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Abstract: Most of the current SARS-CoV-2 vaccines are based on parenteral immunization targeting
the S protein. Although protective, such vaccines could be optimized by inducing effective immune
responses (neutralizing IgA responses) at the mucosal surfaces, allowing them to block the virus at
the earliest stage of the infectious cycle. Herein a recombinant chimeric antigen called LTB-RBD is
described, which comprises the B subunit of the heat-labile enterotoxin from E. coli and a segment of
the RBD from SARS-CoV-2 (aa 439-504, carrying B and T cell epitopes) from the Wuhan sequence and
the variant of concern (VOC)—delta. Since LTB is a mucosal adjuvant, targeting the GM1 receptor
at the surface and facilitating antigen translocation to the submucosa, this candidate will help in
designing mucosal vaccines (i.e., oral or intranasal formulations). LTB-RBD was produced in E. coli
and purified to homogeneity by IMAC and IMAC-anionic exchange chromatography. The yields
in terms of pure LTB-RBD were 1.2 mg per liter of culture for the Wuhan sequence and 3.5 mg per
liter for the delta variant. The E. coli-made LTB-RBD induced seric IgG responses and IgA responses
in the mouth and feces of mice when subcutaneously administered and intestinal and mouth IgA
responses when administered nasally. The expression and purification protocols developed for
LTB-RBD constitute a robust system to produce vaccine candidates against SARS-CoV-2 and its
variants, offering a low-cost production system with no tags and with ease of adaptation to new
variants. The E. coli-made LTB-RBD will be the basis for developing mucosal vaccine candidates
capable of inducing sterilizing immunity against SARS-CoV-2.

Keywords: mucosal adjuvant; humoral response; chimeric antigen; mucosal vaccine; COVID-19

1. Introduction

Coronaviruses are a group of positive-sense single-stranded RNA viruses with the
largest and most stable known RNA genome. These viruses belong to the Coronaviridae
family and are grouped into four genera: alpha-, beta-, gamma-, and delta-coronavirus.
Of these four genera, only alpha- and beta-coronaviruses can infect humans. Most of
the viruses that belong to these two genera can cause the “common cold” (e.g., CoV-
NL63 and CoV-HKU1). However, three species can cause severe infections, leading to
pneumonia and even resulting in death (i.e., SARS-CoV, SARS-CoV-2, and MERS-CoV).
The appearance of SARS-CoV and MERS-CoV, which have a significantly higher mortality
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rate than SARS-CoV-2, led to the development of some vaccines. However, most of these
efforts did not result in licensed vaccines, perhaps due to the limited human-to-human
transmission. Furthermore, some SARS-CoV vaccines produced an antibody-dependent
enhancement (ADE) infection in vaccinated individuals [1–3]. In the case of SARS-CoV, this
phenomenon has been associated with vaccines displaying the full-length spike (S) protein.
Most of the vaccines in clinical trials were either inactivated or live-attenuated viruses.
Unfortunately, the high levels of human-to-human transmission for SARS-CoV-2 have
resulted in a completely different scenario from the SARS-CoV and MERS-CoV epidemics.
The scale and duration of the SARS-CoV-2 pandemic resulted in a worldwide halt of most
activities. In some cases, these restrictions have been in place for a year, causing devastating
and long-lasting effects that will take decades to overcome.

The COVID-19 pandemic has resulted in an extraordinary worldwide effort to develop
novel vaccines quickly and safely against SARS-CoV-2 [4]. Interestingly, none of the
approved vaccines has been based on the technologies used for SARS-CoV [5]. Instead,
most of these vaccines are based on technologies that have been in the pipeline for quite
a while [6]. The vaccines from Moderna/NIH and Pfizer/BioNTech rely on mRNAs
encapsulated in lipids and polymers that code for the prefusion form of the spike (S)
protein. In contrast, most of the remaining approved vaccines (i.e., AstraZeneca/Oxford,
CanSino, Johnson & Johnson, and Gamaleya Institute) are based on adenoviral vectors [7–9].
The vaccine from Sinovac is formulated with the inactivated virus [10]. The efficacy of
these vaccines varies between 60% and 98% [11]; however, the emergence of variants with
mutations in the S protein (e.g., B.1.1.7, B.1.315, and P.1) could decrease the efficacy of
these vaccines. Furthermore, the use of adenovirus-based vaccines (AdV5 and AdV26)
has the drawback that countries with a high prevalence of these viruses can result in
populations with neutralizing antibodies against them, further decreasing the efficacy of
the vaccine [12,13]. Finally, one subunit-based vaccine (Novavax) is close to being approved
in North America and Europe [14].

