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MOTIVATION Electromyography (EMG) has been used to assess animal behaviors such as sleep/wake
states and freezing behavior. However, despite the benefits of accurate behavior assessment, EMG is often
not obtained together with brain activity recording because it requires additional surgery and setups. In
addition, a high risk of EMG electrode breakage hampers long-term EMG recording experiments. In this
study, we demonstrate that EMG signals can be extracted from multichannel local field potential (LFP)
data using the blind source separation technique without direct measurement of muscle activity.
SUMMARY
Electromyography (EMG) has been commonly used for the precise identification of animal behavior. Howev-
er, it is often not recorded together with in vivo electrophysiology due to the need for additional surgeries and
setups and the high risk of mechanical wire disconnection. While independent component analysis (ICA) has
been used to reduce noise from field potential data, there has been no attempt to proactively use the removed
‘‘noise,’’ of which EMG signals are thought to be one of the major sources. Here, we demonstrate that EMG
signals can be reconstructed without direct EMG recording using the ‘‘noise’’ ICA component from local field
potentials. The extracted component is highly correlated with directly measured EMG, termed IC-EMG. IC-
EMG is useful for measuring an animal’s sleep/wake, freezing response, and non-rapid eye movement
(NREM)/REM sleep states consistently with actual EMG. Our method has advantages in precise and
long-term behavioral measurement in wide-ranging in vivo electrophysiology experiments.
INTRODUCTION

While neural correlates of animal behavior are examined most

frequently with video observation of an animal’s movement,

physiological signals such as electromyography (EMG) are

also often used to monitor the small movements of the animal

that can be missed in video observation. In neuroscience

studies, EMG has been used to accurately assess sleep/wake

states1–6 and freezing behavior.7–9 However, despite the bene-

fits of accurate behavior assessment, EMG is often not obtained

together with brain activity recording because it requires

additional surgery and setups.7,10–13 Furthermore, in the case

of implanting a silicon probe, most commercial headstage pre-

amplifiers are not designed with extra pins to obtain EMG sig-

nals, thus an additional preamplifier is required, which increases

the total implant weight, potentially interfering with the normal

behavior of small animals such as mice. Moreover, a high risk
Cell
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of EMG electrode wire breakage during experiments14–16 ham-

pers long-term experiments.

Field potentials have been shown to be correlated with an an-

imal’s behaviors such as sleep/wake conditions1,2,17–20 and fear

freezing behavior.8,21,22 Field potential signals are often electri-

cally referenced to one of the electrodes placed in a brain to sup-

press excessive common noise generated from the outside of

the brain.19,23–25 On the other hand, because the field potential

signals can be distorted by the electrical signals at the reference

electrode site,24–26 an electric reference is frequently set outside

of the brain (e.g., a skull screw).27–29 In this case, in order to mini-

mize the noise arising from the distal reference electrode setting,

multiple methods have been proposed such as common

average reference,30 current source density analysis,31–33 and

application of independent component analysis (ICA).34

ICA is a blind source separation technique that isolates tempo-

rally independent source signals.35–38 This technique has been
Reports Methods 3, 100482, June 26, 2023 ª 2023 The Authors. 1
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Figure 1. LFPs and EMG recording setups

(A) A microdrive system for implanting a silicon probe and EMG electrode

wires, placed on a jig (a) and during surgery (b).

(B) Skull screw used for an animal’s ground and reference. The silicon probe

was inserted into the brain in this picture.

(C) EMG electrode wire placements. The tips of the coated wires were

exposed and looped into the left and right neck muscles.

(D) The trace of silicon probe implantation into hippocampus. The probe was

coated with DiI before implantation.

(E) Representative LFP traces from a 32-ch silicon probe referencing the skull

screw (top), and right (R) and left (L) neck EMG traces (bottom).
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well established for decades in ‘‘denoising’’ recorded neural sig-

nals by isolating and deleting the noise components from the

field potential data, in which EMG artifacts are considered to

be a major noise source.34,39–43 However, although the putative

EMG component isolated by ICA has been the target of noise

suppression, it has not yet been investigated to what extent

this component correlates with real EMG signals. Thus, the

component has not been proactively used as a measurement

of animals’ behavioral states.

Here, we hypothesize that ICA can reconstruct EMG signals

from multichannel local field potential signals obtained by a

silicon probe or tungsten wire electrodes without direct mea-

surement of muscular signals. To investigate the correlation

between IC and EMG signals, we simultaneously implanted a

silicon probe into a mouse’s hippocampus and wire electrodes

into the neck muscles. Local field potentials (LFPs) were re-

corded electrically referenced to a skull screw over the cere-

bellum. Next, we obtained ICs from the LFPs using ICA and

demonstrated that EMG-like high-frequency components (IC-
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EMG) could always be obtained from the LFPs. These compo-

nents were shown to highly correlate with directly measured

EMGs. We further demonstrated that this IC-EMG can be

used to measure sleep/wake activity and freezing behavior.

Finally, we demonstrated that IC-EMGs can also be obtained

from four-channel multisite brain-area LFPs obtained by tung-

sten wire electrodes.

RESULTS

IC-EMG is highly correlated with real EMG signals
LFP signals were obtained from a 32-channel silicon probe im-

planted in the mouse hippocampus, using a skull screw for

electric reference above the cerebellum (Figures 1A–1D). At the

same time, EMG signals were obtained from the left and right

neck muscles (Figures 1C and 1E). The ICs were obtained by

ICA from the recorded multichannel LFP signals (Figure 2A). Fig-

ure 2Ab illustrates one of the obtained ICs (IC#1) showing EMG-

like higher frequency activity than other ICs. The back-projected

reconstructed signals on the original channels using this IC

showed that the signals distributed uniformly along the channels

(Figure 2Ba). Deleting this IC clarified the weaker and slower

activities, which had been previously contaminated with the

noise-like large high-frequency activity in the original waveforms

(Figure 2Bb). Indeed, IC#1 showed a clear peak between 100

and 200 Hz in the estimated power spectrum density (Figure 2C),

and the weight distribution of this component was highly uniform

compared with other ICs (Figure 2D). In LFP data obtained from

ten mice, only one IC showing uniform weight distribution (stan-

dard deviation [SD] < 0.1) was consistently obtained from indi-

vidual mice (Figure 2Ea). To focus on uniformly distributed ICs,

we classified ICs having a minimum SD among ICs obtained in

individual mice and an SD <0.1 as a uniform IC. The uniform IC

also showed the maximum mean value of its weight distribution

and tended to have large amplitude activities (Figure 2Eb; uni-

form IC vs. other ICs: weight mean = 0.97 ± 0.007 vs. 0.21 ±

0.013, t(265) = 10.99, p = 2.15e�23; weight SD = 0.019 ± 0.003

vs. 0.36 ± 0.009, t(265) = �7.44, p = 1.42e�12; amplitude ratio =

0.88 ± 0.090 vs. 0.20 ± 0.013, t(265) = 9.88, p = 8.35e�20, respec-

tively). In addition, the uniform IC always had a peak frequency

between 100 and 200 Hz, similar to the real EMG power spec-

trum density (Figure 2F), indicating that the uniform IC reflected

EMG signals.

