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OBJECTIVE—Chronic exposure to fatty acids causes �-cell
failure, often referred to as lipotoxicity. We investigated its
mechanisms, focusing on contribution of SREBP-1c, a key tran-
scription factor for lipogenesis.

RESEARCH DESIGN AND METHODS—We studied in vitro
and in vivo effects of saturated and polyunsaturated acids on
insulin secretion, insulin signaling, and expression of genes
involved in �-cell functions. Pancreatic islets isolated from
C57BL/6 control and SREBP-1–null mice and adenoviral gene
delivery or knockdown systems of related genes were used.

RESULTS—Incubation of C57BL/6 islets with palmitate caused
inhibition of both glucose- and potassium-stimulated insulin
secretion, but addition of eicosapentaenoate (EPA) restored
both inhibitions. Concomitantly, palmitate activated and EPA
abolished both mRNA and nuclear protein of SREBP-1c, accom-
panied by reciprocal changes of SREBP-1c target genes such as
insulin receptor substrate-2 (IRS-2) and granuphilin. These
palmitate-EPA effects on insulin secretion were abolished in
SREBP-1–null islets. Suppression of IRS-2/Akt pathway could be
a part of the downstream mechanism for the SREBP-1c–medi-
ated insulin secretion defect because adenoviral constitutively
active Akt compensated it. Uncoupling protein-2 (UCP-2) also
plays a crucial role in the palmitate inhibition of insulin secre-
tion, as confirmed by knockdown experiments, but SREBP-1c
contribution to UCP-2 regulation was partial. The palmitate-EPA
regulation of insulin secretion was similarly observed in islets
from C57BL/6 mice pretreated with dietary manipulations. Fur-
thermore, administration of EPA to diabetic KK-Ay mice amelio-
rated impairment of insulin secretion in their islets.

CONCLUSIONS—SREBP-1c plays a dominant role in palmitate-
mediated insulin secretion defect, and EPA prevents it through
SREBP-1c inhibition, implicating a therapeutic potential for
treating diabetes related to lipotoxicity. Diabetes 57:2382–

2392, 2008

M
olecular mechanisms of pancreatic islet
�-cell failure, a crucial pathological contribu-
tor to the development of diabetes, have been
extensively explored (1–3). Impairment of

glucose-stimulated insulin secretion (GSIS) is an early
feature of type 2 diabetes, and influx of fatty acids into
�-cells (�-cell lipotoxicity) has been thought to be in-
volved in its pathogenesis (4,5). The intracellular events
leading to GSIS include glucose metabolism for ATP
production, closure of ATP-dependent K channels, mem-
brane voltage-dependent calcium influx, calcium-depen-
dent vesicle transport, and exocytosis of �-granules
containing insulin (6,7). Lipotoxicity has been implicated
in reducing GSIS via many of these steps (8). For example,
uncoupling protein-2 (UCP-2), a mitochondrial membrane
protein involved in energy production, plays an important
role in fatty acid–induced lipotoxic effects (9–12). Al-
though �-cells have traditionally been thought to simply
produce insulin in response to glucose, more recent stud-
ies have highlighted the role of insulin signaling in �-cells.
Studies on insulin signaling in �-cells, such as targeted
disruption of the insulin receptor (13) and insulin receptor
substrate-2 (IRS-2) (14,15), have shown that this pathway
can influence both �-cell mass and insulin secretion.

