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Abstract

Small-cell lung carcinoma (SCLC) and large-cell neuroendocrine lung carcinoma (LCNEC)

are high-grade lung neuroendocrine tumors (NET). However, comparative protein expres-

sion within SCLC and LCNEC remains unclear. Here, protein expression profiles were

obtained via mass spectrometry-based proteomic analysis. Weighted gene co-expression

network analysis (WGCNA) identified co-expressed modules and hub genes. Of 34 identi-

fied modules, six were significant and selected for protein–protein interaction (PPI) network

analysis and pathway enrichment. Within the six modules, the activation of cellular pro-

cesses and complexes, such as alternative mRNA splicing, translation initiation, nucleo-

some remodeling and deacetylase (NuRD) complex, SWItch/Sucrose Non-Fermentable

(SWI/SNF) superfamily-type complex, chromatin remodeling pathway, and mRNA meta-

bolic processes, were significant to SCLC. Modules enriched in processes, including signal

recognition particle (SRP)-dependent co-translational protein targeting to membrane,

nuclear-transcribed mRNA catabolic process of nonsense-mediated decay (NMD), and cel-

lular macromolecule catabolic process, were characteristically activated in LCNEC. Novel

high-degree hub genes were identified for each module. Master and upstream regulators

were predicted via causal network analysis. This study provides an understanding of the

molecular differences in tumorigenesis and malignancy between SCLC and LCNEC and

may help identify potential therapeutic targets.
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Introduction

Small-cell lung carcinoma (SCLC) and large-cell neuroendocrine carcinoma (LCNEC) are

classified into high-grade lung neuroendocrine tumors (NETs) [1]. In contrast to SCLC, which

accounts for approximately 15% of all lung cancers, LCNEC accounts for only approximately

3% of all lung cancers. However, the proportion of pathologically confirmed LCNECs is

increasing [2]. The 2009 World Health Organization (WHO) classification of lung tumors

classified LCNEC into a specific type of non-small-cell lung carcinoma (NSCLC); however, the

revised 2015 WHO classification of lung tumors now classifies LCNEC as a NET [1]. Although

some features, specific to their neuroendocrine nature, are common to both SCLCs and

LCNECs, their histopathological characteristics are different. SCLC cells typically have a

round to fusiform morphology and grow in sheets and nests that frequently include necrotic

areas. In addition, these tumor cells have scant cytoplasm, fine chromatin granules, and are

less than three times the diameter of small, resting lymphocytes [3, 4]. However, combined

SCLCs, including some NSCLC components, can seldom also be found [1]. Similarly, LCNECs

show a typical neuroendocrine morphology, including organoid nesting, cellular palisading,

or rosette-like structures as well as high mitotic rates. However, they can also manifest cytolog-

ical features of non-small-cell carcinomas, such as large cells with abundant cytoplasm. From

the clinical point of view, these two histological types present similar patient characteristics,

including a greater incidence in men (particularly in those who are heavy smokers), diagnosis

at an older age, and worse prognosis. Because patients with these histological types are usually

discovered only in the advanced stages of the disease, surgically treated patients are rare. A

study including 113 patients with SCLC and 141 patients with LCNEC treated with surgical

resection reported 5-year all-stage survival rates of 35.7% for SCLC and 40.3% for LCNEC;

both showed lower prognosis compared with patients with NSCLC [5]. Because only few stud-

ies have evaluated the effectiveness of chemotherapy to date, a standard chemotherapy regi-

men has not yet been established for LCNEC [6].

Genetic analyses of SCLCs are characterized by mutations of the RB1 and p53 tumor sup-

pressors. Loss-of-function mutations are speculated to accelerate the cell cycle, resulting in

rapid and continued tumor growth. In contrast, LCNECs are characterized by mutually exclu-

sive RB1 and p53 inactivation; however, combinations of frequent mutations in STK11/KRAS/

KEAP1, which also occur in NSCLC, are observed [7]. These results indicate that LCNECs

may exhibit both neuroendocrine and NSCLC-like features. However, information regarding

protein expression in these two types of NETs is limited. Thus, we conducted proteomic analy-

ses to understand the biological characteristics of NETs, including tumor development and

differentiation, and to clarify the similarities and differences between SCLCs and LCNECs.

Advancements in high-accuracy mass spectrometry (MS) have rendered proteomics more

compatible with shotgun sequencing and quantitative analysis of disease-related proteins

obtained from clinical specimens. The resulting data from such analyses are expected to assist

in the discovery of novel biomarkers and therapeutic targets [8, 9]. Using the technique of

laser microdissection (LMD), it is possible to collect target cells from sections cut out from for-

malin-fixed paraffin-embedded (FFPE) cancer tissues. Label-free spectral counting and identi-

fication-based semi-quantitative shotgun proteomic analysis of microdissected targeted

cancerous cells were used in this study [10–14].

The methodology of weighted gene co-expression network analysis (WGCNA) [15] has

been effective for the detection of co-expressed modules and hub genes as well as micro- and

link-RNAs (long non-coding RNAs) [16–25]. Using this method, expressed genes can be

grouped into a model or a network module based on pairwise correlations between genes due

to their similar expression profile, and these models can be correlated with the different stages
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or subtypes of various cancers. A recent comparative study between the WGCNA method and

the traditional step-wise multi-marker Cox regression analysis for the simultaneous analysis of

multiple tumor expression array markers reported improved validation success of the

WGCNA groups and markers [26]. Here, we aimed at identifying clinically significant co-

expressed modules and hub proteins/genes, which play key roles in each lung cancer subtype,

and used WGCNA for FFPE tissue- proteome datasets of SCLC and LCNEC. This study, to

the best of our knowledge, is the first report concerning the application of WGCNA to clinical

tissue proteome datasets.

