ca2+ levels in living animal as well as live cells [89–93].

In addition to Ca2+ sensors, cpFP-based sensors to detect cofactors [94], cAMP [95],
ATP [96,97], or neurotransmitters such as glutamate and GABA [98,99] were developed
by inserting specific sensing domains to cp-FP. Different from these cytosolic cpFP-based
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sensors detecting diffusible signaling molecules, the cpFP-based voltage sensor, named
ASAP, was designed by fusion of cpFP module to voltage-sensing domains tethered at
plasma-membrane [100,101]. The changes in membrane potential induces the conforma-
tional change of voltage-sensing domains, thus resulting in the increased brightness of the
cpFP. By rational design and structure-based mutagenesis, the cpFP-based voltage sensors
can visualize fast kinetics of membrane potential in living neurons and animals [102].

More recently, cpFP-based sensors for metabotropic neurotransmitter receptors have
been reported. These receptors are types of GPCRs; thus, in response to binding to neu-
rotransmitters, the conformational changes of the receptor initiate intracellular signaling
related to G proteins [103]. The first cpFP-based dopamine receptor sensors were developed
by inserting the cpGFP module into the intracellular loop 3 (ICL3) of dopamine recep-
tors [104,105]. When the dopamine binds to the receptor, the subsequent conformational
change of ICL3 regions causes the increased brightness of the inserted cpGFP.

This strategy has been further applied to develop other neurotransmitter receptor
sensors. For example, cp-based sensors detecting the activity of the receptors for acetyl-
choline [106], norepinephrine [107], adenosine [108], and serotonin [109] were developed,
allowing the monitoring of spatiotemporal activity of various neurotransmitter receptors.
In addition to green sensors, red dopamine receptor sensors have recently been devel-
oped utilizing cp-mApple [110,111], and thereby different neurotransmitter signals can be
simultaneously monitored in living neurons and animals.

2.6. Fluorescent Timer

The first fluorescent timer (FT) was developed from DsRed-E5, a DsRed mutant with
two substitutions V105A and S197T [112]. In particular, S197T is suggested to directly
contact the chromophore as an analogue of T203 in GFP, enabling the mutant E5 to exhibit
a green intermediate fluorescence before its full maturation for red fluorescence. The
green-to-red color conversion of DsRed-E5 is time-dependent, thus this special FP can be
utilized as a fluorescent timer to sense the relative ages of the attached POIs (Figure 1g).

DsRed-E5 is a tetramer that may prevent the proper tagging of target proteins. Thus,
monomeric FTs were further engineered from mCherry with key mutations on K69R, L84W,
and M18V/L [113]. These monomeric FTs show a blue-to-red conversion over time during
chromophore maturation process (Figure 3a). Additional mutations on A224S or A179V
influence the rates for chromophore maturation, thus fast-FT, medium-FT, and slow-FT can
be developed. They show the maxima of blue fluorescence at 0.25, 1.2, and 9.8 h, and the
half-maxima of red fluorescence at 7.1, 3.9, and 28 h, respectively. These different speeds
of FTs can be applied to sense the ages of the target proteins with various time scales. For
example, medium-FT was selected to detect the relative ages of the lysosome-associated
membrane protein type 2A (LAMP2A) at endosomal compartments.

Another color of monomeric FT, mK-GO, was engineered from a monomeric version
of Kusabira Orange (mKO) by introducing six mutations (K49E, P70V, K185E, K188E,
S192D, and S196G) [114]. The mK-GO changes its color from green to orange during the
chromophore maturation process. The orange/green ratio increases over time and reaches
a plateau at around 10 h. For example, age-dependent vesicle exocytosis was investigated
utilizing mK-GO-tagged neuropeptide Y or a tissue-type plasminogen activator.

