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Abstract: The importance of Ca2+ signalling in key events of cancer cell function and tumour progression,
such as proliferation, migration, invasion and survival, has recently begun to be appreciated. Many
cellular Ca2+-stimulated signalling cascades utilise the intermediate, calmodulin (CaM). The Ca2+/CaM
complex binds and activates a variety of enzymes, including members of the multifunctional
Ca2+/calmodulin-stimulated protein kinase (CaMK) family. These enzymes control a broad range
of cancer-related functions in a multitude of tumour types. Herein, we explore the cancer-related
functions of these kinases and discuss their potential as targets for therapeutic intervention.
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1. Introduction

Ca2+ is a major second messenger in cells and is essential for a variety of important signalling
pathways. Alterations in intracellular Ca2+ signalling regulate many biological processes, including
gene transcription, exocytosis, the cell cycle, migration and apoptosis. Cytoplasmic Ca2+ concentrations
rise in response to a variety of stimuli, which activate Ca2+-channels in the plasma membrane,
or by release from intracellular stores. It is increasingly being realised that disruption of normal
Ca2+ signalling contributes to the development of tumourigenic phenotypes [1], and aberrant Ca2+

signalling has been implicated in each of the hallmarks of cancer originally identified by Hanahan and
Weinberg [2].

Ca2+ signals in the form of spikes or oscillations and is tightly regulated. The decoding of
this is achieved by several downstream effectors, including calmodulin (CaM). Binding of Ca2+

dramatically changes the conformation of CaM and increases its affinity for a large number of
CaM-binding proteins, including the multifunctional CaM kinases (CaMKK, CaMKI, CaMKII and
CaMKIV). These multifunctional kinases are widely expressed and control a variety of cancer related
functions in a range of cancer types. Their potential as targets for anti-cancer therapeutic intervention
have recently begun to be appreciated.

2. Structure and Regulation of Calcium/Calmodulin-Stimulated Protein Kinase (CAMK)
Family Members

2.1. CaMKK

Ca2+/calmodulin stimulated protein kinase kinase (CaMKK) is a multifunctional protein kinase
encoded by two genes (CAMKK1 and CAMKK2) that produce CaMKKα or CaMKKβ [3], respectively.
The CAMKK2 gene produces several splicing isoforms depending on cell type [4,5]. CaMKKα was
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originally identified in rat brain as an activating kinase for CaMKIV [6] and CaMKI [7], and an
additional β isoform was later identified [8]. CaMKK is primarily expressed in the brain, including the
olfactory bulb, hypothalamus, hippocampus, dentate gyrus, cerebellum and amygdala, and at low
levels in peripheral tissues (such as the thymus, spleen, lung, and testis) [9–11].

CaMKK phosphorylates CaMKI and CaMKIV [3,11], AMP activated protein kinase (AMPK) [12]
and protein kinase B (PKB/Akt) [13]. CaMKK, CaMKI and CaMKIV form a signalling pathway
termed the Ca2+/CaM-dependent kinase cascade, which has been implicated in several cellular
processes, including regulating dendritic spine morphology, hematopoietic stem cell maintenance,
cell proliferation, apoptosis, glucose uptake, adipogenesis, and normal immune cell function [14–21].

Although CaMKKα and CaMKKβ share high sequence homology (Figure 1) and possess a
common domain structure, with a catalytic domain adjacent to an autoregulatory domain containing
an autoinhibitory region that overlaps with the CaM-binding region, they differ in their biochemical
properties. Whilst CaMKKα requires Ca2+/CaM to relieve the autoinhibitory mechanism [22],
CaMKKβ exhibits partially autonomous activity in the absence of Ca2+/CaM [8,11], which is
regulated by phosphorylation by glycogen synthase kinase 3β (GSK3β) and cyclin-dependent
kinase 5 (CDK5) [23]. CDK5 phosphorylates CaMKKβ at S137, thereby priming CaMKKβ for
phosphorylation by GSK-3β at S129 and S133 [23]. Both CaMKK isoforms are partly inhibited following
cAMP-dependent protein kinase (PKA) phosphorylation [24,25], and PKA can phosphorylate CaMKKα

on S52, S74, T108, S458, and S475 [25], and CaMKKβ on S100, S495 and S511 [10]. The major site
of autophosphorylation of CaMKKα is S24 [25], and for CaMKKβ is T482 [26]. T482 generates
partial autonomous activity, which results in partial disruption of the autoinhibitory mechanism [26].
As CaMKKβ is not dependent on rapid fluxes in intracellular Ca2+ for basal activity, it can respond to
other stimuli of longer duration and can phosphorylate AMPK.
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Figure 1. Schematic representing the domain structure of CaMKK. There are two CaMKK isoforms—
CaMKKα and CaMKKβ. CaMKK consists of a unique N-terminal domain (grey), a catalytic domain
(red) which contains an ATP binding region, and a regulatory domain (blue) containing overlapping
autoinhibitory and calmodulin (CaM) binding regions. Phosphorylation sites are indicated by green
balls, with protein kinase A (PKA) phosphorylation sites indicated with red arrows.

Binding of Ca2+/CaM to CaMKKα prevents phosphorylation at S52, S74, T108, and S458,
but enhances phosphorylation at S475 [25]. Additionally, phosphorylation of CaMKKα on S74, T108 and
S458 negatively regulates activity [24,27,28] and phosphorylation of S458 blocks Ca2+/CaM binding.
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2.2. CaMKI

The Ca2+/calmodulin-stimulated protein kinase I (CaMKI) family is composed of four members,
which are coded for by four different genes: CAMK1, PNCK, CAMK1G and CAMK1D, which produce
CaMKIα, CaMKIβ/Pnck, CaMKIγ/CLICK3, or CaMKIδ/CKLiK, respectively. The PNCK gene
produces several splicing isoforms depending on cell type and developmental stage [29]. The various
isoforms of CaMKI are ubiquitously expressed at low levels [30], and expressed at high levels
in several brain regions, including the cortex, hippocampus, thalamus, hypothalamus, midbrain,
and olfactory bulb, with each isoform exhibiting distinct spatiotemporal expression during neuronal
development [31,32]. CaMKI has been implicated in the control of a variety of cellular functions,
including long term potentiation, the control of synapsin in nerve terminals, axon/dendritic outgrowth
and growth cone motility, aldosterone synthase expression, osteoclast differentiation and bone
resorption and proliferation [32–39].