Materials and methods

FFPE tissue specimens and sample preparation

Out of the total 974 patients who underwent surgical lung cancer resection at St. Marianna

University Hospital between 2000 and 2014, only 41 tumors (4.2%) were histologically con-

firmed NETs. Pathological specimens were reviewed independently by two pathologists (H.N.

and M.T.) to confirm that they satisfied the 2015 WHO classification of lung tumor histologi-

cal criteria [27]. FFPE tumor tissue blocks from 15 surgical specimens of neuroendocrine

tumors, comprising six SCLCs and six LCNECs, were obtained without patient identifiers

from St. Marianna University School of Medicine Hospital with informed consent of all partic-

ipating subjects and under strict Institutional Review Board standards and Ethical Committee

approval (Acceptance no. 1461). For tissue microdissection, 10 μm thick sections from the

FFPE tumor blocks were cut onto DIRECTOR slides (OncoPlex Diagnostics Inc., Rockville,

MD, USA). The sections were de-paraffinized and stained with hematoxylin using standard

histological methods prior to dissection. Microdissection was performed using a Leica LMD7

Microdissection Microscope (Leica, Wetzlar, Germany). For combined SCLC specimens, only

those tumor cells that showing typical SCLC features were microdissected and analyzed. A

total area of 4 mm2, consisting of about 15,000 tumor cells, was transferred from the FFPE sec-

tions via laser dissection directly into the cap of a 200 μL low-binding tube. Proteins were

extracted and digested with trypsin using Liquid Tissue MS Protein Prep kits (OncoPlex Diag-

nostics Inc., Rockville, MD, USA) according to the manufacturer’s protocol [28]. Details of

procedures were described in detail elsewhere [29]

Liquid chromatography-tandem mass spectrometry based proteomic

analysis

A label-free quantitation approach using spectral counting by LC-MS/MS was adopted for a

global proteomic analysis. The digested samples (5 μL for a single run) were analyzed in tripli-

cate by LC-MS/MS using reverse-phase LC interfaced with a Q Exactive Orbitrap mass spec-

trometer (Thermo Fisher Scientific, Bremen, Germany) via a nano-ESI device (AMR Inc.,

Tokyo, Japan). LC-MS/MS analysis was described in detail previously [29].

The raw data were processed using PatternLab for Proteomics software v4.0 [30]. Peptide

sequence matching was performed using the Comet algorithm [31] against the UniProtHomo
sapiens database, downloaded in January 2017. A target-reverse strategy was employed for

increased confidence in protein identification [32]. This search considered tryptic peptide can-

didates, and the formylation of lysine and oxidation of methionine were considered as variable

modifications. The Comet search engine considered a precursor mass tolerance of 40 ppm and

a fragment bin tolerance of 0.02. The validity of the peptide spectrum matches was assessed

using PatternLab’s Search Engine Processor (SEPro) module [33]. Acceptable FDR for spectra,

peptide and protein are 3%, 2% and 1%, respectively [29, 34]. The expression level of identified
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proteins was attained by spectral count-based protein quantification. The spectral count (SpC)

was the number of MS/MS spectra assigned to each protein. Proteins identified in SCLC and

LCNEC were subjected to GO analysis using PANTHER Ver. 11.0 (http://www.pantherdb.

org/) [35].

Construction of gene co-expression networks and identification of modules

Weighted-gene co-expression network analysis (WGCNA) [15] was used to identify systems

level differences in protein expression pattern of the lung neuroendocrine subtypes. Using the

WGCNA R package [15], pairwise Pearson correlation for all proteins in the dataset was com-

puted and an adjacency matrix was calculated by raising the correlation matrix up to power of

10 (soft thresholding parameter) to generate a scale-free network. By implying a soft threshold-

ing parameter, the weighted gene expression network emphasizes on significantly (high) corre-

lated protein pairs and filters non-significant (low) correlations and, thus reduces the noise of

correlation in the adjacency matrix until the network resembles to a scale-free graph. Next, to

measure the connection strength between all protein pairs, topological overlap measure (TOM)

was calculated from the adjacency matrix. TOM dissimilarity matrix (1-TOM) was then used to

perform average linkage hierarchal clustering generating protein clustering tree with modules

corresponding to the branches of the tree. Using dynamic tree-cutting the branches were

trimmed at 0.99 height so that each module has a minimum number of 10 proteins.

Modules were summarized by the first principal component referred as eigengene in the

text. Module membership, defined as the correlation between protein expression profile and

the module eigengene, was measured with values in range of 0 and 1; where 0 represents that a

gene is not part of the module while 1 represents high connectivity to the module. Further, to

identify clinically relevant modules related to a specific cancer type, module-trait association

was determined using correlation between the module eigengene and lung cancer subtypes

(trait). For each protein, a gene significance measure (GS) between the expression profile and

trait was estimated that allows easy identification of proteins strongly associated with a clinical

trait. WGCNA analysis was performed using WGCNA R-package [15], implemented as a gad-

get in Garuda Platform (The Systems Biology Institute, Tokyo, Japan).

PPI network construction and functional enrichment

STRING (The Search Tool for the Retrieval of Interacting Genes/Proteins) [36], HINT (High-

quality INTeractomes) [37], and IID (Integrated Interactions Database) [38] are major pro-

tein-protein interaction (PPI) databases that integrate PPIs from multiple PPI databases, i.e.,

BIOGIRD (Biological General Repository for Interaction Datasets) [39], IntAct (IntAct Molec-

ular Interaction Database) [40], etc. STRING and IID use PPIs that are computationally pre-

dicted by state-of-the-art algorithms (these algorithms uses gene expression data, genomics

context, orthology-based analyses, automated text mining analyses). HINT does not include

computationally predicted PPIs. Computationally predicted PPIs dramatically decreases the

false negative rate, though they may increase the false positive rate [38].

