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Abstract: Influenza virus and severe acute respiratory syndrome coronavirus (SARS-CoV-2) have
caused respiratory diseases worldwide. Coronavirus disease 2019 (COVID-19) is now a global health
concern requiring emergent measures. These viruses enter the human body through the oral cavity
and infect respiratory cells. Since the oral cavity has a complex microbiota, influence of oral bacteria
on respiratory virus infection is considered. Saliva has immune molecules which work as the front
line in the biophylactic mechanism and has considerable influence on the incidence and progression
of respiratory viral infection. Salivary scavenger molecules, such as gp340 and sialic acid, have
been reported to exert anti-influenza virus activity. Salivary secretory immunoglobulin A (SIgA)
has potential to acquire immunity against these viruses. Biological features of the oral cavity are
thought to affect viral infection in respiratory organs in various ways. In this review, we reviewed
the literature addressing the impact of oral conditions on respiratory infectious diseases caused
by viruses.
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1. Introduction

Global pandemics of respiratory infectious diseases such as coronavirus disease-2019
(COVID-19) and bird flu have been enormous health crises to people over the worldwide.
Since the oral cavity is in the vicinity of the respiratory tract, where these viruses enter and
replicate, oral health status is thought to impact the initiation, progression, and pathology
of respiratory infectious diseases. The oral microbiota is thought to be one of the factors that
influence respiratory virus infection. Coinfection with influenza virus and bacteria has been
noted because it may cause severe morbidity and mortality [1]. Regarding severe acute
respiratory syndrome coronavirus 2 (SARS-CoV2), the impact of oral bacterial infection on
COVID-19 has been discussed [2,3].

On the other hand, immune function of the oral cavity has been known to affect oral
infection. Saliva is a key component of the host defense against infection in the mouth and
full of immune materials. Salivary scavenger and agglutinin are responsible for innate
immunity in the oral cavity [4]. Secretory immunoglobulin A (SIgA), which plays a critical
role in mucosal immunity, is secreted from the salivary gland [5].

Evidence addressing the associations between oral health and the prevention of
incidence and aggravation of respiratory infections has not been sufficiently reviewed.
The elucidation of the influence of oral health on respiratory viral infection diseases will
illustrate the way that dental health care can contribute to the prevention of incidence and
progression of these diseases.

The aim of the present study was to collect and review findings addressing the impact
of oral condition and oral care on SARS CoV-2 infection and influenza viral infection and
to obtain fundamental knowledge to provide effective oral health care and treatment to
patients with these respiratory diseases.
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2. Methods

Literature search was based on databases PubMed. Date of last search is 21st March
2021. Authors used following combinations of terms: [“influenza virus”, and “oral bac-
teria”], [“influenza virus”, “saliva”, and “SIgA”], [“influenza virus”, “saliva”, and “sialic
acid”], [“SARS-CoV2”, “saliva”, and “SIgA”]. Authors also hand-searched for relevant
papers and reviews to identify journal articles that might not have been captured through
our search strategy. Only articles in English were included. The authors selected eligi-
ble literature by consent. With regard to [“SARS-CoV2”, “saliva”, and “SIgA”], studies
concerning diagnosis using saliva sample were excluded.

3. The Influence of Oral Health on Influenza Virus Infection
3.1. Direct Influence of Oral Bacteria
3.1.1. Apoptosis Induced by Porphyromonas gingivalis

The apoptosis induced by viral infection is generally recognized to have a role as a
defense mechanism that prevents viral proliferation by programmed cell death. Infection
with influenza virus causes significant cell death within the upper and lower respiratory
tract and lung parenchyma. Most apoptotic induction depends on an intracellular cas-
cade consisting of catalytic activation of cysteine-dependent aspartate-directed proteases
(caspases). Chen et al. reported that the combination of P. gingivalis and H1N1 infection
in lung epithelial cells may promote the production of inflammatory cytokines and in-
crease NO production, leading to increased levels of apoptosis in lung epithelial cells via
the Bcl-2/Bax/caspase-3 signaling pathway [6]. It is considered that co-infection with P.
gingivalis and influenza virus highlighted the production of inflammatory cytokines and
NO through Bcl-2/Bax/caspase-3 signaling, consequently increasing apoptosis levels. On
the other hand, infection with both P. gingivalis and influenza A virus (IAV) temporarily
inhibited apoptosis in respiratory epithelial cells, which may be related to the initiation of
autophagy [7]. The regulation of the apoptosis by influenza virus and P. gingivalis may be
complex and depend on the stage of viral infection.