Similar to CaMKK, the four CaMKI isoforms share a common domain structure (Figure 2), with a
catalytic domain adjacent to an autoregulatory domain containing an autoinhibitory region that
overlaps with the CaM-binding region. Binding of Ca2+/CaM to CaMKI causes a conformational
change that relieves the autoinhibition and allows phosphorylation by CaMKK (T174 for CaMKIα),
which is required for maximal CaMKI activity [40,41]. Additionally, once CaMKIδ is phosphorylated
by CaMKK, it becomes resistant to protein phosphatases, which induces a ‘primed’ state, where it can
more readily be activated in response to Ca2+ signals than other CaMKI enzymes [42].
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Figure 2. Schematic representing the domain structure of the CaMKI family. There are four CaMKI
isoforms—CaMKIα, CaMKIβ, CaMKIγ, and CaMKIδ, with each isoform sharing a similar structure.
CaMKI consists of a unique N-terminal domain (grey), adjacent to a catalytic domain (red) which
contains an ATP binding region, and a regulatory domain (blue) containing overlapping autoinhibitory
and calmodulin (CaM) binding regions. Phosphorylation sites are indicated by green balls.

2.3. CaMKII

The Ca2+/calmodulin-stimulated protein kinase II (CaMKII) family is encoded by four
genes: CAMK2A, CAMK2B, CAMK2G, CAMK2D, which produce CaMKIIα, CaMKIIβ, CaMKIIγ,
and CaMKIIδ, respectively. Alternative splicing within the variable linker-region produces multiple
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isoforms [43]. One or more members of the CaMKII family are found in every tissue. CaMKIIα and
CaMKIIβ are most highly expressed in neurons and are involved in regulating a variety of neuronal
functions, including neurotransmitter synthesis and release, neurite extension, and synaptic plasticity
that underlies learning and memory [44–48]. CaMKII has also been implicated in the regulation
of non-neuronal processes, including fertilisation, the maintenance of vascular tone, osteogenic
differentiation, normal cardiac function, apoptosis and excitotoxicity/ischaemic-induced cell death
and cell proliferation [34,49–56].

Similar to the other CaMK family members, CaMKII subunits (Figure 3) have an N-terminal
catalytic domain, and a regulatory domain (which contains autoinhibitory and CaM binding domains).
In contrast to the other CaMK family members, CaMKII possesses a C-terminal association domain
and associates into a multimeric form [57]. The crystalline structure of CaMKIIα shows that it consists
of two autoinhibited catalytic domains in a symmetric dimer. The regulatory domain is joined to the
C-terminus of the catalytic domain [57], which functions as a gate (with T286 as its hinge), so that
it blocks the protein substrate and adenosine triphosphate (ATP) binding sites when CaMKII is
autoinhibited and is ‘open’ following autophosphorylation at T286. CaMKII is therefore comprised of
six mutually inhibited dimers. 
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Figure 3. Schematic representing the domain structure of the CaMKII family. There are four
CaMKII isoforms—CaMKIIα, CaMKIIβ, CaMKIIγ, and CaMKIIδ, with each isoform sharing a similar
structure. CaMKII consists of a unique N-terminal domain (grey), adjacent to a catalytic domain
(red) which contains an ATP binding region, and a regulatory domain (blue) containing overlapping
autoinhibitory and calmodulin (CaM) binding regions. Phosphorylation sites are indicated by green
balls. All isoforms also contain a C-terminal association domain (brown), which is involved in the
formation of CaMKII multimers.

CaMKII requires Ca2+/CaM for initial enzyme activity. Binding of CaM molecules to adjacent
subunits within a holoenzyme allows autophosphorylation at T826 of one or both of these subunits
to occur [58]. Autophosphorylation of T286 in CaMKIIα (T287 in CaMKIIβ, γ, and δ) occurs rapidly
and alters the affinity for Ca2+/CaM and enzyme activity [59,60]. CaMKII phosphorylation at
T286 generates an autonomously active kinase that remains active even following CaM dissociation.
Phosphorylation at T286 can also regulate the function of CaMKII by altering its binding to specific
subcellular locations [61–63]. Once CaMKII is Ca2+-independent, and Ca2+/CaM is no longer bound,
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secondary sites within the CaM-binding site can be phosphorylated (T305/306 in CaMKIIα, and
T306/307 in CaMKIIβ, γ, and δ) [64,65]. Phosphorylation at these sites prevents CaM binding and
CaMKII subsequently becomes insensitive to changes in Ca2+/CaM [66].

Other forms of post-translational modification have also been demonstrated to alter CaMKII
activity. Specifically, a pair of methionine residues (M281/282), present in the β, γ, and δ, but not
α, isoforms [67], can become oxidised and produce a conformational change in CaMKII, similar to
that produced following T286 phosphorylation, leading to an autonomous activation of CaMKII [68].
However, not all CaMKII phosphorylation sites modulate Ca2+/CaM binding and kinase activity.
Phosphorylation at several sites that have no direct effect on kinase activity, but alter molecular
targeting, have been identified in vivo, including T253, S279 and S314 [69–72].

2.4. CaMKIV

Ca2+/calmodulin-stimulated protein kinase IV (CaMKIV) is encoded by the CAMK4 gene.
Two different isoforms (CaMKIVα and CaMKIVβ) are produced by alternative processing [73,74].
The CaMKIV expression pattern is similar to that of CaMKKβ, with both primarily being expressed in
the brain, however, CaMKIV is also present in immune cells, the testes and ovaries [9,16,75,76]. It is
particularly enriched in cerebellar granule cells, and subsequently, has previously been referred
to as CaMK-Gr. The CAMK4 gene also encodes calspermin, a Ca2+/CaM binding protein of
unknown function that is exclusively expressed in spermatids in the testes [76]. CaMKIV has been
implicated in the regulation of homeostatic plasticity, neurite outgrowth, fear memory, immune
and inflammatory responses, the regulation of cyclic AMP element binding protein (CREB) and cell
proliferation [34,77–81].