Sterol regulatory element-binding protein (SREBP)-1c is
a membrane-bound transcription factor of the basic helix
loop helix leucine zipper family and has been established
as a regulator of lipogenic enzymes in the liver (16,17).
Expression of SREBP-1c is highly upregulated by dietary
intake of carbohydrates and sugars (18–21). Conversely,
polyunsaturated fatty acids (PUFAs), such as eicosapen-
taenoate (EPA), have been shown to inhibit hepatic
SREBP-1c through multiple mechanisms (22,23). Recent
data suggested that hepatic SREBP-1c is also induced by
dietary saturated fatty acids (24). The data from SREBP-1c
transgenic and LDL receptor knockout doubly mutant
mice provide evidence that activation of this nutritionally
regulated lipid transcription factor could be involved in
formation of components of metabolic syndrome, such as
hyperlipidemia and atherosclerosis (A. Takahashi, H. Shi-
mano, unpublished data). Furthermore, SREBP-1c directly
represses IRS-2 expression and leads to hepatic insulin
resistance as a part of underlying pathogenesis for meta-
bolic syndrome (25). In pancreatic �-cells, activation of
SREBP-1c has been shown to be involved in impaired
insulin secretion and glucose intolerance (26–28). Fea-
tures of hepatic SREBP-1c induction by saturated fatty
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acids, repression by PUFAs, and inhibition of IRS-2 were
reproducibly observed in �-cells. As the major down-
stream insulin signaling pathway, the IRS-2/PI3K/Akt path-
way has links to cell growth and survival and to glucose
metabolism leading to ATP production (29). Insulin signal-
ing in �-cells has been thought to be important for �-cell
mass based on analyses of �-cell–specific transgenic mice
of Akt (30–32) and tissue-specific knockout mice of insulin
receptor (13) and IRS-2 (14,15). More recently, importance
of insulin signaling in �-cell function has also been noticed
in the glucose/insulin-signaling/Foxo1 pathway (29,33,34).
Nuclear Foxo1 has a negative effect on �-cell mass and
insulin secretion in vivo (34). Insulin signaling phosphor-
ylates nuclear Foxo1 for nuclear exclusion and contrib-
utes to �-cell protection.

Recently, we reported that granuphilin, a crucial com-
ponent of the docking machinery of insulin-containing
vesicles to the plasma membrane (35–37), is regulated by
SREBP-1c in �-cell (38). Thus, taken together with clinical
implication of fatty acids as causative factors for �-cell
lipotoxicity, it is conceivable that SREBP-1c is involved in
�-cell lipotoxicity–mediated insulin secretion defects in
GSIS.

In the current studies, we investigated the effects of
palmitate, a typical saturated fatty acid, on GSIS in iso-
lated islets and found that palmitate impairs GSIS and that
addition of EPA protects against these effects. Analyses of
palmitate-EPA on gene expression, including SREBP-1c
and their target genes, led to clarification of the molecular
mechanisms of palmitate-induced �-cell lipotoxicity and
protective effects of EPA.

RESEARCH DESIGN AND METHODS

Palmitate and EPA were purchased from Sigma (St. Louis, MO). Enhanced
chemiluminescence Western blot detection kit, [1-14C]palmitate, and [3H]man-
nitol were purchased from Amersham Biosciences.

This project was approved by the Animal Care Committee of the University
of Tsukuba. Male C57BL/6 wild-type and KK-Ay mice at 8 weeks of age were
purchased from Clea Japan (Tokyo). SREBP-1–null mice at 14–15 weeks of
age were as described previously (39). The mice were housed in colony cages,
maintained on a 12-h light/12-h dark cycle, given free access to water and a
standard chow diet (MF; Oriental Yeast, Tokyo), and adapted to their new
environment for 1 week before experiments.
Isolation of mouse pancreatic islets. Isolation of islets from mice was
carried out according to the Ficoll-Conray protocol as described previously
(26,38,40). In brief, after clamping the common bile duct at a point close to the
duodenum outlet, 2.5 ml Krebs-Ringer bicarbonate buffer (KRBH, pH 7.4)
containing 0.5% BSA and 4 mg/ml collagenase (Sigma) was injected into the
duct. The swollen pancreas was removed and incubated at 37°C for 20 min.
The pancreas was then dispersed by pipetting, and after washing twice with
KRBH, the islets were collected manually under stereomicroscope. Isolated
islets were put in culture medium (RPMI 1640 supplemented with 10% FCS,
0.5% BSA, 100 units/ml penicillin, and 100 �g/ml streptomycin as antibiotics)
for 16–18 h at 37°C in a humidified atmosphere containing 5% CO2 before the
experiments.
Analyses of insulin secretion and insulin contents of islets. Insulin
release from islets was measured as described previously (26,38). Batches of
10 islets were incubated for 30 min in 1 ml KRBH, pH 7.4, containing 0.5% BSA
at 2.8 mmol/l glucose for 30 min. Islets medium was replaced with KRBH
containing 20 mmol/l glucose or alternatively 30 mmol/l KCl plus 2.8 mmol/l
glucose to estimate insulin secretion and were incubated for 30 min. At the
end of each incubation period, the medium was collected, and islets were
subjected to insulin extraction with acidic ethanol (0.2 mol/l HCl in 75%
ethanol) for insulin measurement with an insulin enzyme-linked immunosor-
bent assay kit. Hoechst-33258 was used to determine the DNA contents of
sonicated islets.
Determination of ATP-to-ADP ratio and triglyceride contents of islets.