The production of biopharmaceuticals in E. coli offers a robust and well-established
platform that can be easily transferred from an academic laboratory to a manufacturing
facility [15]. This expression system can be easily scaled up, and the regulatory aspects
of the production have been in place for a long time such that they are considered stan-
dard. Recombinant subunit vaccines have the advantages of not containing a pathogenic
organism (viral or bacterial), their composition is exactly known for each batch, they can be
produced using different platforms and fermentation processes, large-scale production is
relatively simple and cost-effective, and both the expression system and the antigen can be
easily modified by genetic engineering [16–18]. It is important to point out that contrary to
live-attenuated, inactivated, and viral vector-based vaccines, the level of biosafety required
for the expression of recombinant subunit vaccines is lower; therefore, their overall cost
can be significantly lower. Furthermore, there is no risk of the vaccine resulting in a viral
infection due to defective manufacturing procedures. Subunit vaccines still must overcome
some challenges. In general, multiple doses are required due to their low immunogenicity
compared to the use of the whole pathogen. One approach to enhance the immunogenicity
consists in fusing (genetic or chemically) the antigen of interest with a highly immuno-
genic protein subunit from bacteria (e.g., the E. coli heat-labile enterotoxin B subunit toxin
[LTB] [19,20] or cholera toxin B subunit [CTB]). A major challenge when expressing recom-
binant proteins in bacteria is to obtain the antigen in the properly folded state, i.e., to avoid
the expressed protein from generating inclusion bodies, which requires protein refolding
to its native and functional state. This problem can be solved by fusing the protein with
another protein that increases antigen solubility inside the cell (e.g., SUMO) [21], although
this protein must be cleaved from the antigen once it is in a stable form and purified.
Nonetheless, a rational protein design that takes into consideration the fermentation and
purification protocols, the secondary and tertiary structure of the target antigen, the amount
and distribution of hydrophobic amino acids, and the sequences that can be recognized by
the bacterium can greatly increase the solubility of the antigen in the cell [22–24].
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Considering that the current COVID-19 vaccines are intramuscularly administered
and that the lack of prevention of virus infection is associated with a poor induction of
mucosal IgA responses, there is an urgent need to explore new vaccination approaches
focused on the induction of effective mucosal responses. One straightforward approach to
achieving this goal is the development of nasal or oral vaccines, which effectively boost
the mucosal immune system in the compartment used for vaccine delivery and even in
distant compartments. It is well known that oral immunization results in GALT-mediated
antigen processing with subsequent homing to pulmonary tissues in which IgA production
is induced [25]. In the current scenario, such mucosal vaccines may serve as boosters of the
immunity induced by parenterally-administered vaccines.

Since the B subunit of E. coli enterotoxin is recognized as a potent mucosal adjuvant,
in this study a chimeric protein (LTB-RBD) based on this carrier and a segment of RBD
targeting T and B cell epitopes is reported. The production in E. coli of LTB-RBD and its
purification was performed, and evidence of the immunogenic potential by parenteral and
mucosal routes of this chimeric protein was generated.

2. Materials and Methods
2.1. Expression Vector Design

Two synthetic genes coding for a chimeric protein called LTB-RBD Wuhan strain and
VOC delta, respectively, were obtained by GenScript Inc. (Piscataway, NJ, USA), following
a codon optimization process according to codon usage in E. coli. The sequence comprises
the full-length sequence of LTB fused to aa 439–504 from the S protein. A GPGP linker
was placed between the LTB and RBD moieties to facilitate displaying the target antigen.
The structure of the recombinant proteins was modeled using the Phyre2 protein fold
recognition server [26]. NdeI and XhoI restriction sites were placed at the 5′and 3′ ends,
respectively, to facilitate subcloning into pET 21b (+), in which the ORF is fused to a His
tag coding sequence at the 3′ end in the case of the Wuhan strain, and without His tag in
the case of VOC delta. These procedures were performed following standard molecular
cloning protocols. A positive clone carrying the target expression vector was confirmed by
restriction profiling and conventional sequencing.