CaMKIVβ is identical to CaMKIVα, except for the addition of 28 amino acids at the N-terminus.
Similar to the other CaMK family members, CaMKIV has a catalytic domain adjacent to an
autoregulatory domain containing an autoinhibitory region that overlaps with the CaM-binding
region (Figure 4). CaMKIV requires Ca2+/CaM to become active, as well as phosphorylation of the
conserved T in the activation loop (T200 in human CaMKIV and T196 in the rat enzyme) by CaMKK [82],
which generates an autonomously active kinase. Following this, CaMKIV then autophosphorylates at
S12 and S13, which enable Ca2+/CaM independent activity. Double S11A/S12A phospho-null mutants
lack Ca2+/CaM-dependent basal activity and are unresponsive to CaMKK [83], indicating that S12 and
S13 mediate an intrasteric inhibition, and are essential for full activation of CaMKIV. Similar to T305/6
in CaMKII, phosphorylation of CaMKIV within the CaM binding region (S336 in human CaMKIV and
S332 in the rat enzyme) prevents CaM binding and inactivates CaMKIV [84].
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Figure 4. Schematic representing the domain structure of the CaMKIV family. The two CaMKIV
isoforms—CaMKIVα and CaMKIIβ differ only at their N-terminus. CaMKIV consists of a unique
N-terminal domain (grey), adjacent to a catalytic domain (red) which contains an ATP binding region,
and a regulatory domain (blue) containing overlapping autoinhibitory and calmodulin (CaM) binding
regions. Phosphorylation sites are indicated (green balls).
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3. The Role of CaMK Family Members in Cancer

Due to their role as mediators of Ca2+-signalling, it is not surprising that the CaMK family
members have been identified as being overexpressed or aberrantly activated in a wide variety of
cancer types. Additionally, each have also been implicated in controlling cellular processes important
in cancer-related functions, such as cell proliferation, apoptosis, motility and invasion.

3.1. CaMKK

Despite the restricted expression of CaMKKβ in normal cells, it is overexpressed in several
types of cancer compared to adjacent benign tissue (Table 1), including gastric tumours [85],
hepatocellular carcinoma [86], high-grade gliomas [87], ovarian [88] and prostate cancer [89–91].
Androgen stimulation of androgen-dependent and castration-resistant prostate cancer cell lines
results in upregulation of CaMKKβ [89,91,92], indicating direct regulation by the androgen receptor.
Subsequent studies have shown that CaMKKβ is a key effector of the androgen receptor in stimulating
glycolysis through the activation of AMPK and phosphofructokinase (PFK), which drives anabolism
and proliferation of prostate cancer cells [91]. Furthermore, CaMKKβ expression increases with human
prostate cancer progression and Gleason score [89,91], and with tumour progression in a transgenic
adenocarcinoma of the mouse prostate (TRAMP) mouse model of prostate cancer [89], suggesting that
it may also play a role in prostate cancer progression.

Increased CaMKKβ expression also correlates with poor patient survival in additional tumour
types (Table 1). High CaMKKβ expression is associated with poor disease-free survival in hepatic
cancer patients [86], and poor overall survival in glioma patients [87]. These studies suggest that
CaMKKβ may be a useful prognostic marker for liver and brain cancers.
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Table 1. The Ca2+/calmodulin-stimulated protein kinase (CaMK) family is overexpressed in a range of cancer types. AML acute myeloid leukaemia; BPH Benign
prostatic hyperplasia; ccRCC clear cell renal cell carcinoma; CML chronic myeloid leukaemia; GBM glioblastoma multiforme; GOBO gene expression based outcome
for breast cancer; GWAS Genome Wide Association Study; HBV Hepatitis B virus; HCC hepatocellular carcinoma; NHT Neoadjuvant hormone therapy; NSCLC
non-small cell lung cancer; PIN Prostate intraepithelial neoplasia; TCGA the cancer genome atlas; TMA tissue microarray.

CaMK Family Member Cancer Sample Type Expression Reference

CaMKKβ

Prostate

Prostate cancer TMA (n = 84); NHT TMA with hormone
naïve, NHT <3 months, 3–6 months, or >6 months, or
castrate-resistant (n = 107)

Increased protein expression in prostate cancer compared to
PIN and BPH and in castrate-resistant cancer. Reduced
expression following NHT.

[91]

Prostate cancer progression (n = 5) Increased protein expression in prostate cancer compared to
normal prostate and with increasing Gleason score [89]

Normal prostate and prostate cancer TMA (n = 80), cancer,
adjacent normal and metastases TMA (n = 95)

Increased protein expression in primary prostate cancer and
bone metastasis compared to normal prostate [90]

Gastric Gastric adenocarcinoma and normal oesophagus TMA
(n = 98)

Increased protein expression in gastric tumours compared to
normal oesophagus [85]

Liver Hepatocellular carcinoma transcriptome profile microarray
(n = 247); matched normal and tumour (n = 22).

Increased expression in liver cancer and CAMKK2high

correlates with poor disease-free survival. CaMKKβ protein
upregulated in tumour compared to adjacent normal tissue.

[86]

Glioma

Human glioma and normal brain tissue (n = 147 for
expression and n = 101 for methylation); Whole genome
mRNA expression microarray (n = 305 diffuse glioma
samples, n = 151 methylation microarray, n = 275 GBM)

CAMKK2 mRNA and protein is more highly expressed in
high-grade gliomas compared to low-grade. Increased
expression and CAMKK2high correlates with poor overall
survival. CAMKK2 is differentially methylated between low
and high grade glioma.

[87]

Ovarian High grade serous papillary ovarian cystadenocarcinoma and
high-grade ovarian carcinoma with mucinous features (n = 4)

Increased protein expression in high grade serous papillary
cystadenocarcinoma and high-grade ovarian cancer with
mucinous features compared to non-malignant stromal tissue.

[88]

CaMKI

AML TCGA AML database (n = 186) CAMK1Dhigh correlates with poor overall survival [93]

Endometrial
cancer

Endometrial carcinoma and normal endometria (n = 31 and
n = 20)

Protein expression is associated with PCNA-labeling, stage,
histological grade, the presence of invasion and outcome [94]

Breast cancer Primary breast ductal carcinoma (n = 35) PNCK mRNA is more highly expressed in a subset (8/23) of
human breast tumours compared to benign breast tissue [95]

ccRCC ccRCC and adjacent normal tissue (n = 92) and primary
ccRCC tissue (n-248)

PNCK mRNA and protein expression higher in tumour
compared to normal. Patients with PNCKhigh have shorter
overall survival

[96]
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Table 1. Cont.