Enhancements of respiratory viruses by P. gingivalis are in vitro phenomena, and there
are some barriers to be observed in vivo. Oral bacteria, including periodontopathogens,
cannot move to respiratory organs easily in individuals with normal swallowing function.
Nishioka et al. reported that oral streptococci were isolated from the bronchoalveolar
lavage fluid (BALF) of acute respiratory distress syndrome (ARDS) patients, suggesting the
transfer of oral bacteria from the oral cavity to the lower respiratory tract [8]. Swallowing
function may have influenced the distribution of oral bacteria in those patients.

3.1.2. Increase of Influenza Virus Proliferation Induced by Oral Bacteria

Some studies have demonstrated that oral streptococcal species increase influenza
virus proliferation under in vitro conditions [8,9]. However, similar phenomena in the oral
cavity require a large amount of such bacterial species or long-term stay of virus in the
oral cavity.

3.2. Depression of Immunity Induced by Periodontal Disease

Given that periodontal pathogens influence influenza virus infection, the most plau-
sible explanation is that local inflammatory reactions in patients with severe periodontal
disease spread systemically and decrease immunity. Aggregatibacter actinomycetemcomitans
produces a factor that downregulates T-cell proliferation and cytokine production at local
defense sites [10,11]. Anaerobic gram negative bacteria including P. gingivalis greatly inhibit
T- and B-cell proliferation, inducing immunosuppression [12]. Oral mucosal epithelial
cells and oral fibroblasts that were impaired by periodontopathogens secrete butyric acid,
which induces inflammatory reactions and the apoptosis of immunocompetent cells in
local tissues. Lowering the immune response in the gingiva is assumed to induce active
inflammatory cytokine production and increases inflammatory mediators (CRP, IL-6, TNF-
α) in the blood, which consequently, results in a decrease in the immunological defense
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system. A decrease in immunity induced by periodontitis pathogens is thought to make
humans vulnerable to influenza virus infection.

3.3. Inhibition of Influenza Virus Proliferation by Salivary Immunity
3.3.1. Innate Immunity

Saliva plays a key role in protecting the host from a wide variety of pathogen in-
fections including viruses and bacteria in the oral cavity. Many biomolecules in saliva
have antiviral activities against specific viruses [13]. Saliva can control virus infection
through many different biomolecules, including mucins, antibodies, and antiviral proteins.
These biomolecules are supplied in a continuous flow of fluid. Whole saliva or parotid or
submandibular/sublingual secretions from healthy donors inhibited IAV based on haemag-
glutination inhibition and neutralization assays [14]. The extent of inhibition of influenza
virus infection by saliva depends on virus species [15]. Among purified salivary proteins,
MUC5B, scavenger receptor cysteine-rich glycoprotein 340 (salivary gp-340), histatins, and
human neutrophil defensins (HNPs) inhibited IAV at the concentrations present in whole
saliva [16]. The antiviral activity of GP340 is significant against IAV and human immunod-
eficiency virus (HIV1), by contrast, GP340 has little or no anti-viral activity against herpes
simplex virus (HSV), HIV-2, or simian immunodeficiency virus (SIV) [16].

Human saliva contains the sialic acid type corresponding to the binding preference
of seasonal influenza viruses [17]. Elderly individuals with T2DM and liver disease had
significantly lower levels of the expression of the terminal α2-3-linked sialic acids [18].
This finding may partly explain that having chronic disease are associated with serious
influenza-related complications, including elevated mortality. Gilbertson et al. showed that
anti-influenza activity of infant saliva is associated with sialic acid-containing molecules in
infants aged 1–12 month [19]. Salivary sialic acid is thought to work as an innate immu-
nization protein to protect infants from influenza virus infection, who are not immunized
against influenza virus.