We next investigated to what extent the uniform IC corre-

lates with real EMG signals. Figure 3A illustrates the filtered

signals of uniform IC and the real EMG, and Figure 3B shows

the time course of their amplitudes calculated by root mean

square (RMS) with 100 ms time windows. As we expected,

the uniform IC and the real EMG signals were highly corre-

lated, with correlation coefficients that were more than 0.9

(Figures 3C and 3D). Therefore, EMG signals can be

reconstructed from skull-screw-referenced multichannel LFP

data by ICA without direct EMG recordings. These signals

are represented by the uniform IC, which hereafter we termed

IC-EMG.

The EMG-like componentswere not obtained frombrain-refer-

enced LFPs inmost cases (eight out of tenmice) sinceEMG infor-

mation was absent due to subtraction (Figures S1A–S1C). We
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Figure 2. Identification of putative EMG component from LFP by ICA

(A) Raw LFP traces (a) and their independent components (ICs) separated by ICA (b). Note that IC#1 (black trace) showed higher frequency activity than other ICs

(gray traces), similar to the EMG traces in Figure 1E.

(B) Projection of IC#1 to the original LFP channels (a). The cleaned LFP obtained by deleting IC#1 from the raw LFP (b). The EMG-like high-frequency activities

disappeared in IC#1-deleted LFP.

(C) Log-log plots of the normalized power spectrum densities of each IC shown in (A). IC#1 showed peak power at the range >100 Hz. Black dotted lines indicate

the power of aperiodic exponent (see STAR Methods).

(D) The weight distribution of ICs shown in (A). IC#1 had the most uniform (minimum standard deviation [SD]) distribution.

(E) (a) Scatterplot of IC’smeanweight, SD, and amplitude (see STARMethods) obtained from tenmice. Red circle indicates the ICs classified as uniform IC in each

mouse. (b) Averaged parameters of IC-EMGs and other ICs. Dots of each color indicate different mice (mean ± standard error [SE]; ***, p < 0.001).

(F) Averaged normalized power spectral density of the uniform IC (blue) other ICs (red), and raw EMG (black).
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observed the EMG-like components from the brain-referenced

LFPs only when the noise level of LFPs was different between

the recording channels such that brain referencing could

not completely reduce the noise (Figures S1D–S1F and S2).

Thus, brain-referenced LFP is not ideal for obtaining EMGsignals

using ICA.
IC-EMG provides behavior measurements
Next, we examined whether the IC-EMG is useful for annotating

animals’ behavioral states. Mice were placed into and allowed to

move freely in the open field chamber (Figure 4A). LFPs and

EMGs were recorded while the mice were in the chamber (Fig-

ure 4B), together with video tracking of the animals’ positions.
Cell Reports Methods 3, 100482, June 26, 2023 3
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Figure 3. Correlation of uniform IC and raw EMG signals

(A) 50–500 Hz filtered waveforms of uniform IC (IC#1 in Figure 2), right-neck EMG (R-EMG), left-neck EMG (L-EMG), andD(right-to-left) EMG ([R-L]-EMG) which is

obtained by subtracting L-EMG from R-EMG to remove the effect of the common reference (skull-screw reference).

(B) Root mean square (RMS) with 100 ms bin time windows of each trace in (A).

(C) Correlation of uniform ICwith each EMG, (a) with R-EMG, (b) L-EMG, and (c) (R-L)-EMG. (R-L)-EMG is less correlated with IC-EMG than R- or L-EMG because

the common reference effect is absent due to the subtraction, but still shows high correlation.

(D) Average Pearson’s correlation coefficient of uniform IC and real EMG from ten mice. L-EMG data from one mouse are missing due to the wire break during

experiments. Correlation between uniform IC and R-EMG = 0.96 ± 0.008, L-EMG = 0.94 ± 0.016, (R-L)-EMG = 0.93 ± 0.007 (mean ± SE).
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We categorized animal behavioral states from the video into

sleep, quiet awake (QAW), and active, classified according to

the animals’ average head speed (Figure 4C; see STAR

Methods). Amplitudes of IC-EMG and real EMG were quantified

in ten mice during each behavioral state. Figure 4D shows that

there were significant differences in the IC-EMG amplitudes,

similar to the real EMG, between sleep, QAW, and active behav-

ioral states (Figure 4D).

Freezing behavior has been demonstrated as an indicator for

fear response in both innate and conditioned reactions.44–47

We furthermore demonstrate that IC-EMG is useful for fear

freezing detection, consistent with the previous studies showing

that EMG can be used as a measure of fear freezing behavior.7

Mice were conditioned in the tone fear conditioning paradigm

while their fear freezing was recorded with video observation,

along with LFPs and real EMG signals (Figure 5A). For condition-

ing, mice were exposed to three pairings of a 20 s tone and a 2 s

foot shock on day 1. Then, fear freezing behaviors in response to

tone were monitored on day 2 in a different context and scored

by the animal’s motion in the recorded video. At the same

time, IC-EMGwas obtained from the recorded LFPs and the am-

plitudes of IC-EMG and real EMG were examined while animals
4 Cell Reports Methods 3, 100482, June 26, 2023
showed freezing and non-freezing behavior (Figure 5B). The

mice actively explored the recording box before the tone deliv-

ery, while they showed increased freezing behaviors after the

first tone delivery (Figures 5B and 5C). From the LFP data of

five mice, IC-EMG showed a significantly lower amplitude during

the freezing state compared with the non-freezing state, similar

to the results of real EMG signals (Figure 5D). Together, these

results demonstrated that IC-EMG is useful for annotating animal

behavior such as sleep/QAW/active behavioral states and

freezing/non-freezing states.

IC-EMG can improve precise REM sleep detection
We examined whether the IC-EMG is useful for precise annota-

tion of the rapid eye movement (REM) sleep stage. REM/non-

REM (NREM) sleep periods are often classified by a high/low

theta-to-delta ratio of field potential when the animal shows

stationary behavior.48,49 However, because many factors can in-

crease theta power during QAW8,21,22,50–55 (see discussion), the

combination only of video recording and field potential recording

has difficulty in fine discrimination of QAW and REM sleep stats.