In this study we utilized STRING which integrates PPIs obtained from multiple databases

(IntAct [41], Reactome [42], DIP (Database of Interacting Proteins) [43], BioGRID [39],

MINT (The Molecular INTeraction Database) [44], KEGG (the Kyoto Encyclopedia of Genes

and Genomes) [45], NCI/Nature PID (National Cancer Institute—Nature Pathway Interaction

Database) [46], The Interactive Fly [47], and BioCyc [48]) and PPIs computationally predicted

by several state of the art algorithms that use gene expression data, genomics context, orthol-

ogy-based analyses, and automated text mining analyses. PPI network analysis was performed

for eigengenes in a selected module with STRING database, version 10.5 [36]. Here, the nodes
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are proteins/genes, which number relies on the number of eigengenes in a module, and edges

are the predicted functional associations that are retrieved from KEGG GO databases (http://

www.genome.jp/kegg/) and primary literature. The STRING network interaction scores for

each node were expressed as a joint probability derived from curated databases of experimen-

tal results, text mining, and computationally predicted by genetic proximity. STRING net-

works were calculated under the criteria for linkage only with experiments, databases,

textmining, and co-expression with the default settings i.e., medium confidence score: 0.400,

network depth: 0 and up to 50 interactions. Functional enrichment results were obtained for

canonical pathways under p< 0.05.

Functional enrichment analysis

A hub gene is defined as an abbreviation of a “highly connected gene.” The genes inside co-

expression modules have high connectivity and the genes within the same module may play

similar roles. The PPI networks were reconstructed by the software Cytoscape version 3.6.0.,

followed by importing of results obtained from the STRING PPI network analysis of eigen-

genes in each module. We identified hub genes in each module according to their intra-modu-

lar connectivity and correlation with module eigengenes. The top 20 high-degree genes were

identified by using the cytoHubba plugin [49]. The 3 top ranked genes in every module were

considered to be hub genes.

Results and discussion

Both SCLC and LCNEC are malignant and show poor prognosis compared with NSCLC; new

molecular information for biological characteristics of SCLC and LCNEC may provide more

effective therapeutic strategy. The primary objectives of this study were to capture molecular

insights into the tumorigenic difference between SCLC and LCNEC and to construct a gene co-

expression network using WGCNA to identify and/or predict the candidate key network mod-

ules and Hub genes characteristically associated with the carcinogenesis of each cancer subtype.

Proteome datasets of SCLC and LCNEC

A total of 974 cases of lung cancer underwent surgery in the period from 2000 to 2014 at the

St. Marianna University Hospital. Overall, 41 cases (4.2%) were histologically evaluated as neu-

roendocrine tumors. Among the total 41 cases, twelve FFPE tissue specimens (SCLC, six speci-

mens; LCNEC, six specimens) were selected especially based on their preserved condition,

tumor area, and well-clarified pathology diagnosis (Table 1). No pre-surgical treatment was

performed in any of the cases.

A total of 1,652 proteins were identified among which 1,203 proteins (72.8%) were com-

monly expressed in both histological types, 195 proteins (11.8%) were unique to SCLC, and

254 proteins (15.4%) were found only in LCNEC. The mass spectrometry data have been

deposited to the PRIDE Archive (http://www.ebi.ac.uk/pride/archive/) via the PRIDE partner

repository and jPOST with the data set identifier PXD013583 and JPST000587, respectively.

Protein expression data obtained from FFPE clinical tissue specimens obtained by surgical

resection from 12 patients are provided in S1 File. This demonstrated that both SCLC and

LCNEC share the majority of expressed proteins (Fig 1A). A hierarchical clustering was

obtained by using the Ward method for proteins with their spectral counts identified for each

patient. This did not show a clear separation but a somewhat mixed feature between SCLC and

LCNEC (Fig 1B). The patient dendrogram in Fig 1B suggested a pairwise similarity in the pro-

tein expression profiles obtained for respective four pairs of patients, which are SCLC2 and

SCLC6, SCLC4 and LCNEC4, SCLC3 and LCNEC6, and LCNEC1 and LCNEC5. The former
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two pairs seem to be closer each other but distant from the latter two pairs. The latter two pairs

seem to belong to separated clusters each other. GO analysis using PANTHER Ver. 11.0 [35]

exhibited mostly similar profiles in gene hits. However, characteristic differences between

SCLC and LCNEC were seen especially in protein class: immune system process, nucleic acid

binding, cytoskeletal protein, transferase, calcium-binding protein, defense/immunity protein,

chaperone, cell junction protein, surfactant, structural protein, and receptor and so on (Fig 1C

and 1D). The biggest difference might be found for cell junction protein and surfactant. 1,203

proteins commonly expressed to both SCLC and LCNEC shared molecular functional proper-

ties in binding (40.3%), catalytic activity (31.0%), structural molecule activity (8.2%), trans-

porter activity (3.5%), transcription regulator activity (2.6%), molecular function regulator

(2.6%) (S1 Fig). Results of gene set enrichment analysis (GSEA) for GO gene sets performed

by using MSigDB (The Molecular Signatures Database: http://software.broadinstitute.org/

gsea/msigdb/annotate.jsp) included GO Regulation Of Cell Activation (p = 1.14 x 10−5) and

GO Response To External Stimulus (p = 1.19 x 10−5) (S1 Table).

Weighted gene co-expression network identification of modules

A weighted gene co-expression network was constructed using the 1,652 proteins identified

with their spectral counts for SCLC and LCNEC patients, and 34 modules were identified by

setting SCLC and LCNEC as two traits. The soft threshold power of 10 was chosen to define

the adjacency matrix based on the criteria of approximate scale-free topology, with minimum

module size 10, the module detection sensitivity deepSplit 4, and cut height for merging of

modules 0.2. This suggests that the eigengenes in the modules that are correlated above 0.8

would be merged (Fig 2A).

Table 1. Clinicopathological information of patients.