CaMK Family Member Cancer Sample Type Expression Reference

CaMKII

CML
Peripheral blood (n = 15 at diagnosis; n = 30 in chronic phase
with remission; n = 26 in chronic phase treatment-resistant;
n = 30 in advanced phase; n = 20 healthy)

CaMKIIγ upregulated at diagnosis and in
treatment resistance [97]

AML Peripheral blood samples (n = 16) Total and phosphorylation of CaMKIIγ at T287 increased
in AML [98]

Endometrial
cancer

Endometrial carcinoma and normal endometria (n = 31 and
n = 20)

Protein expression is associated with PCNA-labeling, stage,
histological grade, the presence of invasion and outcome [94]

Colon cancer Paracancerous tissue, well-differentiated and poorly
differentiated colon cancer (n = 5, n = 6, n = 6)

CaMKII protein expression increased in colon cancer
compared to paracancerous tissue, and increased with
poor differentiation

[99]

Breast cancer GOBO Breast Cancer Database (n = 1881); Normal, primary
and metastatic breast cancer TMA (n = 40, n = 70, and n = 10)

CAMK2high associated with worse overall and distant
metastasis free survival. Total CaMKII protein and T286/7
phosphorylation is increased in primary breast cancer
and metastases

[100]

Osteosarcoma

Chondroblastic, osteoblastic and fibroblastic subtypes
(n = 114)

Phosphorylation of αCaMKII at T286 is increased in
osteosarcoma compared to normal osteoblasts and
mesenchymal stromal cells

[101]

Primary osteosarcoma tumours (n = 4) Phosphorylation of αCaMKII at T286 is increased
in osteosarcoma [102]

Lung cancer
Oncomine databases (n = 187, n = 226, n = 130) CAMK2Ghigh associated with worse overall survival [103]

GWAS in NSCLC patients (n = 354) Rs10023113 in CAMK2D associated with survival [104]

Gastric cancer Non-metastatic and metastatic gastric cancer tissues (n = 10,
and n = 10)

Phosphorylation at T286 is increased in metastatic compared
to non-metastatic tissue [105]

CaMKIV

AML TCGA AML database (n = 186) CAMK4high correlates with poor overall survival [93]

HCC Normal liver, chronic hepatitis, cirrhosis, and HCC (n = 4,
n = 6, n = 4, n = 12)

CaMKIV protein expression and activation increased in HCC
compared to normal liver and cirrhosis [106]
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CaMKKβ positively regulates cancer cell proliferation, migration and invasion in a variety
of cell types in vitro (Table 2). Downregulation of CaMKKβ expression using small interfering
RNA (siRNA) or pharmacological inhibition inhibits prostate cancer cell proliferation [89,91,92,107],
migration and invasion [92]. Conversely, CaMKKβ overexpression in LNCaP prostate cancer
cells increases cell migration, further supporting a role for CaMKKβ overexpression in prostate
cancer progression [92]. By contrast, Shima et al. showed that CaMKKβ overexpression in
LNCaP cells decreases cell proliferation and tumour growth in vivo [90], indicating that further
examination of the role of CaMKKβ in prostate cancer cell proliferation is required. Downregulation
or pharmacological inhibition of CaMKKβ also decreases proliferation, migration and invasion of
glioma [87], gastric [85,108] and liver cancer [86] cells and expression of a dominant negative CaMKK
mutant suppresses medulloblastoma cell migration [109], suggesting that CaMKK activity is essential
for this process. Taken together, these studies highlight the importance of CaMKK in controlling cancer
cell proliferation and metastatic processes in a range of cancer types, indicating that its role in these
functions is not cell-type specific, and also suggesting that CaMKKβ may be a valid anti-cancer target
for a variety of cancer types.
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Table 2. The calcium/calmodulin-stimulated protein kinase family mediate a variety of cancer-related functions in multiple cancer types in vitro. AML acute myeloid
leukaemia; AIP autocamtide-2 inhibitory peptide; HCC hepatocellular carcinoma; siRNA small interfering RNA; shRNA short hairpin RNA; WT wild-type.

Target Cancer Cell Line(s) Method of Manipulation Effect Reference

CaMKK

Prostate

LNCaP Pharmacological inhibition (STO-609) Decreased proliferation [89]

LNCaP, VCqP, C4-2B, 22Rv1 siRNA and pharmacological
inhibition (STO-609) Decreased proliferation [91]

LNCaP siRNA and pharmacological
inhibition (STO-609) Decreased migration and invasion [92]

LNCaP CaMKKβ overexpression Increased migration [92]

LNCaP CaMKKβ overexpression Decreased proliferation [90]

DU145 CaMKKβ siRNA Decreased proliferation [107]

Gastric

AGS, KATO-III, SNU-16, N87 CaMKKβ siRNA Decreased proliferation [85]

SNU-1, N87 CaMKKβ siRNA and pharmacological
inhibition (STO-609) Decreased proliferation and induced apoptosis [108]

HCC PHM1, SK-Hep1, HepG2 CaMKKβ siRNA and pharmacological
inhibition (STO-609) Decreased proliferation [86]

Glioma U-87MG CaMKKβ siRNA Decreased proliferation, migration and invasion [87]

Ovarian SKOV-3, OVCAR-3 CaMKKβ siRNA and pharmacological
inhibition (STO-609) Decreased proliferation and induced apoptosis [88]

Breast cancer MCF-7 CaMKKα and CaMKKβ siRNA Arrested cells in G1 [110]

Medulloblastoma DOAY Expression of dominant negative
CaMKK mutant Decreased migration [109]

CaMKI

AML MV-4-11, Kasumi-1 shRNA and CaMKI overexpression
Downregulation decreased proliferation;

Overexpression of kinase dead mutant decreased
colony formation

[93]

Breast cancer MCF-7 siRNA Arrested cells in G1 [110]

Medulloblastoma DOAY Expression of dominant negative
CaMKI mutant Decreased migration [109]



Pharmaceuticals 2019, 12, 8 11 of 29

Table 2. Cont.

Target Cancer Cell Line(s) Method of Manipulation Effect Reference

CaMKII

Osteosarcoma

MG-63, 143B, HOS CaMKIIα shRNA and overexpression
Knockdown decreased proliferation, migration

and invasion. Overexpression increased
proliferation, migration, invasion

[101]

MG-63, 154B Wild-type and K42M kinase dead
CaMKIIα overexpression

K42M kinase dead overexpression
reduced growth [102]

AML KG1, KCL22, THP-1, Kasumi-1
Overexpression of kinase dead truncated

CaMKIIγ, CaMKIIγ shRNA, pharmacological
inhibition (KN-62, KN-93, KN-92)

Kinase dead overexpression, shRNA and
pharmacological inhibition decreased colony

formation and proliferation.
[98]

Lung cancer SCC-9, NCI-H345, NCI-H128,
NCI-H146, NCI-H69 Pharmacological inhibition (KN-62) Slowed progression through S phase and

decreased proliferation [111]

Medullary
thyroid cancer TT, MZ-CRC1 Pharmacological inhibition (antCaNtide) Decreased cell proliferation [112]