ATP and ADP contents in isolated islets were as described previously
(26,38,41). ATP and ADP were extracted from islets with 5% of trichloroacetic
acid. After centrifugation, the supernatants were neutralized with NaOH. ATP
content was measured using the CellTiter-Glo luminescent cell viability assay

kit (Promega, Madison, WI). ADP content was estimated after conversion of
ADP to ATP in the reaction buffer (20 mmol/l HEPES and 3 mmol/l MgCl2, pH
7.75) containing 2.3 units/ml pyruvate kinase and 1.5 mmol/l phosphoenol-
pyruvate at room temperature for 15 min.

Triglycerides (TGs) of islets were measured after extracting lipids with
Folch’s method. After 1–2 min of sonication, islets were mixed with chloro-
form and methanol (2:1) for lipid extraction, dried up by evaporation, and
resuspended in isopropanol. TG concentration was measured using the
GPO-trinder kit (Sigma).
Real-time PCR and immunoblot analysis. Total RNA extraction with the
TRIzol reagent (Invitrogen, Carlsbad, CA) and DNase-I treatment using the
RNeasy Micro kit (Qiagen, Hilden, Germany) were performed according to the
manufacturers’ instructions. cDNA was synthesized with ThermoScript (In-
vitrogen), and comparative analysis of mRNA levels was performed with
fluorescence-based real-time PCR. Real-time PCR analyses were performed
using SYBR-Green Dye (Nippon Gene, Tokyo) in an ABI 7000 PCR instrument
(Applied Biosystems, Foster City, CA). The relative abundance for each
transcript was calculated by a standard curve of cycle thresholds for serial
dilutions of a cDNA sample and normalized to cyclophilin. Primer sequences
are described in supplemental Table 3, which is available in the online
appendix at http://dx.doi.org/10.2337/db06-1806.

Immunoblot analyses were performed as described previously (26,38). Cell
extracts from isolated islets were probed with rabbit polyclonal anti–SREBP-1
(sc-8984; Santa Cruz Biotechnology, Santa Cruz, CA), anti–IRS-2 (06–506;
Upstate Technology, Bedford, MA), anti-Akt (no. 9272), anti–phospho Akt
(S473; no. 9271), anti–phospho Akt (T308; no. 9275; Cell Signaling, Beverly,
MA), anti–UCP-2 (Research Diagnostic, San Antonio, TX), and anti–�-tubulin
(sc-8035; Santa Cruz Biotechnology). Anti-granuphilin a/b antibody was used
as previously described (37,38). Detection was performed using an ECL
advance Western blotting detection kit and ECL Hyperfilm (Amersham
Biosciences).
Treatment of islets with palmitate and EPA. Palmitate and EPA were
dissolved to 100 mmol/l in methanol to make stock solutions for later dilution
in RPMI 1640 supplemented with 0.5% BSA to a final concentration of 400
�mol/l (palmitate) and 50 �mol/l (EPA), respectively. Islets were treated for
48 h before indicated experiments.
Cellular uptake of [1-14C]palmitate. [1-14C]palmitate uptake of islets was
measured as described previously (42). Briefly, the isolated islets were
incubated for 60 min in culture medium containing 400 �mol/l palmitate, 0.3
�Ci/ml radiolabeled [1-14C]palmitate with or without 50 �mol/l EPA, and 0.06
�Ci/ml [3H]mannitol. The latter was used to calculate correction for nonspe-
cific uptake. Ice-cold 0.5 N NaOH was added to the islets to terminate the
uptake reaction and neutralized by 0.5 N HCl. After the removal of the
supernatant by centrifugation at 12,000 � g for 1 min, the residual radioac-
tivity was determined.
Small interfering RNA for UCP-2. The small interfering RNA (siRNA)
construct for mouse UCP-2 was generated within the coding region of UCP-2:
5�-GTCGAAGCCTACAAGACCA-3� (Ad-UCP-2 RNAi). The siRNA for LacZ
(Ad-LacZ RNAi) from Invitrogen (BLOCK-iT U6 RNAi Entry Vector kit;
K4944–00) was used as a control according to manufacturer’s instructions.
Oligonucleotide containing this sequence was subcloned into U6/RNAi Entry
vector (Invitrogen). UCP-2 RNAi adenoviruses were generated using
BLOCK-iT Adenoviral RNAi Expression System (Invitrogen).
Adenovirus infections for constitutively active Akt and siRNA of UCP2.