Sample No. Histological Type Age Sex Location Tumor size on CT (mm) Clinical TNM

classification�
Clinical stage

c-T c-N c-M

A. Small-cell lung cancer (SCLC) (n = 6)

SCLC1 Combined SCLC (SCLC and AD) 74 M RS1 23 cT1b cN0 cM0 cIA

SCLC2 SCLC 59 F RS6 26 cT1b cN0 cM0 cIA

SCLC3 SCLC 77 M RS2 12 cT1a cN0 cM0 cIA

SCLC4 Combined SCLC (SCLC and AD) 64 M RS3 32 cT2a cN0 cM0 cIB

SCLC5 Combined SCLC (SCLC and AD) 68 M RS9 16 cT1a cN0 cM0 cIA

SCLC6 SCLC 76 M RS2 19 cT1a cN0 cM0 cIA

Average ± SD 70 ± 7 M(83.3%) F(16.7%) 21± 7

B. Large-cell neuroendocrine lung cancer (LCNEC) (n = 6)

LCNEC1 LCNEC 52 M RS1 58 cT3 cN0 cM0 cIIB

LCNEC2 LCNEC 79 M LS4 33 cT2a cN0 cM0 cIB

LCNEC3 LCNEC 55 M RS10 19 cT1a cN0 cM0 cIA

LCNEC4 LCNEC 77 M RS1 33 cT2a cN0 cM0 cIB

LCNEC5 LCNEC 66 M RS3 33 cT2a cN2 cM0 cIIIA

LCNEC6 LCNEC 69 M RS2 19 cT1a cN0 cM0 cIA

Average ± SD 66 ± 11 M(100%) F(0%) 33 ± 14

Group comparison p-value (t-test) 0.551 0.118

Note: AD, Adenocarcinoma;

�Staging was determined according to IASLC criteria edition 7th.

https://doi.org/10.1371/journal.pone.0217105.t001
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Correlation between each module

As shown in Fig 2B, a cluster analysis on the connectivity of eigengenes was performed within

the interactions among the 34 co-expressed modules. Interestingly, the modules were grouped

into two clusters, a larger and a smaller. While the smaller cluster contained only one module,

multiple sub-clusters were observed in the large cluster with each containing two branches.

Combined with Fig 3, a significant difference was observed among the 34 modules. However,

no pair of modules below the threshold (0.2) was merged and multiple modules related to

SCLC and/or LCNEC subtypes were observed.

Fig 1. A Venn map, hierarchical clustering, and gene ontology (GO) analysis of the identified proteins. A. Venn map of identified proteins. B. A hierarchical

clustering of the expressed proteins using the Ward method including their spectral counts for patients. C. Biological processes: 1, cellular component organization or

biogenesis (GO:0071840); 2, cellular process (GO:0009987); 3, localization (GO:0051179); 4, reproduction (GO:0000003);5, biological regulation (GO:0065007); 6,

response to stimulus (GO:0050896); 7, developmental process (GO:0032502); 8, multicellular organismal process (GO:0032501); 9, locomotion (GO:0040011); 10,

biological adhesion (GO:0022610); 11, metabolic process (GO:0008152);12, growth (GO:0040007); 13,immune system process (GO:0002376). D. Protein classes: 1,

extracellular matrix protein (PC00102); 2, cytoskeletal protein (PC00085); 3, transporter (PC00227); 4, transferase (PC00220); 5, oxidoreductase (PC00176); 6, lyase

(PC00144); 7, cell adhesion molecule (PC00069); 8, ligase (PC00142); 9, nucleic acid binding (PC00171); 10, signaling molecule (PC00207); 11, enzyme modulator

(PC00095); 12, calcium-binding protein (PC00060); 13, defense/immunity protein (PC00090); 14, hydrolase (PC00121); 15, transfer /carrier protein (PC00219); 16,

membrane traffic protein (PC00150); 17, transcription factor (PC00218); 18, chaperone (PC00072); 19, cell junction protein (PC00070); 20, surfactant (PC00212); 21,

structural protein (PC00211); 22, isomerase (PC00135); 23, receptor (PC00197).

https://doi.org/10.1371/journal.pone.0217105.g001
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Fig 2. Gene modules identified by weighted gene co-expression network analysis (WGCNA). A. Gene dendrogram obtained by clustering the dissimilarity

based on consensus Topological Overlap with the corresponding module. Colored rows respectively correspond 34 modules identified. B. Dendrogram of

consensus module eigengenes obtained on the consensus correlation.

https://doi.org/10.1371/journal.pone.0217105.g002
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Fig 3. Relationship between consensus module eigengenes and lung neuroendocrine carcinoma subtypes. The first

column in the embedded table represents consensus modules, the second column represents the number of eigengenes in

each module, the third column indicates the correlations between corresponding module eigengenes to the two lung cancer

subtypes (trait), and the last column represents p-values. The module with number and color name is shown on the left side

of each cell. The table is color coded by correlation according to the color legend. Intensity and direction of correlations are

indicated on the right side of the heatmap (red, positively correlation; green, negatively correlation).

https://doi.org/10.1371/journal.pone.0217105.g003
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A gene significance measure, as a function GS, assigns a non-negative number to each gene.

The higher the GSi, the more biologically or clinically significant is the gene ‘i’. A gene signifi-

cance measure suggests pathway membership on functional enrichment. Modules with high

trait significance suggest pathways associated with the lung cancer subtype sample (trait).

Genes with a high module membership (MM) within modules related to the lung cancer sub-

types (traits) can be obtained from a correlation between gene significance and module mem-

bership. The eigengenes in each module are listed in S2 Table. The modules of 13

(darkmagenta), 19 (darkgray), 23 (white), and 30 (cyan) showed good correlations (Fig 4).

Genes with high MM were considered as candidates for further validation [50, 51].