2.2. Strains, Materials, and Culture Media

The pET 21b (+)-LTB-RBD construct was transferred to the E. coli Rosetta (DE3) pLysS
host. The transformation was performed by heat shock. Afterward, the cells were shaken
at 37 ◦C for 1 h and streaked on LB plates supplemented with ampicillin (100 mg/L) and
chloramphenicol (40 mg/L). Cultivation conditions in shake flask cultures were as follows:
a single positive colony was inoculated in 500 mL baffled flasks containing 100 mL of LB
medium (10 g/L bacto-peptone, 5 g/L yeast extract, and 10 g/L NaCl) supplemented
with ampicillin (100 mg/L) and chloramphenicol (40 mg/mL) at 37 ◦C and 140 rpm. To
induce expression of the LTB-RBD fusion protein, cells were grown to an optical density
of 0.7–1.0 at 600 nm (OD600 nm), and lactose (15 g/L) or IPTG (0.1 mM) was added. All
shake flask cultures were induced at 28 ◦C. Induction was maintained for 7 h, and samples
were withdrawn at 0, 4, and 7 h. Cultivation conditions in batch bioreactor cultures were
as follows. A seed culture was prepared in a 1 L flask containing 200 mL of LB medium,
incubated at 37 ◦C, and 140 rpm for 16 h. The cells were harvested by centrifugation and
resuspended in 20 mL of fresh LB medium. Upon inoculation of the bioreactor, an OD600 nm
of 0.4–0.5 was reached. Batch cultures were grown in a 1.5 L jar fermenter (ez-Control
system model 56,156, Applikon Biotechnology, Delft, The Netherlands) containing 1 L of LB
medium plus ampicillin (100 mg/L) and chloramphenicol (40 mg/L). pH was maintained
at 7.0 ± 0.5 by adding 2 M HCl or 2 M NaOH, and O2 saturation was kept above 40% by
culture stirring (400–600 rpm) and aeration (0.5–1.5 L/min). The temperature was held at
37 ◦C. When culture density reached an OD600 nm of 1.0–1.5, the temperature was decreased
to 28 ◦C, and lactose was added to reach a concentration of 15 g/L and induce expression
of LTB-RBD. The batch bioreactor culture was induced for 9–12 h, and 10 mL samples
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were collected at 3 h intervals. The samples and the endpoint cultures, either from flask or
bioreactor fermentations, were centrifuged at 6000 rpm for 10 min at 4 ◦C, and the pellets
were stored at −40 ◦C. The induced and noninduced samples were analyzed by sodium
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and/or Western blotting.

2.3. Cell Disruption

The bacterial biomass was collected at 7000 rpm (5 min) and resuspended in a cold
solution (100 mM Tris-HCl, 20% (w/v) sucrose, and pH 7.4). 0.2 mL of this solution was
used per 20 mg of biomass. The cells were recovered by centrifugation at 7000 rpm for
15 min (4 ◦C). The pellet was resuspended in injectable water + 0.01 mM PMSF (0.5 mL per
20 mg of biomass). Cells were disrupted while the test tube was kept on ice by applying
6–9 cycles of 30 s on and 30 s off using ultrasonication (GEX130PB device, Twinsburg,
OH, USA) at a 70% amplitude. Afterward, the suspension was centrifuged at 7000 rpm
for 30 min (4 ◦C) to recover a pellet composed of inclusion bodies and insoluble cellular
components and a supernatant (soluble protein fraction). These fractions were stored at
−40 ◦C until further analysis.

2.4. SDS-PAGE and Western Blotting Analyses

Protein samples were mixed with 5× reducing dye buffer (500 mM DTT, 250 mM
Tris-HCl, 10% (w/v) SDS, 50% (v/v) glycerol, 0.1% bromophenol blue, pH 6.8) and boiled
for 10 min. Proteins were separated using a 12% denaturing polyacrylamide gel and
visualized by Coomassie blue staining. For Western blot analysis, the proteins were
transferred from the polyacrylamide gel to a nitrocellulose membrane (Thermo Fisher
Scientific, Waltham, MA, USA) for 1 h at 500 mA using an electrophoretic transfer cell
(Biorad, Hercules, CA, USA). The membrane was incubated overnight in blocking buffer
(5% (w/v) fat-free dry milk dissolved in PBS + 0.05% (v/v) Tween 20). The membrane was
subsequently washed three times with PBS + 0.05% (v/v) Tween 20 and incubated with
mouse anti-sera (1:1000 dilution) against either the cholera toxin B subunit (CTB), which
is an in-house obtained mouse hyperimmune serum using complete Freund’s adjuvant
and commercial CTB from Sigma (cat. no. C9903), or a monoclonal mouse antibody
(1:3000 dilution) targeting the His tag. The blots were washed and incubated with a goat
horseradish peroxidase-conjugated secondary anti-IgG mouse antibody (1:2000 dilution,
Sigma, Livonia, MI, USA) for 2 h at room temperature. Antigen detection was performed
by incubating blots with the SuperSignal West Pico chemiluminescent substrate (Pierce,
Rockford, IL, USA), and the signal was revealed using chemiluminescent-sensitive Kodak
film (Kodak, Rochester, NY, USA).

2.5. Analytical Methods

During flask and batch cultivation, cell growth was monitored by measuring OD600 nm.
Protein samples were quantified with a protein Bradford assay kit (Ab 102535, Abcam,
Cambridge, UK) using bovine serum albumin as standard.