Colon cancer HCT116 Pharmacological inhibition (KN-92, KN-93) Decreased proliferation, migration and invasion [99]

Gastric cancer

BGC-823 Pharmacological inhibition (KN-93) and
CaMKIIβ shRNA

Decreased cell proliferation and migration,
induced apoptosis [113]

BGC-823
Pharmacological inhibition (KN-62) and

H282R constitutively active
CaMKIIα overexpression

Pharmacological inhibition decreased cell
proliferation. Overexpression of constitutively
active increased cell proliferation, migration

and invasion

[105]

Prostate cancer
C4-2B, LNCaP, PC3, DU145 Pharmacological inhibition (KN-93) Decreased proliferation [114]

1542-CP3TX Pharmacological inhibition (AIP) Decreased cell migration [115]

T cell lymphoma H9 CaMKIIγ knockout by CRISPR/Cas Decreased proliferation and colony formation [116]

Breast cancer

MDA-MB-231, MCF-7

Overexpression of CaMKIIα, T286D
(phosphomimic) and T286V (phosphonull),

Pharmacological inhibition (KN-92,
KN-93, AIP)

Overexpression of WT and phosphomimic forms
increased cell proliferation, migration and

invasion. Pharmacological inhibition decreased
migration and invasion

[100]

MDA-MB-231 Overexpression of CaMKIIα, T286D
(phosphomimic) and T253D (phosphomimic)

Overexpression of WT and T286D increased
proliferation. Overexpression of T253D

decreased proliferation
[117]

Glioma

C6, U-251MG Pharmacological inhibition (KN-93) Decreased migration [118]

D54, H8a Pharmacological inhibition (AIP) Decreased migration [119]

U-87MG CaMKIIγ siRNA, pharmacological
inhibition (KN-93)

Decreased proliferation, invasion and
neurosphere formation [120]
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Table 2. Cont.

CaMKIV
AML

Lin− AML, MV-4-11, Kasumi-1 CaMKIV and K75M overexpression and
CaMKIV shRNA

CaMKIV-K75M overexpression and shRNA
knockdown decreased colony formation. shRNA

knockdown induced apoptosis and
decreased proliferation.

[93]

U937 CaMKIV wild-type and K71M kinase dead
mutant overexpression

Cells arrested in G0/G1 following WT, but not
K71M, overexpression [121]

HCC PHM1, SK-Hep1 CaMKIV siRNA Inhibited colony formation and proliferation [86]
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3.2. CaMKI

The various CaMKI isoforms have been shown to be overexpressed in several different cancer
subtypes (Table 1). CaMKI is more highly expressed in stage III and IV endometrial carcinomas,
when compared to stage I and II, and is associated with proliferating cellular nuclear antigen
(PCNA)-labelling, clinical state, histological grade, and the presence of invasion, indicating that
CaMKI may play a role in endometrial carcinoma progression [94]. Expression of several of the specific
CaMKI isoforms have also been examined in specific cancer types. For example, CaMKIγ/PNCK is
overexpressed in a subset of primary breast cancers compared to benign mammary tissue [95], and in
clear renal cell carcinoma compared to adjacent non-tumour tissues [96]. Furthermore, a significant
correlation between PNCK expression and Fuhrman grade, tumour size, T and N stage was observed
in these clear cell renal carcinoma samples, and high levels of PNCK is an independent predictor for
poor patient survival [96]. CAMKID has also been identified as a potential prognostic marker in acute
myeloid leukaemia (AML), as high levels of CAMKID mRNA are associated with significantly worse
AML patient survival [93].

Unsurprisingly, CaMKI has been implicated in a variety of cancer-related cellular processes
(Table 2). CaMKI controls the progression of MCF-7 breast cancer of cells through G1 [110], potentially
by regulating cdk4 and retinoblastoma protein (Rb) phosphorylation, as overexpression of the
kinase-inactive CaMKI K49A mutant prevents cdk4 activation and Rb hyperphosphorylation in
WI-38 fibroblasts [17]. Indeed, knockdown of CaMKI expression in MV-4-11 and Kasumi-1 AML
cells significantly decreases cell proliferation and inhibits leukaemia development and prolongs
the survival of AML xenografted mice [93]. By contrast, CaMKI overexpression does not affect
leukaemia development, but overexpression of the kinase-inactive CaMKI K49E mutant significantly
decreases AML colony formation and increases mouse survival in AML transplantation studies [93],
demonstrating the importance of CaMKI activity in controlling cell proliferation. Similar to expression
of a dominant negative CaMKK mutant, expression of a dominant negative CaMKI mutant significantly
decreases medulloblastoma cell migration [109], highlighting the importance of the CaMKK-CaMKI
cascade in this cellular process. Murine CKLiK is upregulated by the haematopoietic cell-specific ETS
family transcription factor, PU.1, in murine erythroleukemia cells, and is involved in apoptosis [122],
suggesting that the human homolog of CKLiK may function in a similar fashion. These studies
demonstrate that CaMKI can control cell proliferation, migration, and survival in medulloblastoma,
breast and haematopoietic cancers, and therefore, may be a potential anti-cancer target for these
cancer types.

3.3. CaMKII

Tumour cells express an entirely different spectrum of CaMKII isozymes than adult neuronal
tissue or their non-transformed tissue counterparts. Eight distinct β, γ and δ CaMKII isozymes
have been identified in human mammary tumour and neuroblastoma cell lines [123]. In addition
to expression of these novel tumour variants, CaMKII is also overexpressed in a variety of cancer
types (Table 1). CaMKII is more highly expressed in stage III and IV endometrial carcinomas when
compared to stage I and II, and is associated with PCNA-labelling, clinical state, histological grade,
and the presence of invasion, indicating that similar to CaMKI, CaMKII may play a role in endometrial
carcinoma progression [94]. CaMKII is overexpressed in colon cancer compared to adjacent normal
tissue and increases with poor differentiation [99], and in primary breast cancer compared to adjacent
normal breast, as well as in lymph node metastases [100], indicating that CaMKII may play a role
in cancer progression. In regards to specific isoforms, CaMKIIγ is increased in AML patient blasts
compared to normal peripheral blood cells [98], in lung cancer compared to normal lung tissue [103]
and is upregulated at diagnosis in chronic myeloid leukaemia (CML) [97]. Additionally, CaMKIIγ
expression is increased in CML blasts resistant to tyrosine kinase inhibitors [97], glioma cells resistant to
the Fas agonistic antibody (CH-11) [124] and also in TRAIL-resistant melanoma cells [125], suggesting
that it may play a role in chemoresistance.
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The single-nucleotide polymorphism (SNP) rs10023113 in CAMK2D is associated with poor
survival of early-stage non-small cell lung cancer patients [104], and high expression of CAMK2G
in lung cancers is associated with significantly worse overall survival in 3 different cohorts [103].
Additionally, breast cancer samples that express high levels of CAMK2 exhibit significantly worse
overall and distant metastasis-free survival compared to patients with low CAMK2 expression [100].
These studies suggest that CaMK2 genes are potential prognostic biomarkers for a range of cancer types.