Fig 4. Relationship between gene significance and module membership. Gene significances are plotted against module memberships for the modules of A) 13

(darkmagenta), B) 19 (darkgray), C) 23 (white), and D) 30 (cyan).

https://doi.org/10.1371/journal.pone.0217105.g004
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Functional enrichment analysis

Six modules were found to be intimately associated with the two lung NET subtypes. Among

these modules, 13 (darkmagenta), 14 (darkred), 19 (darkgray), and 23 (white) were signifi-

cantly associated with SCLC while the modules of 27 (paleturquoise) and 30 (cyan) with

LCNEC. These six modules were selected as input for the STRING database network analysis

[36]. Fig 5 summarizes the top 5 results of gene ontology (GO) enrichment for pathway analy-

sis on biological processes and cellular components by the STRING PPI network for co-

expressed genes. The PPI network information (number of nodes, number of edges, average

node degree, PPI enrichment p-value etc.) performed for pathway enrichment are provided in

S3 Table.

The enriched pathways in Module 13 (darkmagenta) involved DNA transcription pro-

cesses, including alternative mRNA processing pathways. Those processes particularly

involved where DNA-directed RNA polymerase II (RNAP II and Pol II) core complex is acti-

vated. The SWI/SNF complex was also enriched, which suggested its participation in active

gene transcription regulation. The mRNA metabolic process, especially the nuclear-tran-

scribed mRNA catabolic process of nonsense-mediated decay (NMD), was enriched in Mod-

ule 14 (darkred). Representative pathways enriched in Module 19 (darkgray) were both

nucleobase-containing compound biosynthetic processes and chromatin remodeling compris-

ing of the Imitation SWItch (ISWI)-type and SWI/SNF superfamily-type complexes. This

might imply an involvement of both transcription-coupled nucleotide excision repair and

DNA double strand break (DBS), via nucleosome remodeling. Enriched pathways in Module

Fig 5. Pathway analysis and top five enrichment results. Enrichment analysis were performed for A. biological processes and B. cellular components by the STRING

database for co-expressed genes in the modules of 13 (darkmagenta), 14 (darkred), 19 (darkgray), 23 (white), 27 (paleturquoise), and 30 (cyan). The names of pathways

are shown on the left, and the bars on the right represent the −lg (p-value_FDR) of the corresponding pathway. The different colors of the bars are in accordance with

the corresponding modules.

https://doi.org/10.1371/journal.pone.0217105.g005
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23 (white) included mainly translation initiation processes mediated by the eukaryotic transla-

tion initiation factor 43S/48S 3 (eIF3), which plays a central role in the initial recruitment of

the preinitiation complex (PIC) onto mRNAs. Simultaneously, the pathways of alternative

mRNA splicing and NuRD complex were actively involved in Module 23 (white). NuRD is

one of four major ATP-dependent chromatin remodeling complexes and has numerous effects

on gene activation and transcription, vesicle-mediated transport-related transport protein par-

ticle complex, and cell-cycle-related networks including PCNA and MCM2. The entire spec-

trum of network relations in Module 23 (white) indicated a highly activated transcriptional

activity, protein translation and their vesicular transport. All of these activities are also associ-

ated with enhanced DNA damage repair (DDR) activity and cell-cycle turnover.

The common enriched pathways in the modules of 27 (paleturquoise), and 30 (cyan) were

signal recognition particle (SRP)-dependent co-translational protein targeting. The SRP is a

key component of the cellular machinery that couples the ongoing synthesis of proteins to

their proper localization. This is particularly critical for the targeting of integral membrane

proteins, which is controlled by the endoplasmic reticulum. The ribosomal proteins of the

cytosolic large subunit 60S and the cytosolic small subunit 40S were involved in Module 27

(paleturquoise), and Module 30 (cyan), respectively.

We thus observed that the DNA transcription processes mediated by DNA-directed Pol II

core complex, nucleotide excision repair and DNA DBS via nucleosome remodeling, mRNA

metabolic processes including mRNA catabolic process NMD, and translation initiation pro-

cesses mediated by eIF3 were highly activated in SCLC. The co-translational targeting of pro-

teins by SRP was found to be differentially activated in LCNEC. Recently, the novel

unsupervised deep learning approach namely, Sample Learning based on Deep Sparse Filter-

ing (SLDSF) [52], was applied for the selection of genes characteristic to the lung cancer data-

set including 12,600 genes from 203 lung cancer tissue samples (Bhattacharjee et al. [53]).

Nuclear-transcribed mRNA catabolic processes, nonsense-mediated decay, SRP-dependent

co-translational protein targeting to membrane, and translational termination, all of which are

closely related to lung cancer, were reported as highly significant GO terms (top 10 p-values)

corresponding to the selected characteristic genes. Thus, our findings are consistent with pre-

vious results, in a method-independent manner.

The six modules selected in our study may be categorized globally as processes relevant to

gene transcription regulation, alternative mRNA splicing, translational initiation, and protein

translocation, which are crucial events in genome integrity and cell-cycle progression, and

wherein the major chromatin remodeling complexes also play important roles. It may there-

fore be suggested that a high DDR and NMD activity most likely occur in both SCLC and

LCNEC. The disease-related key network modules identified in this study potentially reflects

the deregulation of translational control, thereby inducing rapid and dramatic translational

reprogramming both by increasing the overall protein synthesis and by modulating specific

mRNA networks. This appears to be the common mechanism via which the diverse oncogenic

pathways promote cellular transformation and tumor development.

Master and upstream regulators predicted by IPA

The investigation of clinically significant modules and their upstream regulators, which play

key roles in lung cancer subtypes, was one of the primary reasons for performing co-expres-

sion analysis. Analysis of master and upstream regulators was performed for the genes from

selected modules using causal network analysis by the Ingenuity Pathway Analysis (IPA,

http://www.ingenuity.com) software [54]. As shown in Table 2, several upstream regulators

were predicted and included transcriptional regulators, transporters, microRNAs, growth
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Table 2. Top 5 master regulators of selected modules predicted by causal network analysis using ingenuity pathway analysis (IPA).