The most established sleep scoring method uses a combination

of field potential and EMG.56–60 In this paradigm, sleep/wake are
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Figure 4. IC-EMG can provide measurements of animal behaviors

(A) The recording chamber (a) and head position tracing (b) during LFP and EMG recording.

(B) Simultaneous recording of LFP and EMG when the mouse was freely moving in the recording chamber. EMG-IC was obtained from raw-LFP by ICA.

(C) Speed of the animal’s head, traces of IC-EMG and raw EMG, and their amplitudes at the same time. (a) Head position speed (black line) and its average during

each 15 s epoch (red line), (b) Z scored IC-EMG and its RMS amplitude, and (c) Z scored raw EMG and its RMS amplitude. Animal behavior was categorized into

sleep (blue), quiet awake (QAW; green), and active (red) based on the video data.

(D) Amplitude of IC-EMG (a, n = 10), L- or R-EMG (b, n = 10), and (R-L)-EMG (c, n = 9) during different animal behaviors. Amplitudes between sleep vs. QAW vs.

active: IC-EMG, 0.54 ± 0.070 vs. 0.84 ± 0.060 vs. 1.17 ± 0.071, p = 0.010 (sleep/QAW) and p = 0.005 (QAW/active); L- or R-EMG, 0.52 ± 0.061 vs. 0.86 ± 0.039 vs.

1.24 ± 0.090, p = 0.003 (sleep/QAW) and p = 0.001 (QAW/active); (R-L)-EMG, 0.55 ± 0.055 vs. 0.91 ± 0.033 vs. 1.26 ± 0.100, p = 0.003 (sleep/QAW) and p = 0.003

(QAW/active) (mean ± SE).
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classified by low/high amplitude EMG activities in addition to the

animal’s movements in the recorded video. Here, we demon-

strate that IC-EMG can be used for sleep scoring similarly to

real EMG recording.

LFPs and EMGs of the mice were recorded in the open field

chamber or their home cages (Figure 6A). The animals’ behaviors

were first annotated with the video tracking of the animals’ posi-

tions (Figure 6Aa). High theta- (6–9 Hz)-to-delta (0.1–4 Hz) ratio

periods were observed while the mice were stationary

(Figures 6Ab and 6Ac). In order to separate REM sleep periods

from the QAW state, the animal behaviors were further classified

using IC-EMG information that the stationary periods with high

IC-EMG amplitudes were re-categorized as being in the awake

state (QAW) (Figure 6Ad), similar to the use of the EMG (Fig-

ure 6Ae). Then, REM/NREM/QAW states were annotated with

the combination of the theta-delta ratio and the animal’s speed

or the combination of the theta-delta ratio, the animal’s speed,

and the IC-EMG or the EMG (Figure 6B). Some periods anno-

tated as REM based only on the video (Figure 6Ba) were catego-

rized into QAW when the annotation was based on IC-EMG

(Figure 6Bb), similar to the result based on the EMG (Figure 6Bc),

because of their large amplitudes of muscular activities during

the periods which are not likely to occur during sleeping states.
The dynamics of IC-EMG and EMG during IC-EMG- and EMG-

based categorized REM periods were consistent with previous

studies where EMG shows silent and occasional twitch activ-

ities61,62 and that body movement occurs at the end of REM.63

To evaluate the extent to which the quality of the video-based

and the IC-EMG-based state classifications is close to the

EMG-based method, the REM sleep periods were detected

from six silicon-probe-implanted mice (Figure 6C). Because

the sleep periods were more strictly annotated, the IC-EMG-

based method showed less false-positive rates of REM detec-

tion compared with the video-only-based method (Figure 6Da;

video: 1.18% ± 0.38%, t(5) = 3.13, p = 0.025; IC-EMG: 0.39% ±

0.20%, t(5) = 1.98, p = 0.104, one-sample t test with zero), and

negligible levels of false-negative rates in IC-EMG (0.16% ±

0.12%, t(5) = 1.27, p = 0.260, one-sample t test with zero).

Also, the IC-EMG-based REM period detection was similar (Co-

hen’s kappa64–66) to the EMG-based method, while the similarity

of the video-only-based method was less (Figure 6Db; video:

0.91 ± 0.03, t(5) = �2.89, p = 0.035; IC-EMG: 0.96 ± 0.02, t(5) =

�1.93, p = 0.112, one-sample t test with kappa = 1). Therefore,

the use of IC-EMG improves precise REM sleep detection simi-

larly to the use of real EMG by decreasing false-positive REM

periods.
Cell Reports Methods 3, 100482, June 26, 2023 5
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Figure 5. IC-EMG can be measurements of animal’s fear freezing

(A) Schema of the tone fear conditioning task.

(B) Animals’ freezing behavior at day 2, IC-EMG and raw EMG traces, and their

RMS amplitudes during whole sessions (a) and 1 min before and after the tone

onset (b).

(C) Freezing rate during habituation session and test sessions (n = 5) before

and after the first tone delivery. Freezing rate before vs. after the tone = 5.4% ±

1.8% vs. 31.7% ± 8%, respectively, t(8) = �3.22, p = 0.012 (mean ± SE).

(D) Amplitude of IC-EMG and L- or R-EMG during animal’s active/freezing

states. (R-L)-EMG was not analyzed because one side of the EMG wires was

broken during foot-shock delivery in three out of five mice. The Z scored

amplitudes during non-freezing and freezing states: IC-EMG, 0.96 ± 0.079 vs.

0.56 ± 0.043, t(8) = 3.65, p = 0.007; EMG, 0.98 ± 0.067 vs. 0.57 ± 0.036, t(8) =

3.37, p = 0.001, respectively (mean ± SE).
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IC-EMG can be obtained from multisite brain-area
recording
Finally, we examined whether IC-EMG can be obtained from

multisite brain-area recording data. We have previously re-

corded four channel LFPs in the anterior cingulate cortex

(ACC), the basolateral amygdala (BLA), white matter (WM) of

the dorsal CA1, and the ventral CA1 of mice.69 We had ob-

tained the LFP signals referenced to the skull screw over the

cerebellum, and ICs were separated by ICA from the recorded

LFPs into ICs (Figures 7A–7D). Similar to the case of silicon-

probe recordings (Figure 2), one of the ICs consistently pre-

sent in each of the four mice exhibited a highly uniform weight

distribution (Figures 7E and 7G). These components also

showed a peak frequency between 100 and 200 Hz

(Figures 7F and 7H), which is consistent with the results of

silicon-probe recordings (Figure 7F), indicating a strong corre-

lation with actual EMG signals. We examined the amplitude of

IC-EMG when the mice explored the open field chamber.