Furthermore, not only is CaMKII expression increased in a variety of cancer types, enhanced
autophosphorylation at T286 is also frequently observed (Table 1). Increased T286/7 phosphorylation
of CaMKII is noted in TRAIL-resistant melanoma cells [125], lung cancer oncospheres [103],
osteosarcoma [101,102], leukaemia stem cells [126], AML patient blasts [98], primary and metastatic
breast tumours compared to normal adjacent breast tissue [100] and in metastatic gastric cancers
compared to non-metastatic tissues [105], indicating that enhanced CaMKII activity is a feature of
cancers, and is also associated with metastatic disease.

Each of the CaMKII isoforms has been implicated in the control of a variety of cancer-related
functions. In vitro, CaMKII controls cellular differentiation in AML differentiation [98] and cell
proliferation in smooth muscle cells [127–130], lung cancer [111], medullary thyroid cancer [112],
AML [98], glioma [120], T cell lymphoma [116], osteosarcoma [101], and colon [99], gastric [113] and
prostate cancers [114]. In vivo, CaMKII controls osteosarcoma [101,102,131] and T cell lymphoma [116]
tumour growth. CaMKII is essential for metastatic processes, including cell migration and invasion
in osteosarcoma [101,102,131], glioma [118–120], and gastric [105,113], colon [99], breast [100],
and prostate cancers [114,115]. CaMKII activity is essential for this process, as expression of
a constitutively active (H282R) mutant enhances gastric cancer cell migration and invasion by
upregulating matrix metalloproteinase-9 (MMP-9) [105].

Furthermore, CaMKIIγ has been implicated in tumourigenesis in a variety of cancer types.
CaMKIIγ deletion suppresses T cell lymphomagenesis in vivo [116]. CaMKIIγ knockout mice develop
fewer tumours, that are smaller than their wild-type counterparts, in a dextran sodium sulfate (DSS)
and azoxymethane (AOM) model of colitis-associated tumourigenesis. Furthermore, only knockout
in colonic tissue-resident cells, and not in bone marrow-derived immune cells, is involved in this
suppressive effect [132]. By contrast, CaMKIIγ overexpression increases colon proliferation rates,
decreases cell death and increases distal colitis-associated cancer compared to control mice [132].
CaMKIIγ−/− mice exhibit increased tumour number and volume in diethylnitrosamine (DEN) and
DEN followed by tumour promotor models of hepatic cancer [133]. Additionally, CaMKIIγ knockdown
inhibits lung cancer tumourigenicity, and overexpression enhances tumourigenicity in vitro and
in vivo [103].

Differentially phosphorylated CaMKII also controls different cellular functions. For example,
dephosphorylation of CaMKII at T253 controls the metaphase-anaphase transition in neuroblastoma
(SHSY5Y) and breast cancer (MDA-MB-231) cell lines [117]. Overexpression of wild-type or a T286
phospho-mimic mutant (T286D) of CaMKIIα increases cancer cell proliferation [117], migration and
invasion [100]. By contrast, overexpression of a T253 phospho-mimic mutant (T253D) prevents cancer
cell proliferation [117]. Taken together, these studies highlight the importance of CaMKII in controlling
cancer cell proliferation and metastatic processes in a range of cancer types, indicating that its role in
these functions is not cell-type specific but broadly applicable, and indicates that CaMKII may be a
valid anti-cancer target for a variety of cancer types.

3.4. CaMKIV

Despite the restricted expression of CaMKIV in normal tissues, CaMKIV is overexpressed
in several different types of cancer (Table 1). CaMKIV expression and activity is increased in
hepatocellular carcinoma [106], small cell lung cancer [111], and is significantly associated with
clinical stage, myometrial invasion and clinical outcome in endometrial carcinoma [134]. Furthermore,
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high CAMK4 expression is associated with significantly worse overall survival for AML patients [93],
and in endometrial carcinoma [135].

As CaMKIV is expressed in immune cells, it is not surprising that it has been shown to
regulate haematopoietic stem cell homeostasis [16]. Additionally, CaMKIV has been implicated
in cell proliferation and cell cycle regulation. Decreasing CaMKIV expression inhibits AML
development in vitro and in vivo [93], and decreases hepatic cancer cell proliferation [86]. By contrast,
overexpression of CaMKIV in AML cells arrests cells in G0/G1, in an activity dependent manner [121],
suggesting that CaMKIV may have cell line dependent effects, even within the same cancer subtype.

4. The CaMK Family Are Potential Anti-Cancer Therapeutic Targets

Due to the importance of CaMK family members in controlling cancer-related functions, their
suitability as anti-cancer targets have begun to be explored. Several pharmacological inhibitors
that inhibit the activity of these enzymes have been developed, and their usefulness as anti-cancer
treatments in a variety of cancer types has been examined.

4.1. STO-609

7-Oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic acid (STO-609, Figure 5) is a
selective CaMKK antagonist that inhibits autophosphorylation of both CaMKKα and CaMKKβ [136],
without any significant effect on CaMKI and CaMKIV. However, at doses ~100-fold higher than the
half maximal inhibitory concentration (IC50) for CaMKK, CaMKII and myosin light chain kinase
(MLCK) are also inhibited. Additionally, STO-609 has been demonstrated to bind to and activate the
aryl hydrocarbon receptor (AhR) [137], indicating that STO-609 may not be as CaMKK selective as
initially believed. As CaMKK controls cancer cell proliferation, migration and survival in a variety
of cancer types in vitro (Table 2), inhibiting CaMKK activity may be a valid anti-cancer therapeutic
strategy in these cancer types. 

3 

 
Figure 5. Structures of STO-609, KN-62, KN-93, berbamine dihydrochloride and bbd24.