Infection of constitutively active Akt (43) and siRNA of UCP-2 adenovirus
studies were performed as described previously (25,38,44). In brief, genera-
tion of recombinant adenoviral plasmid was produced by homologous recom-
bination with the pAdEasy-1 plasmid (Invitrogen). Production of recombinant
adenoviruses was performed by CsCl gradient centrifugation as previously
described (25,38,44).
Palmitate-rich diet study and KK-Ay mice study. The in vivo palmitate-
rich diet study and KK-Ay mice study were described in RESEARCH DESIGN AND

METHODS in the online appendix. Briefly, in the palmitate-rich diet study,
C57BL6 mice were fed with control diet (fish oil–free diet), tripalmitin diet
(20% tripalmitin), and tripalmitin plus EPA-E diet (20% tripalmitin and 5%
EPA-E) for 28 days. In KK-Ay mice study, KK-Ay mice were administered
vehicle (5% gum arabic) or EPA-E at a dose of 1 g � kg�1 � day�1 for 28 days.
Statistical analysis. Results are reported as means � SE. Statistical analyses
were performed using one-way ANOVA followed by Dunnett’s procedure or
two-way ANOVA followed by Tukey’s procedure.

RESULTS

Palmitate impairs and EPA restores insulin secretion
in murine islets. To investigate pancreatic lipotoxicity,
we evaluated effects of palmitate (C16:0) on the insulin
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secretion of isolated mouse pancreatic islets. Although
palmitate (400 �mol/l) had no effect on basal insulin
secretion (low glucose concentrations), stimulation with
high glucose concentrations, i.e., GSIS, was inhibited by
the addition of palmitate (Fig. 1A). When 50 �mol/l EPA
(C20:5, n-3) was combined with palmitate-treated islets
(hereafter referred to as palmitate-EPA), the suppressed
insulin secretion was restored to near-normal levels (Fig.

1A). Palmitate inhibition and EPA restoration of insulin
secretion was also observed after addition of KCl, which
bypasses ATP-sensitive channels to stimulate insulin se-
cretion (KCl-stimulated insulin secretion [KSIS]) (Fig. 1A).
These effects of palmitate and EPA on insulin secretion
were dose dependent (supplemental Fig. 1A and B). EPA
by itself did not have any effect on GSIS or KSIS, indicating
that EPA does not intrinsically increase but cancels palmi-
tate-suppressed insulin secretion. The slight changes of
insulin content compared with GSIS and KSIS by palmitate
and EPA indicate that the phenomenon in insulin content
was only a part of the mechanism (Fig. 1B). Considering
the experimental setting, the protective effect of EPA
against palmitate-induced lipotoxicity could be inhibition
of cellular uptake of palmitate. To exclude this possibility,
uptake of labeled palmitate was measured and was not
affected by additional EPA (Fig. 1C). These data indicate
that the EPA does not interfere with palmitate uptake but
rather directly competes with palmitate in intracellular
events.
Palmitate and EPA regulate SREBP-1c and its target
genes. Gene expression in palmitate- and palmitate-EPA–
treated islets was investigated using real-time PCR.
SREBP-1c mRNA was highly induced by palmitate and
completely suppressed by EPA but not SREBP-1a mRNA
(Fig. 2A). These changes in SREBP-1c mRNA were asso-
ciated with those in both membrane and nuclear forms of
SREBP-1c protein (Fig. 2D). In accordance, its target
genes, such as fatty acid synthase, stearoy-CoA desaturase
1, and elongation of long-chain fatty acids family number 6
showed similar patterns of regulation by palmitate and
palmitate-EPA (Fig. 2B). TG content, as an indication of
SREBP-1c effect and lipotoxicity, was increased by palmi-
tate and repressed by palmitate-EPA (Fig. 2C).