Again, consistent with the results of silicon-probe recordings,

IC-EMG amplitudes were significantly higher during awake

states than sleeping states (Figure 7I). We finally examined

IC-EMG amplitudes during freezing/non-freezing behaviors

during the observational fear.70–72 The recorded mouse, as

an observer, and his cagemate, as a demonstrator, were

placed into the two chambers separated by a transparent

plexiglass partition. On the recording day, the foot shock

was delivered to the cagemate demonstrator, which produced

the observational fear response69 (Figure 7Ja). During the

freezing period, IC-EMG of 4-channel LFP showed signifi-

cantly lower amplitudes compared with the non-freezing state

in the observer (Figure 7Jb). Therefore, IC-EMG can also be

obtained from multisite brain-area LFP recording, and it

provides behavior measurement of sleep/awake states and

fear-freezing/non-freezing states. Moreover, these results

also demonstrate that our method is able to reconstruct

EMG signals from data obtained in the past so long as an

electrical reference was set on the animal’s skull screw.

DISCUSSION

Although previous works have shown good performance of

ICA in the reduction of EMG-like artifacts from field potential

data, evidence of to what extent the separated component

and the actual EMG signal correlate was lacking. Thus, no

prior attempt was made to use this EMG-like component pro-

actively. The current study has shown that the EMG compo-

nent obtained from multichannel LFP signals by ICA is highly

correlated with actual EMG signals. The IC-EMG was further

demonstrated to be useful for measuring animals’ sleep/

wake and fear-freezing behavior as well as actual EMG. We

also showed that EMG component separation could also be

performed by ICA with multisite brain-area LFP recording.

Therefore, the current study demonstrated that the EMG

signal can be reconstructed from multichannel LFP by ICA

without any additional surgery or setup, which can be helpful

in the measurement of animal behaviors. In addition, our

method allows re-examining animal behaviors in previously

obtained LFP data.
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Figure 6. IC-EMG is useful for precise anno-

tation of REM sleep scoring

(A) Sleep/wake annotation based on the video

recording, IC-EMG, and EMG. (a) Head position

speed (black line) and its average during each 15 s

epoch (red line). Animal behavior was categorized

into sleep (blue), QAW (green), and active (red)

based on the head speed. (b) Spectrogram of LFP at

stratum lacunosum-moleculare layer of CA1. (c)

Trace of theta (6–9 Hz)-to-delta (0.1–4 Hz) ratio. Blue

dotted line indicates ratio = 4. (d and e) Sleep states

categorized based on video recording (a) were re-

annotated into QAW if the amplitudes of the Z

scored IC-EMG (d) and (R-L)-EMG (e) are high (see

STAR Methods). Black lines indicate RMS ampli-

tudes of IC-EMG/(R-L)-EMG. Blue dotted lines

indicate z = 1.5.

(B) Sleep scoring based on the video recording (a),

IC-EMG (b), and (R-L)-EMG (c). The states were

classified into REM when the theta-to-delta ratio

was R4 during sleep state (see STAR Methods).

Red arrow indicates that the REM period, which is

categorized based on the video, was re-categorized

as wake by IC-EMG- and EMG-based annotation

due to their high amplitudes.

(C) REM sleep duration from the six mice in the total

recording time (a) (percentages based on video vs.

IC-EMG vs. EMG, 9.38 ± 2.75 vs. 8.44 ± 2.68 vs.

8.21 ± 2.67) and in total sleep periods (b) (percent-

ages based on video vs. IC-EMG vs. EMG, 20.80 ±

5.42 vs. 18.95 ± 5.06 vs. 18.59 ± 5.13). These

amounts are consistent with previous reports.67,68

(mean ± SE).

(D) The agreement of REM sleep scoring based on

video and IC-EMG vs. the scoring based on EMG;

false-positive rates (a), and Cohen’s kappa values

(b) (mean ± SE; *, p < 0.05).
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Advantages of IC-EMG
Although techniques used for EMG signal acquisition are simple,

simultaneous recording of EMG with brain activity is not a trivial

matter because it requires additional surgeries and setups, as

we described in the introduction. In the current study, the total

microdrive weight used for silicon probe implant and EMG

recording was 6.5 g, while the weight would be reduced to

4.7 g in the case that EMG recording was not needed because

the electrical interface board for EMG preamp can be removed.

We did not observe abnormal behaviors in the adult mice used in

this study, but the increased implant weight could interfere with

the behavior of more juvenile animals. Stable EMG recording has

also been a challenging problem, as the recording wires need to
Cell R
remain attached to the animal despite the

mechanical stress caused by muscular

movements. In our experiments, three out

of twelve mice broke the wires; one mouse

broke one side of the EMG wires within a

week after the surgery, and another two

mice broke one side of the wires while

receiving fear conditioning foot shocks.

Reconstructing EMG signals from LFP us-

ing ICA does not require a wire electrode
implant. The ground/reference wire used for the LFP recording

connected to the skull screw was fully covered with dental

acrylic and did not receive mechanical stress after surgery,

ensuring stable recording. Therefore, our IC-EMG method not

only reduces the requisite effort of additional surgery and setup

preparation for EMG recording but also enables stable simulta-

neous recording of EMG and LFP with freely moving animals,

which allows long-term behavior experiments without the risk

of a wire break.

Up to now, several methods have been proposed to score

animal behaviors without EMG. Video-based sleep scoring has

been shown to have a high correlation with EMG-based

scoring.73,74 The video-based methods, however, have a
eports Methods 3, 100482, June 26, 2023 7
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Figure 7. IC-EMG can be obtained from multisite brain-area recording

(A) Implant device on jig equipped with 4-ch tungsten wire electrodes.

(B) The electrode traces. The electrodes were coated with DiI before implantation. Scale bar: 1 mm.

(C) Representative LFPs from 4-ch electrodes (a), and their ICs (b). The LFP signals were referenced to the skull screw.

(D) The back-projected field potential from IC#1 (a), and the cleaned LFP waveforms obtained by deleting IC#1 LFP from the raw LFP (b).

(E) Weight distribution of ICs.

(F) Power spectrum density of ICs.

(G) Scatterplot (a) and bar plots (b) of IC’s mean weight, SD, and amplitude ratio obtained from four mice. Red circle indicates the uniform ICs (IC-EMG) in each

animal. Averaged parameters were IC-EMG vs. other ICs: weight mean = 0.96 ± 0.007 vs. 0.20 ± 0.033, t(14) = 13.31, p = 2.45e�9; weight SD = 0.045 ± 0.011 vs.

0.62 ± 0.033, t(14) = �9.69, p = 1.37e�7; amplitude ratio = 0.87 ± 0.005 vs. 0.57 ± 0.047, t(14) = 3.53, p = 0.003, respectively (mean ± SE).