2.6. Protein Purification

The insoluble fraction obtained upon cell disruption was subjected to a washing
procedure (twice with PBS 1× + 1% (v/v) Triton X-100 and twice with PBS 1×) to remove
cellular components and solubilize contaminant proteins. The washed pellet was contacted
with solubilizing buffer (20 mM phosphate, 500 mM NaCl, 8 M urea, pH 7.1) overnight
at 4 ◦C. Finally, the suspension was centrifuged at 13,000 rpm for 20 min to recover the
supernatant with solubilized recombinant protein. This step was repeated twice. This
supernatant is the sample used for chromatography.

For the LTB-RBD Wuhan sequence construct, which carries a His tag, IMAC was run
using a 2 mL column packed with Chelating Sepharose Fast Flow (Pharmacia Biotechnology,
Stockholm, Sweden). The adsorbent was charged with Ni2+ ions and equilibrated with
binding buffer, and 1 mL of the previously obtained protein extract was injected to the
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chromatographic system at a flow rate of 0.25 mL/min. After washing the column, protein
desorption was accomplished by feeding the desorption buffer (20 mM phosphate, 500 mM
NaCl, 500 mM imidazole, 8 M urea, pH 7.1). Fractions containing the protein of interest
were collected and subjected to a refolding process using dialysis with a 6–8 kDa MWCO
membrane. The buffers used to accomplish refolding, in sequential order, were 20 mM
phosphate buffer + 4 M urea at pH 7.1, 50 mM carbonate + 10% (v/v) glycerol + 0.01% (v/v)
Tween at pH 9.2, and 10% (w/v) sucrose + 0.01% (v/v) Tween 20.

For the LTB-RBD delta variant construct, which lacks tags, the supernatant with solu-
bilized protein was used for IMAC as described above; however, in this case, the fractions
containing the protein of interest were collected as unbound protein (several contaminant
proteins bound to the immobilized Ni2+ ions). After this purification step, a change in
buffer (20 mM Tris-HCl, 10 mM NaCl, 8 M urea, pH 8.6) was applied using dialysis to
reduce the concentration of NaCl. A second purification step using anionic exchange chro-
matography was performed. The fractions obtained containing the recombinant protein
were harvested again as unbound protein (the few contaminant proteins found after IMAC
were retained by the cationic column) and dialyzed using the following buffers sequence:
20 mM phosphate buffer + 4 M urea at pH 7.1, 50 mM carbonate + 10% (v/v) glycerol +
0.01% (v/v) Tween at pH 9.2, and 10% (w/v) sucrose + 0.01% (v/v) Tween 20.

2.7. Protein Concentration

The purified protein was concentrated using powdered polyethylene glycol (PEG,
MW 200,000, Sigma) or by ultrafiltration. The protein solution was transferred to a 6–8 kDa
MWCO dialysis membrane, which was covered with PEG powder. After a 20 min incuba-
tion at 4 ◦C, the layer of hydrated PEG over the dialysis bag was removed and replaced with
dry PEG. This procedure was repeated 3–5 times. As for ultrafiltration, a Vivaspin 2 column
(5 kDa MWCO) was rinsed once by adding a solution composed of 10% (w/v) sucrose +
0.01% (v/v) Tween 20 and centrifuged at 4000 rpm by 10 min. Afterward, the protein
solution was placed into the column and concentrated by two cycles of centrifugation of
30 min at 4000 rpm. After these steps, the concentrated protein was quantified.

2.8. Immunogenicity Assessment

The immunogenicity of LTB-RBD was assessed in BALB/c mice (n = 4, 12 weeks old),
following a protocol approved by the institutional ethics committee (CEID-2020-07R1). The
groups received one of the following treatments on days 1 and 14: 5 µg of LTB-RBD plus
alum by subcutaneous (s.c.) route, 10 µg of LTB-RBD plus alum by s.c. route, 10 µg of
LTB-RBD alone by oral (p.o.) route, 10 µg of LTB-RBD plus 1 µg of cholera toxin, 3 µg of
LTB-RBD alone by intranasal (i.n.) route, or 3 µg of LTB-RBD plus 0.3 µg of cholera toxin
by i.n. route. Negative control groups were treated with the antigen vehicle alone (10%
sucrose, 0.01% Tween 20) by s.c., p.o., or i.n. routes. Dose volumes were the following:
300 µL for s.c., 400 µL for p.o., and 20 µL for i.n. routes. For s.c. formulations, Alum
adjuvant was used at a 1:5 ratio (G Biosciences, St. Louis, MO, USA, cat no. 786-1215).
Animals were slightly anesthetized with isoflurane right before immunization.