We recently reported that SREBP directly suppressed
hepatic IRS-2 expression and caused insulin resistance in
the liver (25). In accordance with changes in SREBP-1c in
islets, IRS-2 was strongly suppressed by palmitate and was
partially restored by addition of EPA, implicating a role for
SREBP-1c–mediated IRS-2 repression in the palmitate-
EPA–mediated changes in �-cell physiology (Fig. 2D;
supplemental Fig. 2A).

UCP-2 has been shown to play a key role in lipotoxicity
of pancreatic �-cells through dissociation of fatty acid
oxidation and ATP production (supplemental Fig. 2B)
(9–12). UCP-2 promoter was also reported as an SREBP
target (11,12). This key regulator of lipotoxicity was mod-
ulated by palmitate and palmitate-EPA in a similar manner
at both mRNA and protein levels (supplemental Fig. 2A;
Fig. 2D).

Granuphilin was an effector of Rab27a, and its overex-
pression was reported to inhibit exocytosis of insulin
granules (35–37). We recently reported that granuphilin
promoter was a direct target of SREBP-1c and that the
SREBP-1c/granuphilin pathway was a potential mecha-
nism for impairment GSIS in diabetes, leading to �-cell
lipotoxicity (38). This key molecule of lipotoxicity was
upregulated by palmitate and suppressed by palmitate-
EPA at both mRNA and protein levels (supplemental Fig.
2A; Fig. 2D).
SREBP-1c plays a dominant role in palmitate-EPA
effects on insulin secretion. The contribution of
SREBP-1c to palmitate-EPA effects on both GSIS and KSIS
was estimated using islets from SREBP-1–null mice. Basal
insulin secretion was not affected by SREBP-1 deficiency
(data not shown); however, GSIS was modestly increased

FIG. 1. Lipotoxic effects of palmitate and protective effects of EPA on
insulin secretion in murine-isolated islets. A: Low GSIS (2.8 mmol/l),
high GSIS (20 mmol/l), and KSIS from murine-isolated islets incubated
without (control, white bars) or with palmitate (black bars), palmi-
tate-EPA (bold hatched bars), or EPA (regular hatched bars). B:
Insulin content of islets incubated without (control) or with palmitate,
palmitate-EPA, or EPA. C: Palmitate uptake in islets isolated from
C57BL/6 mice. Three independent experiments were performed using
four sets of islets for each repetition, and results are expressed as
means � SE. Statistical analysis was performed using one-way ANOVA
followed by Dunnett’s procedure. **P < 0.01 and *P < 0.05 vs.
palmitate group, respectively.
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(Fig. 3A). The absence of SREBP-1 abolished palmitate-
induced inhibition of GSIS and KSIS (Fig. 3A). Because of
this, EPA protection from impairment of GSIS and KSIS, as
observed in wild-type islets, was not detected in SREBP-
1–null islets (Fig. 3A). These data suggest that palmitate-
induced pancreatic lipotoxicity and amelioration of that by
EPA depend on SREBP-1c. Predictably, from the primary
role of SREBP-1c in lipogenesis, the elevation and repres-
sion of TG content in wild-type islets by palmitate and
EPA, respectively, were absent in SREBP-1–null islets
(Fig. 3B). Suppression of IRS-2 and stimulation of
granuphilin mRNA expressions caused by palmitate in
wild-type islets were both blunted in SREBP-1–null islets
(Fig. 4A). Accordingly, the reversal of palmitate effects on
IRS-2 and granuphilin expression by EPA was not ob-
served in SREBP-1–null islets. On the other hand, induc-
tion of UCP-2 expression by palmitate was observed even
in SREBP-1–null islets, but EPA treatment reversed the
palmitate effect in both genotypes (Fig. 4A).
IRS-2 suppression by SREBP-1c contributes to palmi-
tate-EPA effects on GSIS. Based on recent cumulative
evidence of the importance of insulin signaling in �-cell
function and our observation of reciprocal changes in
SREBP-1c and IRS-2 by addition of palmitate and/or EPA
in islets (Fig. 2D; supplemental Fig. 2A), we hypothesized