Module Master Regulator Molecule Type Participating regulators Depth Network bias-

corrected p-

value

Target molecules in dataset

Module 13

(darkmagenta)

CTU1 other CTU1 1 0.0024 DEK
ELP3 enzyme ELP3 1 0.0024 DEK
mir-489 microRNA mir-489 1 0.0031 DEK
CD40LG cytokine CD40LG 1 0.0076 CSTF2
Gm15807/Hmgn5 other Gm15807/Hmgn5 1 0.0098 HNRNPK

Module 14

(darkred)

Fibrinogen complex CASP8,CBL,CHUK,EGFR,Fibrinogen,HIF1A,

IKBKB,ITGB3,MAPK3,MAPK9,MTOR,

NFE2L2,PGR,RELA,SHC1,SRC,TP53

3 0.0001 COPS5,CSE1L,EIF4E,FUBP1,

HADH,HNRNPD,LSM3,

MARCKSL1,MAT2A,PGRMC1,

RALY,RPL18,TXN
PELI3 enzyme CASP8,CHUK,EGFR,HIF1A,IKBKB,IKK

(complex),Jnk,MAP3K7,MAPK9,MTOR,

NFE2L2,NFkB (complex),NFKB1,NFKBIA,

PELI3,RELA,RICTOR,TAB1,TP53

3 0.0001 COPS5,CSE1L,EIF4E,FUBP1,

HADH,HNRNPD,LSM3,

MARCKSL1,MAT2A,PGRMC1,

RALY,RPL18,TXN
TGFBR group CASP8,EGFR,FLI1,MAPK9,MTOR,NFE2L2,

PRKCD,RELA,SMAD3,TGFBR,TP53
3 0.0001 COPS5,CSE1L,EIF4E,FUBP1,

HADH,LSM3,MARCKSL1,

MAT2A,PGRMC1,RALY,RPL18,

TXN
CRK other CASP8,CRK,EGFR,ERK,MAPK1,MAPK3,

MTOR,NFE2L2,NOS2,RAC1,RARA,RELA,

SHC1,TP53

3 0.0001 API5,COPS5,CSE1L,EIF4E,

FUBP1,HADH,HNRNPD,

MAT2A,PGRMC1,RALY,RPL18,

TXN
CDKN1A kinase CASP8,CDKN1A,MAPK9,NFE2L2,TP53 2 0.0001 COPS5,CSE1L,EIF4E,FUBP1,

HADH,LSM3,MARCKSL1,

RALY,RPL18,TXN
Module 19

(darkgrey)

miR-342-3p
(miRNAs w/seed
CUCACAC)

mature microRNA miR-342-3p (miRNAs w/seed CUCACAC) 1 0.0013 MTDH

FTX other FTX 1 0.0021 MTDH
IRF7 transcription

regulator

IRF7 1 0.0046 PARP14,UBE2L6

mir-342 microRNA mir-342 1 0.0049 MTDH
VCAM1 transmembrane

receptor

CBL,ELK1,HIF1A,IRF3,ITGB1,KRAS,

MAPK1,PI3K (complex), PRKCA, SPHK1,

TGFB1,TP73,VCAM1

3 0.0054 ARHGEF2,CARS,CNN3,

IGF2BP2,PARP14,TAGLN,

TYMP,UBE2L6
Module 23

(white)

MADD other ERK,MADD,MAP2K1/2 2 0.0014 CTTN,RRM1
COL4A3BP kinase COL4A3BP,ERBB2,ERK 2 0.0028 CHD4,CTTN,RRM1
VEGFC growth factor VEGFC 1 0.0031 CTTN
BTRC enzyme BTRC 1 0.005 CTTN
SYVN1 transporter SYVN1 1 0.0068 HNRNPM,TARS

Module 27

(paleturquoise)

PLA2G6 enzyme AKT1,AR,CEBPA,CEBPB,ELK1,ERBB2,Jnk,

MYC,NFE2L2,P38 MAPK, PLA2G6,RICTOR,

Rock

3 0.0002 APCS,EDF1,HPX,LIG3,

MTHFD2,POLDIP3,RPL14,

SNRPD1
PDPK1 kinase AKT1,CEBPA,CEBPB,ERBB2,GSK3B,IKBKB,

MYC,NFE2L2,NFkB (complex), PDPK1,

PRKCD,PRKCG,RICTOR,RPS6KB1,RTN4,

TNFRSF1A

3 0.0003 APCS,DPYSL5,EDF1,HPX,LIG3,

POLDIP3,RPL14,SNRPD1

FCGR2A transmembrane

receptor

CEBPA,CEBPB,ELK1,ERBB2,ERK,FCGR2A,

MYC,MYD88,NFkB (complex), Pkc(s),
PTPN6,Rac,REL,SYK,TNFRSF1A

3 0.0004 ACAD9,APCS,EDF1,HPX,LIG3,

MTHFD2,POLDIP3,SNRPD1

TNFAIP8L2 other AR,CEBPA,CEBPB,ELK1,Jnk,MYC,NFE2L2,

P38 MAPK,Rac,RICTOR,TNFAIP8L2
3 0.0009 APCS,EDF1,HPX,MTHFD2,

POLDIP3,RPL14,SNRPD1
PPM1A phosphatase AR,CDK9,CEBPA,CEBPB,ELK1,ERBB2,Jnk,

MAP2K4,MYC,NFE2L2,P38 MAPK,PPM1A,

RICTOR,TP53

3 0.0009 APCS,EDF1,HPX,LIG3,

MTHFD2,POLDIP3,RPL14,

SNRPD1

(Continued)
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factors and enzymes, etc. Master genes predicted for the modules significant to SCLC included

MADD, VEGFC, SYVN1, ELP3, VCAM1, IRF7, TGFBR, CRK, CDKN1A, etc. Those that were

significant to LCNEC included PLA2G6, PDPK1, FCGR2A, TNFAIP8L2, TRAP1,MXI1,

TRAF2, etc.