Indeed, STO-609 decreases AML [93], prostate [89,91], gastric [108], hepatocellular [86] and
ovarian cancer cell proliferation [88] in vitro, and induces apoptosis in ovarian [88] and gastric cancer
lines [108]. Furthermore, treatment with STO-609 significantly reduces tumour burden in prostate and
hepatocellular cancer mouse models in vivo (Table 3). Systemically administered STO-609 decreases
tumour growth, both as a single agent and additively in combination with AR inhibition, in a C4-2B
prostate cancer xenograft model [91], and in the DEN-induced hepatocellular carcinoma mouse
model [86], demonstrating that CaMKK inhibition is a valid strategy for the treatment of prostate and
hepatic cancer, and based on the in vitro studies, may potentially be suitable for other cancer types,
including AML, gastric and ovarian cancers.

Intraperitoneal doses of STO-609 up to 300 µM/kg, or daily injections of 30 µM/kg for 4 weeks,
have been shown to be well-tolerated in C57Bl/6 J mice, and did not induce parameters of liver
or kidney toxicity [138]. However, the primary limitation of the use of STO-609 as an anti-cancer
treatment is its poor solubility, therefore improved derivatives that increase solubility, whilst increasing
efficacy will need to be developed.
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Table 3. Effects of pharmacological inhibitors of CaMK family members on tumour burden in in vivo animal models of cancer. AR androgen receptor; CML chronic
myeloid leukaemia; DEN diethylnitrosamine; HCC hepatocellular carcinoma; MNU N-methyl-N-nitrosourea; NOD-SCID non-obese diabetic severe combined
immunodeficient; NSG nod scid gamma.

Pharmacological Agent Cancer Model Treatment Schedule Outcome Reference

STO-609

Prostate Subcutaneous C4-2B xenograft in full
and castrated nude mice

10 µmol/kg STO-609 or vehicle
intraperitoneally three times/week

Reduction in tumour growth,
which was enhanced in

castrated mice
[91]

HCC DEN-induced hepatic cancer model 30 µg/kg STO-609 or vehicle
intraperitoneally twice/week for 4 weeks Reduction in tumour growth [86]

KN-93 Osteosarcoma

Subcutaneous and intratibial MG-63
xenograft in nude mice

1 mg/kg saline or KN-93
intraperitoneally every other day for

6 weeks
Reduction in tumour growth [102]

Intratibial 143B xenograft in
nude mice

Osmotic pump delivery of 5 µg/µL
KN-93, 10 µg/µL CBO-P11 or vehicle set

to release 0.25 µL/h for 2 weeks

Reduction in tumour growth
alone and in combination

with CBO-P11
[131]

Berbamine

HCC Subcutaneous Huh7 or SK-Hep-1
xenograft in NOD-SCID mice

100 mg/kg berbamine orally twice day
for 5 consecutive days, 2 days

withdrawal, and then repeated once
Reduction in tumour growth [139]

CML
Subcutaneous K562 and primary
CML cells from a patient at blast

crisis xenograft in nude mice

100 mg/kg berbamine, imatinib or
vehicle orally three time daily for 10 days Reduction in tumour growth [126]

T cell lymphoma
MNU-induced lymphoma model and

subcutaneous H9 xenograft in
NSG mice

50 m 100 or 150 mg/kg berbamine, or
vehicle, orally administered to mice

2 times a day for 14 days, 14 days
withdrawal, cycle repeated; Xenograft

study: 150 mg/kg berbamine or vehicle
oral twice a day

Reduction in tumour growth
in both models [116]
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4.2. KN-62/KN-93

4-[(2S)-2-[(5-Isoquinolinylsulfonyl)methylamino]-3-oxo-3-(4-pheynl-1-piperazinyl)propyl]
phenylisoquinolinesulfonic acid ester (KN-62) and N-[2-[[[3-(4′-chlorophenyl)-2-propenyl]-methylamino]
methyl]phenyl]-N-(2-hydroxyethyl)-4′-methoxybenzenesulfonamide phosphate salt (KN-93) (Figure 5),
are membrane permeable CaMKII inhibitors that are competitive for CaM [140]. They were originally
described as CaMKII specific inhibitors, as they do not affect other CaM-dependent enzymes, such as
AMPK and MLCK [141].

However, subsequent studies have shown that they also inhibit CaMKI and CaMKIV and other
molecules unrelated to the CaMK family, including ion channels [142–146]. Both KN-62 and KN-93
prevent the activation of CaMKII, but do not inhibit autonomously active CaMKII [142]. As CaMKI,
CaMKII and CaMKIV control cancer cell proliferation, migration and survival in a variety of cancer
types in vitro (Table 2), inhibiting the activity of these kinases using KN-62 and KN-93 may be a valid
anti-cancer therapeutic strategy for a range of cancer types.

Indeed, KN-93 decreases proliferation in osteosarcoma [131], AML [98], T cell lymphoma [116],
prostate cancer [114], endometrial cancer [94], glioma [120], colon cancer [99], breast cancer [110] and
medullary thyroid cancer cells [112], induces apoptosis in prostate cancer [147,148], but not AML
cells [98], and resensitises resistant melanoma cells to TRAIL-induced apoptosis [125] and resistant
glioma cells to CH-11 [124,149] in vitro. Whilst KN-62 treatment does not result in apoptosis in
cancer cell lines, it induces differentiation in AML cell lines [150], suppresses hypoxia inducible factor
(HIF)-1α in hepatoma cells [151], potentiates the effects of etoposide in head and neck squamous cell
carcinoma [152] and AML cell lines [153], and reverses adriamycin resistance in human ovarian cancer
cells [154], indicating that it may be useful when combined with additional therapies. Additionally,
KN-93 decreases migration and invasion in osteosarcoma [131], breast [100], prostate [114], colon [99]
and endometrial [94] cancer cells. Similar findings have been observed with KN-62, as it inhibits
gastric cancer cell proliferation, invasion and migration in vitro [105]. Taken together, these studies
indicate that inhibiting CaMK family members using KN-93 and/or KN-62 may be suitable for the
treatment of metastatic cancer in a range of solid tumours.

Furthermore, KN-93 decreases tumour burden in osteosarcoma xenograft models in vivo (Table 3).
Systemically administered KN-93 decreases tumour growth in subcutaneous and orthotopic (intratibial)
MG-63 osteosarcoma models in vivo, both alone [102] and in combination with CBO-P11 (a vascular
endothelial growth factor receptor (VEGFR) inhibitor) [131].