In addition to single FTs, tandem FTs (tFTs) were reported which utilizes the combina-
tion of two FPs with different maturation kinetics as well as separate spectral profiles [115].
In the study, sfGFP that rapidly matures within several minutes and mCherry with a matu-
ration half-time of 40 min, were combined as a tFT. The mCherry-sfGFP timer can measure
the ages of the fused POIs from red-to-green fluorescence ratios. Therefore, fluorescent
timers can be applied to develop biosensors to monitor protein turnover or mobility in
live cells.
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Figure 3. Mechanism of fluorescent timer, photoactivation, photoconversion and photoswitching. (a) Scheme of monomeric
fluorescent timer (FT) and its chromophore structure (box). Slow maturation process (oxidation) of chromophore of FT
allows the alteration of emission wavelength alteration over time. (b) Scheme of photoactivatable GFP (PA-GFP) and
its chromophore structure (box). Illumination of 405-nm light induces the decarboxylation of the key residue near the
chromophore of PA-GFP, transforming the chromophore to be a fluorescent emitting form. (c) Scheme of photoconvertible
FP (EosFP) and its chromophore structure (box). Illumination of 405-nm light induces the cleavage of peptide backbone near
chromophore, changing the color of emitting fluorescence from green to red. (d) Scheme of photoswitchable FP (Dronpa)
and its chromophore structure (box). Illumination of 488-nm light induces cis-to-trans isomerization of chromophore turning
off the fluorescence, while 405-nm light reverses it by trans-to-cis isomerization turning on the fluorescence. Highlighting
blue, green, red colors on the chromophores display the color of emitting fluorescence, and gray represent non-fluorescent
state of chromophore.

2.7. pH-Sensitive FP

The excitation spectrum of wild-type GFP is bimodal with two peaks at 395 and
475 nm, which are suggested as the protonated and deprotonated states at Tyr 66 of the
chromophore [116]. This contrast of peaks in the excitation spectrum upon pH changes can
be further increased by the mutations on the residues near the protein-relay network of
Tyr 66 (S202H, E132D, S147E, N149L, N164I, K166Q, I167V, R168H, and L220F) [117]. This
ratiometic pH-sensitive FP was named pHluorin, which shows a reversible ratio change of
the excitation peaks in the physiological range of pH between 5.5 and 7.

Another version of ecliptic pHluorin (S147D, N149Q, T161I, S202F, Q204T, and A206T),
in contrast, shows a gradual decrease in the excitation peak at 475 nm, and it becomes
eclipsed at a pH below 6 [117]. The ecliptic pHluorin was further engineered to increase
its brightness by introducing additional mutations from EGFP (F64L and S65T), and this
superecliptic pHluorin (SEP) shows a 50-fold change of fluorescent intensity in the range
of physiological pH [118].
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A red fluorescent pH-sensitive FP, pHTomato, was engineered from mRFP and
mStrawberry [119]. pHTomato was fused to a vesicular membrane protein synaptophysin
to generate sypHTomato and was applied for the monitoring of synaptic vesicle exocytosis
together with a green GCaMP sensor. The fluorescence fold-change of pH-sensitive red FP
was further improved in the orange pHoran4 (17-fold) and red pHuji (22-fold), which were
engineered from mOrange and mApple, respectively [120].

The pH-sensitive FP can be applied to monitor the status of various cellular processes.
For example, the exocytosis or recycling of synaptic vesicles has been visualized by tagging
the pH-sensitive FPs to synaptophysin or VAMP [117,119]. While acidic pH inside the
synaptic vesicles results in the fluorescence quenching of the pH-sensitive FPs, it becomes
bright when exposed to the neutral extracellular environment after fusion to the plasma
membrane [121], thus allowing the detection of exocytosis or recycling of synaptic vesicles
in neurons. In addition to mammalian cells, the pH-sensitive FP-based biosensors have
been applied to investigate the intra- and extracellular pH changes in plant cells [122,123].