that palmitate suppression of insulin secretion might be
due to impaired insulin signaling caused by induction of
SREBP-1c, leading to decreased IRS-2 expression. To test
this hypothesis, insulin signaling was estimated in wild-
type and SREBP-1–null islets by analysis of Akt phosphor-
ylation status. Consistent with changes at the mRNA level
(supplemental Fig. 2A), suppression and restoration of
IRS-2 protein by palmitate and palmitate-EPA, respec-
tively, in wild-type islets was not apparent in SREBP-1–
null islets (Fig. 4B). Consequently, Akt phosphorylation
impaired by palmitate in wild-type islets was completely
abolished by the absence of SREBP-1 (Fig. 4B). These data
suggest that SREBP-1c could be highly involved in palmi-
tate-mediated inhibition of insulin signaling and insulin
secretion.

To explore impacts of insulin signaling on palmitate-
EPA–regulated insulin secretion, forced activation of insu-
lin signaling downstream of IRS-2 was induced in mouse
isolated islets by adenoviral gene transfer of constitutively
active (dominant-positive) Akt (Akt-CA). Akt-CA overex-
pression significantly improved both GSIS and KSIS,
which were impaired by palmitate, but did not further
enhance restoration by EPA, indicating that insulin signal-
ing and insulin secretion were linked in palmitate-EPA
effects (Fig. 5A). Akt-CA overexpression only slightly
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enhanced phosphorylation of Akt in untreated islets but
completely restored suppressed pAkt in palmitate-treated
islets (Fig. 5B). Insulin signaling downstream of Akt, such
as pAkt, was also consistently suppressed by palmitate.
These signaling molecules were all restored by Akt-CA
overexpression. Islets treated with palmitate-EPA exhib-
ited signals similar to control islets regardless of Akt-CA
overexpression (Fig. 5B). Both SREBP-1 deficiency (Figs.
3A and 4B) and constitutive activation of insulin signaling
by Akt-CA (Fig. 5A and B) cancelled the protective effects
of EPA against palmitate-induced impaired insulin secre-
tion and insulin signaling. Activation of Akt did not change
either SREBP-1c or UCP-2 (Fig. 5C).
Contribution of UCP-2 to palmitate-EPA effects on
GSIS. The contribution of UCP-2 to the effects of palmi-
tate-EPA on GSIS was estimated in knockdown experi-
ments using adenoviral siRNA of UCP-2. A robust

inhibition of mRNA and protein levels of UCP-2 was
obtained (Fig. 6A; supplemental Fig. 3). Gene silencing of
UCP-2 did not effect basal insulin secretion or GSIS. In
contrast, UCP-2 knockdown significantly protected palmi-
tate-mediated impaired GSIS and canceled the EPA pro-
tection (Fig. 6B). Palmitate-mediated reduction in ATP-to-
ADP ratio was significantly restored by UCP-2
suppression, and the protective effect of EPA was also
canceled (Fig. 6C). Changes in ATP-to-ADP ratio and GSIS
by modulation of UCP-2 expression were very similar,
confirming that the palmitate-EPA effects on GSIS depend
on the UCP-2/ATP system, as was previously suggested by
knockout mice studies. Palmitate induction of SREBP-1c
was not affected by UCP-2 knockdown (Fig. 6D). Taken
together with partial regulation of UCP-2 in SREBP-1–null
islets (Fig. 4A), effects of UCP-2 and SREBP-1c on GSIS
are partially connected.
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EPA in vivo exhibits a protective role against palmi-
tate lipotoxicity in islets. To determine whether the
effects of palmitate-EPA on GSIS in isolated islets could be
extended in vivo, mice were fed a fish oil–free diet with or
without 20% tripalmitin or tripalmitin plus 5% EPA ethyl
ester for 28 days, and GSISs in freshly isolated islets from
these animals were measured. Palmitate feeding impaired
and EPA restored GSIS in conjunction with changes in
islet SREBP-1c expression (Fig. 7A and B). These data
demonstrate that dietary palmitate and EPA influence
insulin secretion in vivo in a similar manner to palmitate-
EPA effects observed in isolated islets.