Whilst in vivo studies using these inhibitors do not describe any side-effects, KN-62 and KN-93
have been widely used to examine a variety of heart and brain-related functions. For example, KN-62
and KN-93 can depress the rate of beating of cultured myocytes [155] and afterdepolarisation in
the heart [156], respectively, and can block long-term potentiation (LTP) in rat hippocampus [157],
indicating that they are likely to affect cardiac, learning and memory processes. Due to these potential
side effects, as well as the range of off-target effects using these inhibitors, these inhibitors are unlikely
to be translated into clinical use without modification or the use of alternative more cancer-selective
modes of drug delivery (e.g., nanoparticles or liposomes).

4.3. Substrate Based Inhibitors: Autocamtide-3 Derived Peptide Inhibitor (AC3-I) and Autocamtide-2-Related
Inhibitory Peptide (AIP)

Long inhibitory peptides based on the autoinhibitory domain of CaMKIIα have been developed.
The N-terminus of this peptide contains the autophosphorylation site forming the basis for peptide
substrates such as autocamtide-2 and -3 [158] and the development of a non-phosphorylatable
analogue of autocamtide-2 generated the peptide inhibitors AIP (KKALRRQEAVDAL) [140] and
AC3-I (KKALHRQEAVDCL) [159]. AIP competes with the active site of CaMKII, inhibiting activity
regardless of how CaMKII was activated, and inhibits CaMKII with over 100-fold selectivity relative to
protein kinase C (PKC), PKA and CaMKIV. However, altered selectivity can also occur when peptides
are fused to GFP or modified by lipids to increase membrane permeability. For example, myristoylated
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AIP has been shown to have effects unrelated to CaMKII inhibition [160], indicating the presence of an
additional non-CaMKII-related target, and green fluorescent protein (GFP)-AC3-I can inhibit cellular
actions of protein kinase D1 (PKD1) [161]. AIP significantly attenuates glioma [119,162] and breast
cancer [100] migration and invasion. Furthermore, AC3-I treatment arrests ovarian carcinoma cells
in G2 and stops proliferation [163]. These studies indicate that CaMKII inhibition may be a viable
therapeutic option for the treatment of metastatic disease.

4.4. CaMKIIN Derived Peptides (CaMKIINtide)

Small endogenous proteins that inhibit CaMKII (CaMKIIN) have been identified in rat brain [164]
and there are two known rat isoforms—CaMKIINα [164] and CaMKIINβ [165]. Human CaMKIIN has
also been identified in human dendritic cells [166]. CaMKIIN is implicated in the control of progression
of cells through S phase. Overexpression of hCaMKIIN in colon cancer cells decreases cell proliferation,
whereas silencing increases cell growth rates [166,167]. Furthermore, hCaMKIIN overexpression in
ovarian cancer cells decreases proliferation and tumourigenicity [168,169], and also reduces migration
and colony formation [169]. This implies a potential application of hCaMKIIN in the treatment of
colon and ovarian cancers.

Identification of the core inhibitory domain of CaMKIIN led to the generation of a 28 amino
acid peptide inhibitor called CaMKIINtide [164]. CaMKIINtide only inhibits activated CaMKII [164],
and does not inhibit PKC, PKA, CaMKI, CaMKIV or CaMKK [164]. CaMKIINtide has also been
modified to increase potency [170,171]. A cell permeable form, antCaNtide, decreases medullary
thyroid cancer [112], and AML cell proliferation [121] indicating that the development of additional
CaMKII specific inhibitors may provide viable therapeutic options for the treatment of haematological
and thyroid cancers.

4.5. Berbamine Dihydrochloride

Berbamine (Figure 5) is a natural bis-benzylisoquinoline alkaloid, isolated from the traditional
Chinese herbal medicine Berberis amurensis. Berbamine exhibits potent antitumour activities with
low toxicity in a variety of cancer types, including melanoma, hepatocellular carcinoma, breast
cancer, leukaemia and lung cancer [126,172–178]. Recently, berbamine was shown to produce its
anti-cancer effects by blocking the ATP binding pocket of CaMKIIγ [126], however, berbamine also
inhibits molecules unrelated to CaMKII, including mechano-electrical transducer channels, the Bcr/Abl
fusion gene, and the NF-κB pathway [175,179,180]. 2-methylbenzoyl berbamine (bbd24) (Figure 5),
a derivative of berbamine and a more potent CaMKII inhibitor, has been identified [126]. Berbamine
inhibits the growth and reduces the viability of liver cancer [139] and CML cells [126] in a CaMKIIγ
dependent manner. Bbd24 also kills liver cancer cells in vitro [139].

Berbamine has been shown to reduce tumour burden in several different animal models (Table 3).
Berbamine decreases liver cancer [139] and CML [126] tumour burden in vivo and decreases tumour
burden and significantly increases survival in an N-methyl-N-nitrosurea (MNU)-induced lymphoma
model [116].

The main limitation for the use of berbamine clinically as an anti-cancer agent is its short plasma
half-life and poor bioavailability at the tumour site after systemic administration. To circumvent
this, lipid-based nanoparticles loaded with berbamine have been developed and have been shown to
decrease primary tumour growth in a B16F10 mouse melanoma model and also suppress the incidence
of lung metastases in vivo [181]. This highlights that newer mechanisms of drug delivery may be
useful clinically to increase the cancer-specificity of these drugs, without enhancing toxicity.

5. Concluding Remarks and Perspectives

The CaMK family members, particularly CaMKII, are attractive anti-cancer targets as they are
overexpressed in a plethora of cancer types, compared to adjacent normal tissue, and are vital in
the modulation of cancer cell proliferation, survival, invasion and migration. Several targeted and
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broad-acting CaMK inhibitors have demonstrated pre-clinical anti-cancer efficacy in vivo. Many of the
previously believed ‘CaMK-specific’ inhibitors have been shown to have a variety of off-target effects,
which further limits their clinical usefulness. By contrast, CaMKIIN-tide, and its modified derivatives,
based on the endogenous CaMKII inhibitory protein (CaMKIIN) have no described off-target effects,
and are the most promising lead compounds for further development described here-in, however,
their usefulness in vivo remains to be investigated. Additionally, as the CaMK family members are
also involved in highly important, non-cancer related functions, direct inhibition using these existing
CaMK inhibitors are likely to produce a range of deleterious side-effects if used clinically. Therefore, to
be useful therapeutically, cancer-specific inhibitors or more cancer-specific modes of drug delivery
would be required to be developed. One such potential strategy would be to encapsulate these CaMK
inhibitors in nanoparticles or liposomes that specifically target cancer cells for the delivery of the
inhibitor. Whilst this has been examined in other disease models for CaMKIIN inhibitory peptides,
such as heart disease and asthma [182,183], they remain to be tested in cancer.
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