Another representative application of pH-sensing FPs is the design of an autophagy
progression sensor, by tagging pH-sensitive FP to the LC3 which is tethered in the au-
tophagosome [124–126]. During the progression of autophagy, the autophagosome is fused
to the lysosome, and the inside pH of this autolysosome becomes acidic for the degradation
of the cargo proteins. Therefore, the autophagy stages can be distinguished by pH-sensitive
FPs [127]. For example, in the mRFP-GFP-tagged LC3, GFP loses its fluorescence in the
acidic pH, but mRFP does not, thus we can speculate the pH inside the autophagic vesicles
by measuring the green/red ratio (Figure 1h).

Recently, an autophagy progression sensor was further improved to more specifically
identify each stage of autophagy [128]. In this red–green–blue FP tagged LC3 (RGB-
LC3), mTagBFP (pKa = 2.7), mApple (pKa = 6.5), and SEP (pKa = 7.2) were chosen as
a blue reference FP, a pH-sensitive red FP, and a highly pH-sensitive green FP. Thus,
by measuring the green/blue and the red/blue signal ratios, RGB-LC3 allows for more
accurate calculation of the pH inside the autophagic vesicles during autophagy progression.

Interestingly, a pH-stable cyan FP (mTurquoise2) and a pH-sensitive yellow FP (EYFP)
were combined to generate pH-Lemon, which could report the pH by detection of FRET
between mTurquoise2 and EYFP [129]. As the FRET will decrease in the acidic environment
due to the quenching of EYFP, this FRET pair was tagged with LC3 to report the progression
of autophagy.

2.8. Photoactivatable, Photoconvertible, and Photoswitchable FP

Upon light stimulation, some FPs become fluorescent from a non-fluorescent state
(photoactivatable) [130], change the colors (photoconvertible) [131] or reversibly switch on
and off (photoswitchable) [132] by the light-induced rearrangement or isomerization of
the chromophore [133] (Figure 3). The unique features of these special FPs can be further
combined to previously described sensing techniques.

Photoactivatable FP, such as PA-GFP, increases its green fluorescence 100 times by
illumination of blue light (Figure 3b) [130]. This special feature of PA-FP can be applied
to investigate intracellular protein dynamics. For example, the PA-GFP fused to a lyso-
somal protein LAMP-2 was activated at the nucleus by local illumination, the rate of
interlysosomal membrane exchange can be investigated by tracking the photoactivated FP-
fused LAMP-2 [130]. Furthermore, the low background signal and controllable fluorescent
intensity of PA-FP were applied to develop a super resolution imaging technique, called flu-
orescence photoactivation-localization microscopy (FPALM) [134], which provides accurate
information of POI’s distribution at ultra-high resolution.

Photoconvertible FP, such as mEos, changes its color from green to red upon blue
illumination (Figure 3c) [131]. It can function as a highlighter to track the attached POIs
and related cellular dynamics [135]. More interestingly, photoconvertible FPs can be further
combined with the cpFP technique to create a highlightable Ca2+ sensor, CaMPARI [136].
CaMPARI is composed of cp-mEos and the Ca2+ sensing modules, CaM and M13, from
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GCaMP. When Ca2+ binds to the sensing modules in CaMPARI, the cp-mEos becomes
fluorescent green. This green state can be converted to a red state, if the subsequent
illumination with blue light is applied. Thus, CaMPARI can capture active neuronal
population with the elevated Ca2+ level by converting its color to red with illumination
during particular behavior in live animals. The CaMPARI was further improved to generate
CaMPARI2 by reducing the basal photoconversion, increasing the Ca2+ exchange kinetics
and fluorescence after chemical fixation [137].

Photoswitchable FP can be fluorescent on and off, reversibly, upon the illumination of
specific wavelengths of light (Figure 3d). For example, Dronpa which can be fluorescent on
by 405-nm light and off by 488-nm light [132]. This photoswitchable FP has been applied
to generate a special BiFC system named as reconstituted fluorescence-based stochastic
optical fluctuation imaging (refSOFI) [138]. In this system, the POI1 and POI2, for example
STIM1 and ORAI1, can be attached to each fragment of Dronpa. Thus, the protein–protein
interaction can result in the green signal of Dronpa, which then further switched on and
off for super-resolution imaging. Thus, the combination of photoswitchable FP and BiFC
techniques allows the investigation of spatial information of protein interactions at a
super-resolution scale.