The effect of EPA on GSIS in vivo was further investi-
gated in isolated islets from KK-Ay mice, a model of
obesity and type 2 diabetes (45). In islets from KK-Ay mice,
GSIS was impaired, and SREBP-1c expression was in-
creased. Administration of EPA ethyl ester at a dose of
1 g � kg�1 � day�1 for 28 days restored GSIS and suppressed
SREBP-1c expression (Fig. 7C and D), leading to restora-
tion of GSIS and KSIS. In both in vivo experiments, these
data did not accompany changes in food intake or gross
morphological changes in pancreatic islets (supplemental
Tables 1 and 2; Fig. 4).
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FIG. 4. Gene expression and protein profiles in islets isolated from SREBP-1–null mice treated with palmitate or palmitate-EPA. Islets were
isolated from SREBP-1–null mice and wild-type littermates and incubated without (control) or with palmitate, palmitate-EPA (PE), or EPA for
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Three independent experiments were performed using four sets of islets, and results are expressed as means � SE. Statistical analyses were
performed using two-way ANOVA followed by Tukey’s procedure. **P < 0.01 and *P < 0.05, respectively.
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DISCUSSION

It has long been known that chronic exposure of palmitate
to islets or �-cell lines causes lipotoxicity leading to
blunted GSIS (1,3–5). Our current studies clearly demon-
strate that this palmitate-induced impairment of insulin

secretion is restored by supplement of EPA. The results
also indicated that this palmitate-EPA regulation is not due
to cell toxicity or apoptosis (data not shown) but mediated
through two major key molecules: SREBP-1c and UCP-2.
Several factors are known to be important for function of
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respectively) with adenoviral-GFP (Ad-GFP) or adenoviral–constitutively active Akt (Ad-Akt-CA) for 48 h before incubation with palmitate or
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proteins were estimated by immunoblot analysis using indicated antibodies, and �-tubulin protein was used as a loading control. Levels of mRNA
of SREBP-1c and UCP-2 were determined by real-time PCR (C), calculated as ratio to cyclophilin expression levels. Relative expression ratios to
control samples are shown. Three independent experiments were performed using four sets of islets, and results are expressed as means � SE.
Statistical analyses were performed using two-way ANOVA followed by Tukey’s procedure. **P < 0.01 and *P < 0.05, respectively.

EPA PREVENTS �-CELL LIPOTOXICITY THROUGH SREBP-1c

2388 DIABETES, VOL. 57, SEPTEMBER 2008



�-cells, such as ATP-to-ADP ratio, IRS-2/Akt insulin signal-
ing, and granuphilin. These factors are all consistently
disturbed by palmitate and improved by additional EPA
through up- and downregulation of SREBP-1c, respec-
tively. Taken together with overexpression and knockout
experiments of SREBP-1, it can be concluded that
SREBP-1c plays a crucial role in �-cell lipotoxicity as a
causative upstream factor.

Contribution of UCP-2 to ATP depletion and impaired
insulin secretion has been well established (9–12,26). Our
current studies also confirm this in palmitate-mediated
suppression of GSIS. Palmitate led to upregulation of
UCP-2 and reduction of intracellular ATP. Knockdown of
UCP-2 by siRNA restored palmitate-induced impairment of
GSIS. SREBP has been reported to directly bind to and
activate the UCP-2 promoter (11,12). Supportively, we
observed that �-cell–specific overexpression of SREBP-1c
elevated UCP-2 expression contributing to the �-cell lipo-
toxicity in transgenic mice (26). However, based on the
current results from SREBP-1–null islets, SREBP-1c only
partially participated in palmitate-induced expression of
UCP-2. Conversely, UCP-2 knockdown did not affect
SREBP-1c expression in islets. Thus, although both key

molecules play a dominant role in �-cell lipotoxicity, there
might not be a definite causative relationship between
SREBP-1c, an indicator of lipogenesis, and UCP-2, an
indicator of energy consumption (Fig. 8).