All samples were taken from all mice groups on day 27. Blood samples were with-
drawn by puncture in the tail. After clot formation, samples were centrifuged at 10,000 rpm
for 10 min, and the obtained sera were stored at −20 ◦C until antibody determination.
Feces and mouth wash samples were taken as follows. For feces, 100 mg was collected and
resuspended in 500 µL of ice-cold PBS (supplemented with 5% fat-free dry milk and 1 mM
of PMSF). Following homogenization using a plastic device, the samples were centrifuged
at 7000 rpm and 4 ◦C for 15 min. Supernatants were transferred to a new tube and kept
at 4 ◦C for immediate analysis by ELISA. Mouth-wash samples were obtained from mice
anesthetized with isoflurane, which were subjected to mouth wash with 120 µL of PBS. The
obtained washes had 1 mM PMSF added. Feces extracts and mouth-wash samples were
immediately plated for antibody determination by ELISA.
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ELISA was run to measure S protein binding antibodies following previously reported
protocols [27]. Polystyrene plates (96 wells) were coated overnight at 4 ◦C with spike
protein (100 ng/well, Sinobiological cat. no. 40589-V08H4) in carbonate buffer (15 mM
Na2CO3, 35 mM NaHCO3, pH 9.6). Before all following steps, plates were washed three
times with PBS + Tween 0.05% (PBS-T). Plates were blocked with 5% fat-free dry milk in
PBS for 2 h at room temperature. Serial dilutions of sera (1:40–1:160) or mouth wash and
fecal extracts (1:1 and 1:2) in PBS were added and incubated at 4 ◦C overnight. Afterward,
for all samples, secondary antibodies labeled with goat horseradish peroxidase-conjugated
anti-mouse IgG for sera samples or anti-mouse IgA for feces and mouth-wash samples
were diluted in PBS (dilution 1:2000) and plated. Finally, an ABTS substrate solution
[0.6 mM 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) + 0.1 M citric acid + 1 mM
H2O2, pH 4.35] was added and OD values at 405 nm were measured after 30 min using a
MultiskanR FC equipment (Thermo Scientific, Waltham, MA, USA). IgG antibody titers
were determined as the reciprocal of the highest dilution of sera with a mean OD value
above the OD value from the group treated with the vehicle alone (negative control) plus
2 × SD. Statistical differences were determined using one-way ANOVA employing the
GraphPad Prism version 5.01 software (p < 0.05).

3. Results

The chimeric protein LTB-RBD is based on the LTB carrier and a segment of RBD (aa
439–504 from the S protein). The sequence was chosen because the RBD is considered
a crucial antigen targeting T and B cell epitopes. In this study, two constructions were
explored based on the RBD of the Wuhan sequence and VOC delta. The main difference
between the delta variant and Wuhan sequences is two amino acid changes, arginine (R)
instead of leucine (L) and lysine (K) instead of threonine (T). The sequences were modeled
using the Phyre2 engine to determine the secondary structure. The in silico analysis did not
predict radical changes in the secondary structure between the Wuhan sequence and delta
variant due to these amino acid changes (Figures 1 and 2). The expression of LTB-RBD in a
Rosetta-pET21b (+)-flask system was assessed using 0.1 mM IPTG at two induction times
(4 and 7 h). Analysis of the SDS-PAGE results revealed the presence of a 21 kDa protein
in the cultures of both variants induced that was absent in both the preinduction cultures
and WT cultures, matching with the theoretical molecular weight for the mature form of
LTB-RBD Wuhan sequence (20.5 kDa) since the protein MW comprising the signal peptide
is 22.9 kDa (Figure 3). The recombinant LTB-RBD was detected in both the soluble and
insoluble fractions with similar abundance in such fractions. As for the LTB-RBD delta
construct, similar findings were obtained in terms of expression in inclusion bodies and
recombinant protein yields in crude extracts (data not shown). However, in this case, no
soluble recombinant protein was observed.