3.3.2. Humoral Immunity

SIgA is a subclass of Immunoglobulin A (IgA), an antibody that plays a critical role in
mucosal immunity. SIgA is the main immunoglobulin found in mucous secretions from
salivary glands. SIgA in saliva works as an initial defense that prevents the invasion of
pathogens such as bacteria and viruses by which SIgA inhibits pathogen attachment and
settlement to the mucous membrane by binding and aggregating pathogens (Figure 1).
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SIgA antibodies have neutralization potential pathogens at the entrance site before
they can attach to epithelial cells and overcome the epithelial surface. Considerable levels
of Influenza virus specific SIgA was secreted in saliva, suggesting that saliva works as
humoral immunity against influenza virus [20,21]. The development of mucosal vaccines
that aim to induce influenza virus-specific IgA has been working on. Langley reported that
nasally administered inactivated trivalent influenza vaccine significantly increased salivary
secretory IgA in healthy adults aged 18–64 years [22]. Practical realization of mucosal
vaccine for influenza virus will enhance the importance of immunity in the oral cavity.

3.4. Epidemiological Study

No cross-sectional study investigating the association between a history of influenza
and periodontal disease among community dwelling people or case–control study com-
paring periodontal health between patients with influenza and people in good respiratory
health has been published. In a randomized controlled trial (RCT) study of day care service
users, the experimental group with an intervention of professional oral health care had
a significantly lower prevalence rate of influenza and lower levels of neuraminidase and
trypsin-like protease in saliva than the control group [23].

No other study has examined the association between influenza virus infection and
oral care. The impact of oral health on influenza virus infection reviewed here suggests
the necessity of investigating the association between the severity of periodontitis and
influenza virus infection and between saliva secretion and influenza virus infection.

4. COVID-19 and Oral Health
4.1. Saliva and SARS-CoV-2

SARS-CoV-2 binds the receptor, angiotensin-converting enzyme 2 (ACE2) on the
surface of multiple cell types [24–26]. Salivary gland cells are found to have ACE2 and be
infected by SARS-CoV-2 [27,28]. Other oral tissue cells such as osteoblast and osteoclast of
alveolar bone, fibroblast, gingiva, and the periodontal ligament [29,30]. ACE2 expression
in the nasal epithelium was lower in children than in adults and was considered to increase
with age [31]. This ageing alteration is presumed to apply to the salivary gland. The lower
expression of ACE2 may be responsible for the lower COVID19 incidence rate in children.

4.1.1. Anti-Viral Activity of Saliva

Saliva has liquidity and exerts a function of washing materials, including virus, away.
People with a small amount of saliva have a risk of insufficient ability to wash away virus.
Although saliva containing high virus load could be an infection source, increased secretion
of saliva is expected to dilute virus in saliva and decrease the risk of virus transmission.

As mentioned above in this review, salivary components include anti-viral molecules
such as cathelcidin, lactoferrin, lysozyme, mucin, peroxidase, salivary agglutinin (gp340,
DMBT1), SLPI, and α and β defensins have been reported as salivary antiviral compo-
nents [32]. Salivary anti-viral components inhibit the growth of various viruses in the oral
cavity, such as HSV, HIV, vesicular stomatitis virus (VSV), Epstein-Barr virus (EBV), human
papilloma virus (HPV), Ebola virus, human herpes virus (HHV), measles morbillivirus,
adenovirus, rabies virus, hepatitis A virus (HAV), hepatitis C virus (HCV), influenza virus,
and Hantavirus [16,32–35]. Furthermore, virus-specific SIgA is induced in saliva after virus
infection and produces anti-viral effects.

4.1.2. Possibility of the Inhibition of SARS-CoV2 by Saliva

Although the anti-SARS-CoV-2 effect of saliva has not yet been reported, it is quite
conceivable that salivary immunity works to inhibit infection of SARS-CoV-2. Since SARS-
CoV-2 infect salivary gland cells, virus-specific SIgA must be secreted in saliva. In COVID-
19 patients, a correlation (r = 0.4405) between salivary IgA levels and COVID-19 disease
severity was found [36]. Sterlin et al. reported that most of saliva samples from SARS-CoV2
infected patients neutralized SARS-CoV2 pseudotyped viral particles with a significant cor-
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relation between neutralization activity and anti-RBD IgA titers (r = −0.796, p < 0.008) [37].
SARS-CoV2 specific IgA monoclonal antibody exhibited strong neutralizing activity against
SARS-CoV2, suggesting the important role of IgA [38]. These evidence elicit the potential
of SIgA in saliva to prevent SARS-CoV2 infection. In a murine model, the production
of SARS-CoV-specific serum IgG and SIgA was detected in saliva following intranasal
immunization after SARS-CoV infection [39]. Recently available mRNA vaccines presented
that antibody to S protein, and the Receptor Binding Domain of SARS-CoV-2 were detected
in saliva [40]. It is expected that IgA antibody is produced in salivary glands, and have
an important role in suppression of SARS-CoV-2 proliferation in salivary glands and in
preventing the excretion of the virus into saliva.