(H) Average power spectrum density of the IC-EMG (blue) and other ICs (red).

(I) IC-EMG from freely moving animals. Speed of animal’s head position (top), 50–500 Hz filtered IC-EMG (middle), and RMS amplitude of IC-EMG (bottom). (b)

Average amplitude of IC-EMG from fourmice. Amplitudes between sleep vs. QAWvs. active: 0.32 ± 0.042 vs. 0.70 ± 0.070 vs. 0.89± 0.042, p = 0.013 (sleep/QAW)

and p = 0.0014 (sleep/active).

(J) IC-EMG during the observational fear task. (a) Schema of the task, and (b) IC-EMG amplitude during animal’s active and freezing states. The Z scored

amplitudes during non-freezing and freezing states: 0.79 ± 0.040 vs. 0.52 ± 0.054, t(6) = 4.03, p = 0.007 (mean ± SE).
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drawback in identifying the fine sleep structures because they

take 40 s of immobility as a threshold to define sleeping, while

short sleep bouts of less than 20 s have been reported in

sleep-deprived rodents75 and of excessive sleepiness in hu-

mans.76,77 Video recording systems complemented with infrared

beam breaking,78 piezoelectric signals,79,80 and respiration

measurement77 were also proposed; however, these again

require additional experimental setups. Sleep has also been

often determined based on the oscillatory power of LFP or

EEG combined with video tracking without EMG. In these cases,

active awake and REM sleep are identified by prominent theta

oscillation (6–9 Hz), while slow-wave sleep is characterized by

increased delta oscillation (<4 Hz)48,49,81 and by the appearance

of sharp wave ripple and cortical spindles.20,82,83 Another study

further distinguished sleep and QAW states using a criterion that

delta power is increased during slow-wave sleep compared with

QAW state.84 However, there is still a limitation of this approach
8 Cell Reports Methods 3, 100482, June 26, 2023
in fine state discrimination of immobility states. Although theta is

prominent during REM sleep, theta power during QAW can also

increase with many factors including respiration,50 vestibular

stimulation,51 sleepiness,52 fear,8,21,22 attention, and other

cognitive functions.53–55 In addition, QAW theta becomes less

prominent duringwaking immobility, eating, grooming, and defe-

cation.53,85 Also, QAW delta power is reported to increase prior

to the wake-to-slow-wave-sleep transition onset.86,87 Thus,

EEG-based behavior classification has difficulty in fine discrimi-

nation of QAW, slow-wave sleep, and REM sleep. IC-EMG

provides the benefit of precise animal state discrimination

compared with other conventional methods without utilizing

EMG information.

While we demonstrated that IC-EMG can be a measure of

sleep/wake and fear-freezing behavior, we also observed that

its amplitude was increased during water licking, food chewing,

and grooming behavior. Thus, IC-EMG has the potential to be a
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measure of various animal behaviors, although further investiga-

tion is needed to clarify to what extent animal behavior types can

be scored by IC-EMG.

In this study, we obtained EMG signals from LFP data by ICA.

The same methodology has the potential to be applied to EEG

research, considering that ICA has been a well-established

method to eliminate EMG artifacts from EEG data. Recently,

several source separation techniques, including empirical

mode decomposition,88,89 an improved version of ICA-based

separation,90 and others,91–94 have been proposed to have bet-

ter noise reduction quality for EEG data than conventional ICA,

with the condition of fewer recording channels. Therefore, utiliza-

tion of these signal source separation techniques would be

possible to improve the quality of EMG signals isolation from

EEG data.

Signal source of IC-EMG
We obtained IC-EMG from the multichannel LFP signals, which

were characterized to have uniform IC weight distribution.

Considering neural activity factors surrounding the electrode

should contribute to LFP in a more localized manner,24,95 the

signal source of a such uniform distribution component is sup-

posed to be distal volume conduction96 or a common electrical

reference.34 However, the volume conduction factor is less likely

to be themain factor of IC-EMG. First, IC-EMG has a peak power

at 130–140 Hz, while power line conduction should generate a

peak at a lower frequency range. Second, such a high-frequency

neural event in a brain corresponds to a sharp wave ripple,20 but

it is unlikely to be generated from a uniformly distributed source,

and its amplitude should be smaller than other slower oscillatory

activities. Thus, although both signals were possibly separated

by ICA, we assume that the major factor of that uniform compo-

nent is the electrical reference. In this study, we used the skull

screw over the cerebellum as an electrical reference, which

can pick up both signals of muscle activities near the screw

and cerebellar activity. However, although the precise contribu-

tion of cerebellar EEG is unclear, it is reported that overt activity

is not seen in a healthy rodent brain.97 Together with the high cor-

relationwith neck EMG,we assume that the head-neckmuscular

activities surrounding the electrically referenced skull screw are

a major signal source of IC-EMG.

Factors that may affect IC-EMG identification
In our method, the high-noise-level channels identified by eye

were removed prior to running ICA. Such noisy signals can be

caused by the degradation of the silicon probe electrode that

leads to crosstalk between channels98 and changes in the fre-

quency-impedance characteristics,99,100 which have a risk of

skewing the time course of LFP traces. Because ICA is a tech-

nique to separate temporally maximal independent waveforms,

the skewed LFP can generate additional components for which

a signal source actually does not exist. Indeed, although only

one IC-EMG component was obtained from each mouse in the

current study after the removal of bad channels, we have

observed two uniform components correlated with EMG (mean

weight = 0.97 and 0.95, mean SD = 0.02 and 0.03, amplitude

[Amp] ratio = 0.65 and 0.46, correlation coefficient = 0.97 and

0.97, respectively) from one mouse when we did not remove
the channels of high noise level before the ICA computation.

Thus, including unhealthy electrode site signals in ICA may

generate ‘‘ghost’’ components, although EMG signals can still

be reconstructed from the LFPs.

Benefits of using ICA for reducing noise arising from
outside-brain reference electrode setting
In this study, it was demonstrated that ICA can separate muscle

activities from multichannel LFP data with a skull screw electric

reference. Another advantage of applying ICA to LFP data is

that, as we demonstrated in Figure 2Bb, it can obtain noise-

cleaned LFP data against a brain-external reference.