All these master genes have important roles in carcinogenesis and tumorigenesis.MADD
encodes MAP kinase-activating death domain protein which plays a significant role in regulat-

ing cell proliferation, survival and death through alternative mRNA splicing, and links

TNFRSF1A with MAP kinase activation [55]. VEGFC encodes vascular endothelial growth fac-

tor C protein, which is active in angiogenesis and endothelial cell growth, and stimulates their

proliferation and migration [56, 57]. SYVN1 encodes E3 ubiquitin-protein ligase synoviolin,

which suppresses the expression of p53/TP53 in the cytoplasm and promotes its degradation,

thereby negatively regulating its biological function in transcription, cell-cycle regulation, and

apoptosis [58]. ELP3 encodes a component of the Pol II holoenzyme and is involved in tran-

scriptional elongation [59]. CDKN1A encodes cyclin-dependent kinase inhibitor 1, and is

involved in p53/TP53 mediated inhibition of cellular proliferation in response to DNA dam-

age, and inhibits cyclin-dependent kinase activity, preventing phosphorylation of critical

cyclin-dependent kinase substrates and blocking cell-cycle progression [60]. TNFAIP8L2
encodes tumor necrosis factor alpha-induced protein 8-like protein 2 (TIPE2), which is a nega-

tive regulator of Toll-like receptor, T-cell receptor function, and also a regulator of the apopto-

tic process [61]. TRAP1 encodes tumor necrosis factor type 1 receptor-associated protein,

which is a negative regulator of mitochondrial respiration able to modulate the balance

between oxidative phosphorylation and aerobic glycolysis (referred to as Warburg effect [62])

[63].MXI1 encodes Myc-associated factor X (Max)-interacting protein 1, which is a transcrip-

tional repressor and antagonizesMYC transcriptional activity by competing forMAX [64].

TRAF2 encodes TNF receptor-associated factor 2, which regulates activation of NF-kappa-B

and JNK and plays a central role in the regulation of cell survival and apoptosis [65]. Most of

the functions of the predicted master genes appear as overlaps and are consistent globally with

the GO enrichment results of pathway analysis for the selected modules. Identification of mas-

ter and upstream regulators for the key modules would be useful in aiding the discovery of

therapeutic targets.

Nevertheless, the mechanisms underlying the formation of molecular machineries based on

these key regulators during tumorigenesis of both SCLC and LCNEC is not clearly understood

and will require substantial in-depth investigation in future.

Table 2. (Continued)

Module Master Regulator Molecule Type Participating regulators Depth Network bias-

corrected p-

value

Target molecules in dataset

Module 30 (cyan) TRAP1 enzyme TRAP1 1 0.0002 GARS,MAVS,PKM
CXCL12 cytokine CXCL12 1 0.0005 EXOSC6,RANGAP1,TF
BTRC enzyme ATF4,BTRC,CTNNB1,MTOR,MTORC1,

NFkB (complex), RELA
2 0.0006 ACLY,ACTC1,CLTC,GARS,

IARS,LAMB1,PKM,RAB3C
MXI1 transcription

regulator

MXI1 1 0.0011 IARS,IMPDH2

GPR84 G-protein coupled

receptor

GPR84 1 0.0016 PTGES2

Participating regulators are regulators through which the upstream regulator molecule controls the expression of target molecules in dataset. Target molecules in dataset

are molecules in our dataset whose expression is potentially controlled by upstream regulator.

https://doi.org/10.1371/journal.pone.0217105.t002
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High-degree genes in PPI networks of selected modules

High-degree genes are genes (nodes) by their network features to infer their higher importance

in the network. To identify high degree genes in the six selected modules (13 (darkmagenta),

14 (darkred), 19 (darkgray), 23 (white), 27 (paleturquoise), and 30 (cyan)), the PPI network

was generated using STRING database queried by cytoHubba [49] plugin in Cytoscape version

3.6.0 (https://cytoscape.org/) as shown in Fig 6. STRING database is one of the most inclusive

of a number of online PPI providing a comprehensive depth in the protein interactome. By

combining these data sources, STRING assigns a confidence score to each interaction pair that

could be used to filter the false positive interactions. All high-degree genes were calculated by

the cytoHubba plugin [49], and the high-degree genes (nodes) are shown with a color scheme

from highly essential (red) to essential (green). The top 20 genes are listed in S4 Table).

In Module 13 (darkmagenta), the top 3 high-degree genes were POLR2A, GTF2F1 and

POLR2F, which respectively encode the first and sixth largest subunits of RNAP II/Pol II, the

Fig 6. The PPI networks reconstructed by using Cytoscape 3.6 software for the modules. A) 13 (darkmagenta), B) 14 (darkred), C) 19 (darkgray), D) 23 (white), E)

27 (paleturquoise), and F) 30 (cyan). The high-degree genes were calculated by the cytoHubba plugin, and the high-degree genes (nodes) are shown with a color

scheme from highly essential (red) to essential (green) [49].

https://doi.org/10.1371/journal.pone.0217105.g006
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polymerase responsible for synthesizing mRNA in eukaryotes [66]. GTF2F1/TFIIF encodes a

general transcription initiation factor that binds to RNAP II/Pol II and helps its recruitment

onto the initiation complex in collaboration with TFIIB, which promotes transcription elonga-

tion [67]. In Module 14 (darkred), RPS12, RPL7A, and SNRPD2 were the top 3 high-degree

genes. Proteins encoded by these genes belong to the cytosolic 40S small and 60S large ribo-

somal subunits, respectively, which are involved in mRNA metabolic processes including

NMD. NMD is a eukaryotic surveillance mechanism that monitors cytoplasmic mRNA trans-

lation and targets premature translation terminated mRNAs for rapid degradation [68]. The

protein encoded by SNRPD2 belongs to the small nuclear ribonucleoprotein core protein fam-

ily, which is required for pre-mRNA splicing and small nuclear ribonucleoprotein biogenesis

in the major mRNA splicing pathway. The top 3 high-degree genes in Module 23 (white) were