3. Conclusions

In this review, we have discussed various strategies of genetically encoded biosensors
based on different physicochemical properties and special features of fluorescent proteins,
for example FRET, ddFP, the reconstitution of split FP, circular permutation, pH sensitivity,
maturation speed, and photoactivation/photoconversion/photoswitching. Depending
on the target proteins or molecular events to be monitored, different strategies need to be
carefully chosen for the development of successful biosensors. Interestingly, combination
of these techniques, for example BiFC-FRET, pH sensitive FP-FRET, photoconvertible FP-
cpFP and photoswitchable FP-BiFC, allowed the development of interesting biosensors
for unique purposes. There are surely further possible combinations for novel genetically
encoded biosensors that will uncover physiologically important, but not yet visualized,
dynamic molecular signals in living cells and animals. These advances in FP-based biosen-
sors will allow for the discovery of the underlying scientific mechanisms of dynamic and
complex cellular processes.
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Abbreviations

FP Fluorescent protein
GFP Green fluorescent protein
POI Protein of interest
FRET Fluorescent resonance energy transfer
LIM LIN-11, Isl-1 and MEC-3
RFP Red fluorescent protein
PtdIns Phosphoinositide
PH Pleckstrin homology
FYVE Fab1p, YOTB, Vps27p and EEA1
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PX Phox homology
PDZ PSD95, DLG1 and ZO1
PLC-δ1 Phospholipase C-δ1
EEA Early endosome antigen 1
Hrs Hepatocyte growth factor-regulated tyrosine kinase substrate
PI3K Phosphoinositide 3-kinase
SHIP2 Src homology domain containing inositol 5-phosphatase
TAPP1 Tandem-PH-domain-containing protein 1
GPCR G-protein coupled receptor
B2AR Beta-2 adrenergic receptor
Nb80 Nanobody 80
QY Quantum yield
EC Extinction coefficient
CFP Cyan fluorescent protein
YFP Yellow fluorescent protein
LSS Large Stokes shift
SH2 Src homology 2
GDP Guanosine diphosphate
GTP Guanosine triphosphate
ddFP Dimerization-dependent fluorescent protein
FPX Fluorescent protein exchange
RA Red copy-A
NES Nuclear export signal
NLS Nuclear localization signal
GA Green copy-A
CaM Calmodulin
RBD Ras-binding domain
CRIB Cdc42/Rac1 interactive binding
BiFC Bimolecular fluorescence complementation
bZIP Basic leucine zipper
PD Parkinson’s disease
AD Alzheimer’s disease
NFAT Nuclear factor of activated T cells
spGFP Split GFP
sfGFP Superfolder GFP
GRASP GFP reconstitution across synaptic partners
cpFP Circularly permuted FP
cAMP Cyclic adenosine monophosphate
ASAP Accelerated Sensor of Action Potentials
ICL3 Intracellular loop 3
FT Fluorescent timer
LAMP2A Lysosome-associated membrane protein type 2A
mK-GO Monomeric Kusabira Green Orange
mKO Monomeric Kusabira Orange
tFT Tandem FT
SEP Superecliptic pHluorin
VAMP Vesicle-associated membrane protein
LC3 Microtubule-associated protein 1A/1B-light chain 3
EYFP Enhanced yellow fluorescent protein
PA Photoactivatable
mEos Monomeric Eos probes
CaMPARI Calcium Modulated Photoactivatable Ratiometric Integrator
refSOFI Reconstituted fluorescence-based stochastic optical fluctuation imaging
STIM1 Stromal interaction molecule 1
ORAI1 Calcium release-activated calcium channel protein 1
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