There have been multiple methods for reducing the noise

arising from the distal reference electrode, which is set to avoid

the signal distortion caused by placing the reference electrode

close to the recording site. Common average reference is the

method to generate a more ideal reference by averaging all the

recordings on every electrode site to use as a reference.30 While

the ideal reference can be obtained if the average produces

near-zero activity, the average does not often produce zero,

especially in the case of recording from the local brain area

because neural activities at each recording channel are sup-

posed to be correlated with each other. Current source density

analysis has also been widely used as a reference-independent

measure that estimates the strength of extracellular current gen-

erators,31–33 which is conducted by calculating a second spatial

derivative of the recorded potentials between neighboring elec-

trodes in the standard method. However, because the spatial

noise is amplified through the differentiation, it often requires

spatial filtering,101–103 which decreases spatial resolution of

LFP signals. In addition, this method is not useful in the case of

certain recording electrode setups, such as those using tungsten

wire electrodes, or in the case of multibrain-site recording

because it requires precise electrode site distance information.

The ICA-based method, on the other hand, does not depend

on the electrode locations, and subtracting electrical reference

activity can be interpreted as re-referencing to a zero-activity

location.34 Thus, our method to use ICA to LFP data does not

only have an advantage in extracting EMG activities without an

EMG electrode implant but also in obtaining noise-reduced

LFP signals, avoiding the potential signal distortion that is

encountered in the case of a within-brain reference electrode

placement.

Conclusion
This study certified that EMG signals can be reconstructed

from multichannel LFP signals by ICA. Thus, our method pro-

vides a physiological measure of animal behavior in LFP data

without the extra effort of direct EMG recording. It will be a

useful tool in wide-ranging in vivo electrophysiology experi-

ments including investigating neural correlates of animal

behavior.

Limitations of the study
As discussed above, the extracted signals from LFP data are

supposed to reflect the head-neck muscular activities surround-

ing the referenced skull screw. Thus, our current methodmay not

be directly applicable to obtaining activities of other specific
Cell Reports Methods 3, 100482, June 26, 2023 9
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muscles, such as leg104 or masticatory105 muscles movements.

Implanting and setting a reference electrode into these muscles,

although there remains a risk of electrode breakage, has the po-

tential to allow extraction of these muscular activities from LFP

data by ICA without additional EMG recording devices.
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1. Borbély, A.A., Tobler, I., and Hanagasioglu, M. (1984). Effect of sleep

deprivation on sleep and EEG power spectra in the rat. Behav. Brain

Res. 14, 171–182. https://doi.org/10.1016/0166-4328(84)90186-4.
10 Cell Reports Methods 3, 100482, June 26, 2023
2. Vyazovskiy, V.V., Olcese, U., Hanlon, E.C., Nir, Y., Cirelli, C., and Tononi,

G. (2011). Local sleep in awake rats. Nature 472, 443–447. https://doi.

org/10.1038/nature10009.

3. Louis, R.P., Lee, J., and Stephenson, R. (2004). Design and validation of a

computer-based sleep-scoring algorithm. J. Neurosci. Methods 133,

71–80. https://doi.org/10.1016/j.jneumeth.2003.09.025.

4. Ji, D., and Wilson, M.A. (2007). Coordinated memory replay in the visual

cortex and hippocampus during sleep. Nat. Neurosci. 10, 100–107.

https://doi.org/10.1038/nn1825.

5. Dash, M.B., Douglas, C.L., Vyazovskiy, V.V., Cirelli, C., and Tononi, G.

(2009). Long-term homeostasis of extracellular glutamate in the rat cere-

bral cortex across sleep and waking states. J. Neurosci. 29, 620–629.

https://doi.org/10.1523/JNEUROSCI.5486-08.2009.

6. Kassiri, H., Chemparathy, A., Salam, M.T., Boyce, R., Adamantidis, A.,

and Genov, R. (2017). Electronic sleep stage classifiers: a survey and

VLSI design methodology. IEEE Trans. Biomed. Circuits Syst. 11,

177–188. https://doi.org/10.1109/TBCAS.2016.2540438.

7. Steenland, H.W., and Zhuo, M. (2009). Neck electromyography is an

effective measure of fear behavior. J. Neurosci. Methods 177,

355–360. https://doi.org/10.1016/j.jneumeth.2008.10.020.

8. Karalis, N., Dejean, C., Chaudun, F., Khoder, S., Rozeske, R.R., Wurtz,

H., Bagur, S., Benchenane, K., Sirota, A., Courtin, J., and Herry, C.

(2016). 4-Hz oscillations synchronize prefrontal-amygdala circuits dur-

ing fear behavior. Nat. Neurosci. 19, 605–612. https://doi.org/10.1038/

nn.4251.

9. Isosaka, T., Matsuo, T., Yamaguchi, T., Funabiki, K., Nakanishi, S., Ko-

bayakawa, R., and Kobayakawa, K. (2015). Htr2a-Expressing cells in

the central amygdala control the hierarchy between innate and learned

fear. Cell 163, 1153–1164. https://doi.org/10.1016/j.cell.2015.10.047.

10. Okada, S., Igata, H., Sakaguchi, T., Sasaki, T., and Ikegaya, Y. (2016). A

new device for the simultaneous recording of cerebral, cardiac, and

muscular electrical activity in freely moving rodents. J. Pharmacol. Sci.

132, 105–108. https://doi.org/10.1016/j.jphs.2016.06.001.
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Independent component approach to the analysis of EEG and MEG re-

cordings. IEEE Trans. Biomed. Eng. 47, 589–593. https://doi.org/10.

1109/10.841330.

43. Winkler, I., Haufe, S., and Tangermann, M. (2011). Automatic classifica-

tion of artifactual ICA-components for artifact removal in EEG signals.

Behav. Brain Funct. 7, 30. https://doi.org/10.1186/1744-9081-7-30.

44. Blanchard, D.C., and Blanchard, R.J. (1972). Innate and conditioned re-

actions to threat in rats with amygdaloid lesions. J. Comp. Physiol. Psy-

chol. 81, 281–290. https://doi.org/10.1037/h0033521.

45. Kitamura, T., Saitoh, Y., Takashima, N., Murayama, A., Niibori, Y., Ageta,

H., Sekiguchi, M., Sugiyama, H., and Inokuchi, K. (2009). Adult neurogen-

esis modulates the hippocampus-dependent period of associative fear

memory. Cell 139, 814–827. https://doi.org/10.1016/j.cell.2009.10.020.

46. Kitamura, T., Pignatelli, M., Suh, J., Kohara, K., Yoshiki, A., Abe, K., and

Tonegawa, S. (2014). Island cells control temporal association memory.

Science 343, 896–901. https://doi.org/10.1126/science.1244634.

47. Yokose, J., Marks, W.D., Yamamoto, N., Ogawa, S.K., and Kitamura, T.

(2021). Entorhinal cortical Island cells regulate temporal association

learning with long trace period. Learn. Mem. 28, 319–328. https://doi.

org/10.1101/lm.052589.120.

48. Louie, K., andWilson,M.A. (2001). Temporally structured replay of awake

hippocampal ensemble activity during rapid eye movement sleep.