Since lactose is a more convenient inducer (lower cost and toxicity) than IPTG, the
production of LTB-RBD was assessed using 15 g/L lactose as inducer [28]. SDS-PAGE
analysis revealed that the target protein was expressed roughly at similar levels with no
major variation in solubility (Figure 3). To further confirm the antigenicity of the E. coli-
produced LTB-RBD, a Western blot was performed using either an anti-His antibody or an
anti-CTB hyperimmune serum. All these analyses revealed an immunoreactive protein of
the same molecular weight that matched the differential protein detected in the SDS-PAGE
analysis, confirming the identity and antigenic activity of both LTB and RBD sequences
(Figures 4 and 5).
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of LTB (in black), a GPGP linker (in gray), a segment of the RBD from SARS-CoV-2 (aa 439–504, 
carrying B and T cell epitopes, in white), and hexa-histidine tag (in horizontal stripes). The delta 
variant construct has two amino acid changes (arrows): arginine (R) instead of leucine (L) and lysine 
(K) instead threonine (T). NdeI and XhoI restriction sites were placed at the 5′ and 3′ ends, respec-
tively, to facilitate subcloning into the pET 21b (+) vector. 
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protein LTB-RBD targeting the delta variant. The fusion proteins comprise the full-length sequence of
LTB (in black), a GPGP linker (in gray), a segment of the RBD from SARS-CoV-2 (aa 439–504, carrying
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facilitate subcloning into the pET 21b (+) vector.
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Figure 2. A 3D structure model of the candidate vaccine LTB-RBD targeting the Wuhan sequence
(A) or delta variant (B). The full-length sequence of LTB (red) fused to an RBD segment (aa 439–504,
green). GPGP linker (yellow) placed between the LTB and RBD domains. The His tag is only present
in LTB-RBD Wuhan. These structures were modeled with the Phyre2 server.
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Figure 3. SDS-PAGE analysis of protein extracts from cultures expressing LTB-RBD Wuhan induced
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induced for 7 h.
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Figure 5. Western blot analysis for LTB-RBD Wuhan using anti-His tag of protein extracts from
cultures induced for 4 or 7 h at 28 ◦C with lactose as inducer (lanes 1 to 3: soluble protein fraction and
lanes 4 to 6: insoluble protein fraction). Lanes 1 and 4: uninduced cultures, lanes 2 and 5: cultures
induced for 4 h, lanes 3 and 6: cultures induced for 7 h, lane 7: culture medium supernatant, lane 8:
molecular weight marker, lane 9: RBD protein as positive control, and lane 10: soluble fraction of an
untransformed culture.

The production of LTB-RBD was further scaled up to a 1 L bioreactor using lactose
as inducer. The analysis of biomass fractions withdrawn over a period of 9 h in the
postinduction phase revealed that the recombinant protein accumulation peaked at 6 h
postinduction and remained at a similar level at the end time point (9 h postinduction,
Figure 6). In terms of solubility, a shift was observed with respect to flask fermentations,
with an increase in the abundance of the protein in the insoluble fraction. The biomass
showed a constant increase with a maximum density of 7.5 g/L (OD600nm = 3.0) reached at
the endpoint (Figure 6). The purification method based on IMAC allowed obtaining pure
LTB-RBD Wuhan with average yields of 1.2 mg per liter of culture (Figure 7). As for the
LTB-RBD delta construct, the purification method based on IMAC followed by anionic
exchange chromatography allowed reaching yields of 3.5 mg of pure LTB-RBD per liter
of culture (1.4 mg of protein per g of fresh biomass, Figure 8). In Figure 9, a summary of
the implemented protocols for the two versions of the LTB-RBD produced in this report
is presented.

The immunogenicity of LTB-RBD was assessed in test mice subjected to two vaccine
doses administered by distinct routes. The assessment of anti-spike IgG levels revealed that
significant IgG responses were induced in the s.c. immunized group, with a higher response
in the high-dose group (average titers of 1600 for the 10 µg LTB-RBD + Al(OH)3 group and
800 for the 5 µg LTB-RBD + Al(OH)3 group). Interestingly, the group orally immunized
with 10 µg LTB-RBD + CT had a titer value of 1600, whereas the formulation lacking the CT
adjuvant showed very low antibody titer. In contrast, nasal immunization failed to induce
relevant IgG responses, regardless of the use of CT as adjuvant (Figure 10A).

Regarding the mucosal immune response, IgA measurements in saliva (mouth washes)
revealed that significant levels were triggered in the groups immunized by the nasal route,
regardless of the use of CT as adjuvant and in the s.c. immunized group receiving the high
antigen dose (Figure 10B). Intestinal IgA responses were evaluated by measuring IgA levels
in feces, showing that only the nasally immunized groups triggered a significant response,
regardless of the use of CT as adjuvant (Figure 10C).
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Lane 1: γ globulin from human blood as molecular weight marker, lanes 2 to 9: eluted fractions upon
entrance of imidazole for protein desorption.
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Figure 8. (A) SDS-PAGE analysis of eluted fractions during IMAC purification of LTB-RBD delta
variant. Lane 1: γ globulin from human blood as molecular weight marker, lane 2: sample injected into
IMAC column, and lanes 3 to 9: eluted fractions upon entrance of imidazole for protein desorption.
(B) SDS-PAGE analysis of elution fractions during anionic exchange chromatography. Lane 1: γ

globulin from human blood as molecular weight marker, lane 2: sample injected into anionic column,
and lanes 3 to 8: eluted fractions upon entrance of NaCl for protein desorption.
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Vaccines 2022, 10, 1759 13 of 18

Vaccines 2022, 10, x FOR PEER REVIEW 13 of 18 
 

 

measuring IgA levels in feces, showing that only the nasally immunized groups triggered 
a significant response, regardless of the use of CT as adjuvant (Figure 10C). 