Our data on Akt-CA overexpression experiments pro-
vide further evidence for the importance of insulin signal-
ing in �-cell function. Palmitate inhibited and EPA
restored insulin signaling in an opposite manner to
SREBP-1c expression. Based on the potential effect of
SREBP-1c on insulin signaling through regulation of IRS-2
(25,26), we explored involvement of insulin signaling in
palmitate-EPA regulation of insulin secretion. Activation
of Akt did not change normal insulin secretion but mark-
edly ameliorated palmitate-impaired insulin secretion in
isolated islets. Thus, insulin signaling could be a prerequi-
site for insulin secretion, and the importance of its role in
insulin secretion becomes overt only with regard to its
impairment. Palmitate suppression of insulin signaling
was cancelled in SREBP-1–null islets. Based on these data,
we conclude that SREBP-1c in �-cells plays a crucial role
in the inhibition of insulin signaling via suppression of
IRS-2 and contributes to impaired insulin secretion (26). In
contrast to established effects of insulin signaling on �-cell
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FIG. 6. Effects of UCP-2 gene silencing on murine-isolated islets treated with palmitate or palmitate-EPA. Islets were isolated from C57BL/6 mice
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(C) from the islets after UCP-2 gene silencing and incubation with palmitate, palmitate-EPA, or EPA were measured. Level of mRNA of SREBP-1c
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mass (13–15,29–34), our data indicated that activation of
Akt could restore insulin secretion impaired by palmitate
in a short term. The precise molecular mechanism for this
is currently unknown, although phosphorylation of Foxo-1
and anti-apoptosis could be involved (29,34).

Dietary PUFAs, such as EPA, have been shown to have
plasma TG-lowering effects and to improve fatty liver and
hepatic insulin resistance (22,23,46). We previously re-
ported that PUFAs inhibited hepatic SREBP-1c, which
contributed to beneficial roles of PUFAs against lipotox-
icity in the liver (22,23). Current data provide another
beneficial role of EPA: protection from lipotoxicity in
pancreatic �-cells. Our data also suggest that this protec-
tive action of EPA is mediated mainly through suppression
of SREBP-1c. EPA reduced mRNA and nuclear protein
levels of SREBP-1c in palmitate-treated islet. In addition, a
large portion of EPA protection against palmitate-induced
impaired GSIS was not reproduced in SREBP-1–null islets.

Amelioration of impaired GSIS by EPA was also confirmed
in vivo with SREBP-1c suppression. EPA also suppressed
overexpression of UCP-2 by palmitate even in SREBP-1–
null islets. This suggests that suppression of UCP-2 also
may contribute to protective effect of EPA against palmi-
tate-mediated suppression of GSIS, which is presumably
independent of SREBP-1c (Fig. 7).

Our data showing that enhancement of insulin signaling
in �-cells can improve impaired insulin secretion caused
by lipotoxic effects of palmitate have important clinical
relevance. It has been recognized that hyperglycemia
exacerbates the impairment of insulin secretion, often
referred to as glucotoxicity, and that short-term insulin
treatment often effectively improves insulin secretion.
This has been thought to be due to reducing blood glucose;
however, our current findings implicate that stimulation of
insulin signaling in �-cells could potentially contribute to
the improvement of insulin secretion, especially in lipo-
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FIG. 7. Effect of EPA on insulin secretion in vivo. C57BL/6 mice were fed control diet (white bars), 20% Tripalmitin diet (black bars), and
Tripalmitin � 5% EPA-E diet (hatched bars) for 28 days. Islets were isolated from individual animals. GSIS and KSIS (A) and mRNA levels of
SREBP-1c (B) were measured. KK-Ay mice were administered vehicle (black bars) or EPA at a dose of 1 g � kg�1 � day�1 (hatched bars) for 28 days.
Islets were isolated from pool pancreas (three to four animals). GSIS (C) and mRNA levels of SREBP-1c (D) were measured. Three independent
experiments were performed using four sets of islets, and results are expressed as means � SE. Statistical analyses between indicated groups
were performed using one-way ANOVA followed by Dunnett’s procedure. **P < 0.01 and *P < 0.05, respectively.
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toxic states. From a long-term standpoint, our findings
might relate to the onset of type 2 diabetes because intake
of excess saturated fatty acids can cause both insulin
resistance and impaired insulin secretion in �-cells. Our
data also suggest that oral dosing of EPA could contribute
to protection from the �-cell lipotoxicity. Because our
findings are based mostly on in vitro studies, further
investigations in vivo are needed to test our conclusions.
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