Neuron 29, 145–156. https://doi.org/10.1016/s0896-6273(01)00186-6.
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Bare silver wire, 0.005’’ A-M SYSTEMS Cat#: 781500
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This paper N/A

Behavior monitoring camera e-con System See3CAM_CU55_CHL_TC1

Open field chamber This paper N/A

Fear conditioning system This paper N/A
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Microtome
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Leica S6E Stereomicroscope Leica S6E
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(takashi.kitamura@utsouthwestern.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All data in the main text or supplementary materials are available upon request.

d The custom MATLAB code used in this study is available at https://doi.org/10.5281/zenodo.7859753 and https://github.com/

HisayukiOsanai/IC-EMG.git. The DOI is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures relating to mouse care and experimental treatments conformed to NIH and Institutional guidelines, and were carried

out with the approval of the UT Southwestern Institutional Animal Care and Use Committee (IACUC). A total of 16 male mice aged

between 2 and 10 months were used. Five C57BL/6J background mice were used for open-field recording. Five Crl:CD1(ICR) back-

ground mice crossed to C57BL/6J were used both for open-field and fear conditioning recording. An additional two mice

Crl:CD1(ICR) in addition to the four C57BL/6J used above were used to record including REM sleep periods (one mouse was also

used for open-field/fear conditioning recording). Another four C57BL/6J background mice were used for open-field and observa-

tional fear test with four-channel multisite brain areas tungsten electrode implants, from which data were also used in previous

studies.69 All animals were housed on a 12h/12h light schedule.

METHOD DETAILS

Electrode implantation surgery
Fabrication of silicon-probe microdrive and implant surgery was based on a previous report.107 An implant microdrive equipped with

a single-shank 32 channel, 50 mm electrode-site spacing silicon probe (A1x32-6mm-50-177-H32_21mm; NeuroNexus, Ann Arbor,

MI, USA; or E32+R-50-S1-L6 NT, ATLAS Neuroengineering, Leuven, Belgium) were prepared for implantation into isoflurane-anes-

thetized mice. The microdrive was also equipped with a custom-made electric interface board for EMG recording (Figure 1A), which

increased the total implant weight to 6.5 g. In the first step, stainless machine screws (Antrin, Fallbrook, CA, USA) were implanted into

the skull to anchor themicrodrive. One of these skull screws over the center of a cerebellumwas attached with bare silver wire, which

serves as an electric ground and reference for the LFP recordings (Figure 1B). Electric connectivity was checked by measuring that

the impedance is less than 20 kU at 1 kHz between the ground screw and other skull screws. The silicon probe was then implanted

into hippocampal CA1 and dentate gyrus (DG) (AP: �1.80 mm, ML: +1.60–1.70 mm, DV: +2.10–2.40 mm), then the microdrive was

fixed to the skull screws by applying dental acrylic. For the EMG recording, the tips of two perfluoroalkoxy-coated silver wires (A-M

Systems, Sequim, WA, USA) were exposed and tied to the left and right dorsal neck muscles (Figure 1C).7,10 The skin was then

covered with dental acrylic.

Implantation of multiple tungsten wire electrodes was reported previously.69 Briefly, four sets of tungsten wire electrodes were

mounted on a custom designed 3D printed microdrive (Figure 5A), which was implanted targeting anterior cingulate cortex (ACC),

basolateral amygdala (BLA), white matter above dorsal hippocampal CA1 (WM), and ventral CA1 (vCA1) (ACC: AP: +1.00 mm;

ML: �0.30 mm; DV: �1.50 mm, BLA: AP: �1.40 mm; ML: +3.40 mm; DV: �5.30 mm, WM: AP: �2.40 mm; ML: +2.00 mm; DV:

�1.00 mm; vCA1: AP: �3.18 mm; ML: +3.75 mm; DV: �4.75 mm). LFP data were re-referenced offline to a skull screw above the

cerebellum. All mice were allowed to recover for at least seven days after surgery. All electrode placements were histologically veri-

fied with brain slices stained with 40,6-diamidino-2-phenylindole (DAPI) (Figures 1D and 7B). The probe was coated with 1, 10-diocta-
decyl-3, 3, 30, 30-tetramethylindocarbocyanine (DiI) before the implantation.

In vivo electrophysiology and behavior experiments
LFP and EMG signals (Figure 1E) were recorded using Neuralynx (Neuralynx, Bozeman, MT, USA) or Open Ephys (OEPS Tech, Lis-

bon, Portugal)108 systems. The wide-band signals were obtained from the implanted electrodes and the EMG wires at 20 kHz, then

band-pass filtered (0.1–500 Hz) and down-sampled to 2 kHz.

The LFPs and EMGs of the ten animals were recorded while exploring in the open field chamber (70 cm 3 38 cm) for 0.5 to 2 h.

Subsequently, five out of the ten animals were recorded during the tone fear conditioning task using a custom-made fear conditioning

box.109 The box consists of a 30 cm3 25 cm3 25 cm transparent acrylic box surrounded bywhite plastic boards, and 3mmdiameter
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stainless steel bars with a 6.66 mm pitch on the floor. Conditioning foot shock (1.2 mA for 20 kU impedance) was designed to be

delivered to the bars while animal behaviors were monitored with a camera (N660 1080P, NexiGo, Beaverton, Oregon, USA) equip-

ped on the side of the box. Before fear conditioning, all animals were habituated to experimenters for 2 days. On Day1, mice were

placed in the fear conditioning box and allowed to explore for 240 s. Then, a 20 s tone (90 dB, 8 kHz) was played from a speaker

(ST304, VIP PRO AUDIO, Brooklyn, NY, USA), and a 2-s foot shock was delivered to the mice at the end of the tone, and the animals’

behaviors were subsequently monitored for 240 s. This was repeated two more times before the mice were returned to their home

cage. On Day2, the mice were placed in the same box but with a different context in the form of black plastic boards on the floor and

the surrounding walls. Similarly to day1, the mice explored the box for 240 s, then 20 s tone delivery and 240 s behavior monitoring

were repeated in total three times. LFP and EMG were recorded for the whole period of Day2. The timing of the tone and the shock

delivery is controlled by the triggering signals of Arduino Due (A000062). The shocker consists of a portable AC power battery

(ZeroKor R350), a step-up transformer (Simran AC-100) and a rectifier (KBP210G, Diodes Incorporated, Plano, Texas, USA) for shock

delivery, and bipolar transistors (BC547BBU, onsemi, Phoenix, Arizona, USA) and optocouplers (PC817) for shock-timing control. In

addition, one mouse used above and two additional mice were recorded in their home cages (183 283 12 cm) for 4 to 6 h to record

LFP data including REM sleep periods.