 
Figure 10. Humoral response induced by LTB-RBD in test mice. (A) IgG titers measured in serum. 
(B) IgA levels measured in mouth washes. (C) IgA levels measured in feces. Antibodies were meas-
ured by ELISA using the S protein as the target antigen. Samples were collected on day 27. The error 
bars are the standard deviation of the mean absorbance value. Asterisks denote significant differ-
ences (p < 0.05) versus the control group (vehicle). 

  

Figure 10. Humoral response induced by LTB-RBD in test mice. (A) IgG titers measured in serum.
(B) IgA levels measured in mouth washes. (C) IgA levels measured in feces. Antibodies were
measured by ELISA using the S protein as the target antigen. Samples were collected on day 27. The
error bars are the standard deviation of the mean absorbance value. Asterisks denote significant
differences (p < 0.05) versus the control group (vehicle).

4. Discussion

In the present study, LTB-RBD (a chimeric protein comprising a mucosal adjuvant
carrier (LTB) and a segment from the RBD of SARS-CoV-2) was produced and purified as
an antigen vaccine candidate for the formulation of mucosal vaccines against COVID-19.
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The LTB-RBD candidate was expressed as inclusion bodies, which is in line with the
report by Jegouic et al., who assessed the expression of fragments of the S protein from
SARS-CoV-2, including segments covering the RBD sequence; however, they remained in
inclusion bodies despite performing the expression at a lower temperature (15 ◦C) and
with different IPTG concentrations [29]. Moreover, recombinant LTB has been previously
reported to be mainly produced as inclusion bodies in E. coli [30,31]. The LTB-RBD antigen
accumulated as inclusion bodies was subjected to purification and refolding procedures.
The presence of urea in the solubilization procedure allowed purifying the candidate
using IMAC with Ni2+ ions. In-column refolding was tried, but the results were poor
since the protein precipitated inside the column upon urea removal. Once the candidate
was desorbed from the Ni2+ ions using imidazole, the eluted fractions containing highly
pure protein were subjected to refolding using dialysis. Several buffers were tested to
accomplish refolding: the sequence of buffers that successfully produced refolded protein
was PBS + 4 M urea at pH 7.1, 50 mM carbonate + 10% (v/v) glycerol 0.01% (v/v) + Tween
20 at pH 9.2, and 10% (w/v) sucrose + 0.01% (v/v) Tween 20 (Table 1). The use of PBS as
final buffer for the candidate was forbidden, as it completely precipitated the candidate
upon freezing.

Table 1. Protein concentration after a third step of refolding buffer.

Second Refolding Step

Formulation 50 mM Na2CO3, 10% (v/v) Glycerol, 0.01% (v/v) Tween 20, pH 9.2
Protein concentration

(µg/mL) 18.23

Protein recovery 100%

Third Refolding Step

Formulation PBS 1×, 0.01% (v/v)
Tween 20 PBS 1×

10 mM Phosphate, 9%
(w/v) sucrose, 0.01% (v/v)

Tween 20, pH 7.0

10% (w/v) Sucrose, 0.01%
(v/v) Tween 20

Protein concentration
(µg/mL) 4.57 0 2.09 15.30

Protein recovery (%) 25 0 11 87

Studies performed with SARS-CoV sequences revealed that the RBD produced in
E. coli is antigenic and immunogenic, although at a lower magnitude than that expressed
in mammalian cells, while no yields were reported for the E. coli system [32]. RBD has
also been expressed fused to a solubility-enhancing peptide (SEP) tag containing nine
arginine residues, resulting in an enhancement in the accumulation of soluble RBD. This
RBD version was produced at yields of up to 2 mg/L and recognized the ACE2 receptor
and induced antibodies able to interact with a mammalian made S1 protein [33]. Another
case is the report by McGuire et al. [34], in which fusion proteins were designed based on
the thermophilic family of nine carbohydrate-binding modules (CBM9) as an N-terminal
carrier protein and affinity tag and different S protein segments. Among the proteins tested,
the one called CBM9-ID-H1 carrying amino acids 540–588 from the S protein was produced
at yields up to 122 mg/L of pure protein, which was widely reactive with COVID-19
convalescent sera, suggesting that it retains the antigenic determinants; therefore, it is
proposed as a promising immunogen. These studies support the use of E. coli to produce
functional SARS-CoV-2 antigens, a system that offers lower cost compared to mammalian
cell-based platforms.