HNRNPA1,HNRNPM, and EIF3I.HNRNPA1 andHNRNPM are involved in the major

mRNA splicing pathways. EIF3I encodes a component of the eIF-3 complex, which is required

for several steps in the initiation of protein synthesis. In Module 19 (darkgray) they were

HDAC1,HDAC2, and SMARCA5, the members of chromatin remodelers. HDAC1 and

HDAC2 are the components of the histone deacetylase complex, which interact with the reti-

noblastoma tumor suppressor protein pRb, which plays a key role in the control of cell prolif-

eration and differentiation. Together with the metastasis-associated protein-2 (MTA2), pRb

also deacetylates p53 and modulates its effect on cell growth and apoptosis. SMARCA5/SNF2H
encodes a member of the ISWI family of chromatin remodelers, which has the ability to

remodel chromatin by sliding and displacing nucleosomes, and its accumulation and spread-

ing at DNA lesions of DSBs are triggered with poly(ADP-ribosyl)ation by poly(ADP-ribose)

polymerase 1 (PARP1).

In Module 27 (paleturquoise), they were, RPL7A, RPL35, and RPL36, which are involved in

SRP-dependent co-translational protein targeting to membrane. In Module 30 (cyan), the top

3 high-degree genes were RPSA, RPS2, and RPLP0, which are involved in cellular macromole-

cule catabolic processes including SRP-dependent co-translational protein targeting to mem-

brane. RPL35, RPL36 and RPLP0 encode proteins of the cytosolic large ribosome 60S, whereas

both RPSA and RPS2 encode proteins of the cytosolic small ribosome 40S. RPSA is required

for a late step in the maturation of the 40S ribosomal subunit, functions as a cell surface recep-

tor for laminin, and may associate with cell fate determination and tissue morphogenesis. Pro-

teins encoded by RPL7A, RPL35, RPLP0, RPSA, and RPS2 are significantly associated with

SRP-dependent co-translational protein targeting to membranes [69, 70].

WGCNA analysis could identify key network modules and their eigengenes from proteome

datasets obtained from clinical tissue specimens. We should note that key network themselves

would be multifunctional and participate in various cancer-related pathways and biological

processes. It was indicated that the four key modules identified for SCLC were involved signifi-

cantly in chromatin remodeling pathways relating to a hyperactivation of both DNA damage

repair more than LCNEC. However, the functional roles associated with the two key modules

for LCNEC were unclear whereas those might be relevant most likely to protein transport,

translocation, and macromolecule localization. Our comparative proteome data also exhibited

that many proteins related to DNA damage response/repair, NuRD and SWI/SNF complexes,

DNA mismatch repair (DMR), and cell cycle were commonly overexpressed in both SCLC

and LCNEC, in which included were CHD4, RBBP4, RBBP7, MTA2, HDAC1, SMARCA4,

SMARCA2, TOP2B, MSH2, MSH6, MCM2 to MCM7 etc. with their relatively different

expressions. (S2 File).

All together were firstly indicative of a predominant similarity in protein expressions and

their PPI networks between SCLC and LCNEC. Next-generation sequencing with the

MSK-IMPACT test suggested that LCNEC may express distinct SCLC-like molecular subsets
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including concomitant loss of RB1 and TP53, and subsets that include KRAS, STK11, KEAP1,

orMAP2K1 (MEK1) mutations that can be found in NSCLC [71]. However, it is still unclear

why LCNEC cells have oncological aspects different from SCLC and morphological feature

resembling NSCLC. Secondly, we observed proteins often reported for NSCLC, and found to

be expressed significantly to LCNEC in this study. Those were EML4 (echinoderm microtu-

bule-associated protein-like 4), CRKL (Crk-like protein), and MAPK1/ERK2 (mitogen-acti-

vated protein kinase 1 / extracellular signal-regulated kinase), and MAP2K1/MEK1, which was

also identified as a member of Module 30 (cyan). EML4 modifies microtubule assembly

dynamics, and also interacts with anaplastic lymphoma receptor tyrosine kinase (ALK) known

to be involved in the PI3K and NSCLC pathways. In the causal network analysis for LCNEC,

PDPK1, which encodes 3-phosphoinositide-dependent protein kinase 1, was predicted as the

master gene targeting to eight genes including EDF1 (endothelial differentiation-related factor

1), which are the eigengene members belonging to Module 27 (paleturquoise). Interestingly, it

was reported that upregulation of hsa_circ_0004015 (a circular RNA) in NSCLC tissues was

associated with poor overall survival of NSCLC patients, and could lead to resistance to gefiti-

nib, and that PDPK1 as the target gene of miR-1183 participates in circ_0016760/miR-1183/

PDPK1 signaling pathway which might be associated with the tumorigenesis of NSCLC [72].

Results obtained in this study could lead to identification of regulating key genes in the dis-

ease. As the next step, we currently proceed with a search for regulator genes/proteins respon-

sible for obtained networks. We would like to discuss focusing on key regulator genes in future

study.

Conclusion

We applied WGCNA to clinical proteomic datasets, for the first time to the best of our knowl-

edge, for exploring molecular networks associated with tumorigenesis that characterize SCLC

and LCNEC. Four modules were found to be exclusively associated with SCLC and two with

LCNEC; several other modules appeared to be shared by both subtypes of lung cancer. Among

the six modules, SCLC was particularly characteristic to the active participation of alternative

mRNA splicing and chromatin remodeling related pathways, and LCNEC that of the SRP-

dependent co-translational protein targeting to membrane (translocation), respectively. A few

master and upstream regulators, which play important roles in cancer progression, were pre-

dicted by a causal network analysis. The high expression of several identified novel high-degree

hub genes were associated with high risk patient groups. These genes may prove to be prog-

nostic and predictive marker candidates for lung cancer. In addition to the results presented in

this study, a further in-depth network-based investigation is required for a clearer understand-

ing of pathways and genes underlying both SCLC and LCNEC.
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