Another four mice were recorded during the observational fear task in the previous study.69 Briefly, implanted mice were group

housed with their cagemate for one week. On Day1, the implanted mice received one time 0.5 mA, 2-s foot shock (Med Associates,

Fairfax, VT, USA). On Day2, the implantedmice and their cagemate were placed in the shock andmonitoring chambers, respectively,

which were divided by a transparent plexiglass partition. The mice were allowed to explore the chambers for 5 min, then the im-

planted mice observed the cagemate receiving 0.5 mA, 2-s foot shocks with an interval of 15 s for a total of 24 shock trials). LFPs

were recorded from ACC, BLA, WM, and vCA1 during Day2. Due to excessive line and harmonic noises generated during recording

in this shock system, we applied notch filters at 60/120/240 ± 0.1 Hz.

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise noted, analysis of electrophysiological data and animal behaviors as well as statistical analysis were performed

using custom written scripts in MATLAB (Mathworks, Natick, MA, USA).

Independent component analysis of LFPs
To the aim of reconstructing EMG signals without direct EMG recording, we performed ICA on LFP data.34,110,111 Before running ICA,

we removed unhealthy channels from the LFP data with two criteria: (1) its waveform is distinct from the neighboring channel (unfunc-

tional channel), (2) the noise level is larger than the other electrode sites that are observable by eye (degraded channel).

To separate source signals from LFP data, we used the infomax ICA algorithm35,112 which is implemented in the EEGLAB toolbox

(runica.m).106 In ICA, the relationship between signal sources and the recorded signals is modeled by

x = As; (Equation 1)

where x is the recorded signals, s is the source signals called independent components (ICs), and A is the unknown mixing matrix

which is to be estimated by the ICA algorithms. The source signals are then obtained by the equation

s = Wx; (Equation 2)

whereW is computed by the inverse ofmatrixA, which is called unmixingmatrix. The number of IC s is samewith the channel number

of the recorded signals x. Each column of themixingmatrixA describes how the source signals distribute along the original channels,

which we called ‘‘weight distribution’’. The reconstruction from the n’th component onto the original data channels is called inverse

ICA, which is accomplished by multiplying the n’th column of the mixing matrix A with n’th IC. For comparing IC’s distributions, we

normalized their weight distributions so that their maximum absolute is equal to one and their mean value is positive.

Here, we applied ICA to the first 4-min epoch of 32 channel silicon-probe data or previously reported 4 channel tungsten-wire

data69 instead of using the full set of data to reduce the calculation cost. The unmixing matrix W was calculated through ICA as

described above from the 4-min epoch, and then source signals including outside of the 4-min epoch were obtained using Equation

2. Although data rank reduction using principal component analysis is often applied before ICA, we did not use it because rank reduc-

tion can potentially reduce the quality of subsequent ICA.113 While it is known that too many IC separations can cause overfitting, a

problem in which IC waveforms are composed of repeated ‘bumps’ that do not appear in the original waveforms,114,115 and indeed

we have observed this problem when we have used a 25-mm-spacing 64-ch silicon probe, this overfitting problem was not observed

with our recording setups in the current study.

Analysis of power spectral density, IC amplitudes, and IC-EMG/EMG amplitudes
We used Welch’s method116 with a window length of 0.25 s and an overlap of 0.15 s to estimate the power spectral density of EMG

and IC. Aperiodic components of the power spectral density were parameterized117 to help find the spectral peaks. To compare the

spectral features of EMG and ICs among different animals, the power spectral densities were normalized by their summation along all

frequency ranges.
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For evaluating the amplitudes of each IC, we computed how much the ICs account for the original LFP. We calculated the ampli-

tude ratio (Amp. ratio) by the maximum variance of the IC’s back-projected (reconstructed) signals among the channels divided by

the variance of LFP at the corresponding channel.

To calculate the time-changing amplitudes of the EEG and the EMG components obtained by ICA from LFP (IC-EMG), we first

applied the zero-phased band-pass filter (50–500 Hz) to the original waveforms and then their root-mean-squares (RMS) were ob-

tained with 100-ms time windows. Comparisons of RMS among different animals were conducted with z-scored EMG/IC-EMG data.

Behavioral and statistical analysis
During the open-field recordings, the animals’ head positions were tracked based on the position of LEDsmounted on the headstage

preamplifier. The head position movements were then computed with their average in chunks of every 15 s. The video-based mouse

behaviors were categorized as Sleep if the head speed was less than 0.2 cm/s lasting more than 40 s.73 Animal’s awake states were

further categorized as Active if the velocity is greater than 2.0 cm/s and as Quiet Awake (QAW) if the velocity is less than 2.0 cm/s in

every 15 s epoch.84 In fear conditioning experiments, animals’ freezing behavior was detected by AnyMaze software (Stoelting,

Wood Dale, IL, USA). The detection of freezing response during observational fear experiments was carried out using the Video

Freeze Fear Conditioning System software (Med Associates) as we previously reported.69

To detect REM sleep periods (see Figure 6), theta-to-delta ratio48,49 and EMG56–60 amplitude were used in addition to the video-

based criteria stated above. First, spectrogram of LFP at CA1 stratum lacunosum-moleculare layer was calculated by continuous

wavelet transform with Morse wavelet using cwt.m function of MATLAB 2022a. LFPs were separated into 10 s epochs to reduce

computational cost for the wavelet transform and subsequently concatenated to calculate theta (6–9 Hz)-to-delta (0.1–4 Hz) ratio.

Next, video-based classified Sleep state period were re-classified using IC-EMG/EMG amplitude. The 15 s chunks are further sepa-

rated into 5 s chunks, then the video-based Sleep was re-classified into QAW if the EMG amplitudes were above z = 1.5 for more than

20% of the chunk duration and otherwise remained into Sleep. Then, Sleep periods were classified into REM if theta-to-delta ratioR

460 which continues more than 5 s and otherwise into NREM. The short theta-to-delta <4 periods which are <5 s between REM states

are also categorized as REM state. Only the mice showing >20 min sleep durations and showing REM states (six mice) were used for

the further analysis. Cohen’s kappa values was calculated by k = ðpo � peÞ=ð1 � peÞ,64–66 where po is observed agreement rate

between video-based/IC-EMG-based REM periods vs. EMG-based REM periods, and pe is random agreement rate between them.

We used Student’s t test after testing normality. Tukey’s honest significance tests were employed for multiple comparisons.

p < 0.05 was assumed to be statistically significant. * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001. Detailed

statistical analysies are presented in themain text and the figure legends. All tests were two-sided. Bar plots and error bars represent

means and standard errors.
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