The functional activity of LTB-RBD was initially assessed in mice subjected to two
immunizations by different routes (subcutaneous, oral, and nasal). Since sera from mice s.c.
receiving the LTB-RBD antigen (10 µg) plus alum as adjuvant showed significant serum
anti-S IgG responses (and modest anti-S IgA responses in the mouth), we believed that this
antigen has a promising potential to induce SARS-CoV-2 neutralizing antibodies. Since
LTB-RBD was able to induce both systemic IgG responses and modest IgA responses in
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mucosal compartments when s.c. administered but induced poor seric IgG levels and high
IgA responses when i.n. administered, we propose that combining the administration
routes in the immunization scheme (i.e., a third boosting i.n. dose in the s.c. immunized
group) might lead to optimal immune response comprising robust humoral responses in
both the systemic and mucosal levels. These findings justify expanding the characterization
of LTB-RBD to assess the cellular response and perform neutralization assays to determine
the immunoprotective potential of these vaccine candidates. Currently, seven intranasal
anti-SARS-CoV-2 vaccines have reached clinical evaluation. Most of these developments
are based on viral vectors or live attenuated viruses [35]. The oral delivery of SARS-CoV-2
vaccines has also been explored. For instance, Jawalagatti et al. [36] reported a Salmonella
strain delivering a replicon coding for SARS-CoV-2 RBD, HR, M, and epitopes of nsp13
(RNA helicase), which successfully induced protective immunity in mouse and hamster
models of SARS-CoV-2 infection associated to cellular and humoral responses, including
the efficient induction of IgA responses in the respiratory mucosa.

Immunogenic carriers are essential when the target antigen has low complexity and is
therefore not very immunogenic. LTB is a promising carrier as it has immunomodulatory
effects and facilitates the translocation of the fused antigen into the submucosa, in addition
to increasing the complexity of the antigen. LTB has been used experimentally in numerous
studies as carrier of unrelated antigens, with the ability to favor the induction of humoral
responses and memory B lymphocytes. LTB enhances the humoral response against
unrelated, genetically fused antigens when administered by either i.n. or oral routes [37,38].
In contrast to the LT holotoxin, LTB is not an inherently toxic protein and has been used
as adjuvant in a vaccine candidate against ETEC diarrhea that reached clinical trials with
positive results [39]. Moreover, LTB has also proven adjuvant activity when parenterally
administered [40]; therefore, the design of combined parenteral–mucosal immunization
scheme could be achieved with the LTB-RBD antigen to induce proper immune responses in
terms of potency and compartmentalization (i.e., parenteral priming and mucosal boosting),
offering the potential to prevent virus spread at early stages of infection. Interestingly,
sublingual immunization has also been proposed as a convenient route able to induce high
immune responses and deserves further exploration for the LTB-RBD antigen [41]. LTB
has been used as antigen/adjuvant in an oral vaccine against enterotoxigenic E. coli; it
induced antibodies and memory B lymphocytes with no serious adverse effects [42]. Based
on this background, LTB was chosen as the carrier agent that will hypothetically increase
the induction of immune responses toward SARS-CoV-2 epitopes after administration
of the antigen by the nasal or oral route. In this respect, the development of mucosal
vaccines not only represents an attractive advantage in terms of friendlier administration
(more acceptable by patients) but also the opportunity to achieve the induction of more
attractive immunological profiles, considering that immunization by these routes leads to
more efficient induction of immune responses in the airway mucosa, which is critical to
control or prevent the SARS-CoV-2 infection.

The emergence of the delta variant, which became of high epidemiological relevance
given its marked pathogenicity and transmissibility and is likely to evade the immunity
induced by the Wuhan strain [43], prompted us to design a new version of the LTB-RBD
carrying the delta-specific sequence. The expression of this new antigen led to its recovery
as an insoluble protein with similar yields to those observed for LTB-RBD Wuhan. Given
the regulatory issues associated with using the His tag, this new construct lacks tags, and
the purification strategy was then established to account for a tag-free procedure. Anionic
exchange chromatography allowed purifying the LTB-RBD-delta antigen to homogeneity.
The previously standardized conditions for refolding of the LTB-RBD Wuhan allowed us to
successfully refold the LTB-RBD delta antigen with similar yields with respect to the former,
suggesting that the methods developed are robust and could be easily applied to newer
variants. We are currently assessing this approach to produce an LTB-RBD omicron antigen.
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5. Conclusions

The distinct versions of the LTB-RBD antigen obtained in this study constitute promis-
ing candidates for developing vaccines for which detailed expression and purification
protocols have been developed. The LTB-RBD production platform used offers low cost,
absence of tags, and easy adaptation to new variants, while supporting the develop-
ment of mucosal vaccines. The obtained LTB-RBD antigens generate the perspective to
achieve mucosal anti-COVID-19 vaccines, which promise to induce sterilizing immunity
against SARS-CoV-2.
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