SIgA secretion is known to decrease with age. Middle-aged and older adults had
lower saliva secretion than younger adults [41]. Lower salivary SIgA was significantly
related to increasing age [42,43]. A decrease in SIgA secretion with ageing is thought to
permit submucosal pathogen entry, consequently causing upper respiratory disease. The
difference in vulnerability to Sars-CoV-2 infection between younger people and elderly
people may depend on antiviral activity in the salivary gland and saliva of individuals.
A study reported a significant positive correlation between age and peak viral load [44],
which may result from decreased antiviral activity of saliva with age.

Since saliva is a source of SARS-CoV-2 infection, sufficient attention should be paid
to droplet infection through saliva. Nevertheless, an increase in saliva secretion and
SIgA concentration in saliva is thought to decrease SARS-CoV-2 infection. Chewing
has been reported to have a positive impact on saliva secretion [45–48]. The number
of chewing cycles is effective in increasing saliva flow. A few studies addressing the
association between exercise and salivary SIgA have been reported. Twelve months of
exercise training significantly increased the level of salivary SIgA among middle-aged
adults [49]. Elderly people who walked 7000 steps/day had higher SIgA levels than those
who walked 3000 steps/day [50]. Staying home for fear of infection may result in a decrease
in SIgA.

Few studies have investigated the association between saliva secretion and saliva
SIgA and SARS CoV-2 infection. Further evidence addressing the influence of saliva on
SARS CoV-2 infection is required.

Bioinfomatic studies suggested that the SARS-CoV-2 spike protein is likely to bind
sialic acid glycans [51,52]. A domain in the cap or knob of the SARS-CoV-2 spike is involved
in the non-covalent binding of host sialic acid glycans. SARS-CoV-2 is expected to use
sialic acid as a receptor in addition to ACE2. Salivary sialic acid may inhibit SARS-CoV-2
infection, like influenza virus.

4.1.3. The Use of Saliva as a Possible Way of COVID-19 Diagnosis

SARS-CoV-2 exhibits high infectivity from human to human. More correct and safe
diagnosis for SARS-CoV-2 infection is necessary to avoid virus transmission to healthy
individuals and health care providers. Sensitivity and specificity for SARS-CoV-2 detection
of saliva specimen was comparable to that of nasopharyngeal and throat swabs [53,54].
The use of saliva has some advantage of being rapid, less invasive, and decreasing the
possibility of healthcare personnel to SARS-CoV-2, it has a potential to become an important
tool for diagnosis of SARS-CoV-2 infection.

4.2. Association between COVID-19 and Periodontitis

A case–control study demonstrated an association between periodontitis and the
severity of COVID-19 infection [55]. It has been found that there is a clear correlation
between these two diseases and this correlation is dual-direction: The exacerbation of
COVID-19 occurred by an influence of periodontitis and the cytokine storm syndrome
caused by the virus could accentuate periodontitis. During SARS-CoV-2 infection, ACE-2 is
under expressed and cannot form the ACE2–angiotensin1–7–Mas receptor axis, resulting in
an increase in inflammatory cytokines such as interleukin-6, interleukin-7, tumor necrosis
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factor alpha, interleukin-2, interleukin-1 beta, monocyte chemoattractant protein-1, and
transforming growth factor-beta, associated with a periodontal disease [56]. The changes
in the expression of cytokines are thought to explain part of the association between
periodontitis and systemic chronic diseases [57–67], which suggests a wide and profound
impact of periodontal disease on systemic health.

5. Conclusions

In this review, we discuss the possible influence of oral health status on respiratory
viral infection from various points of view. Immunity in saliva is, in particular, thought to
have considerable impacts on the incidence and progression of respiratory viral infection.
Parts of antiviral mechanisms against influenza virus and SARS-CoV-2 by immunity in
saliva are similar. Little is known about the mechanisms by which various factors inhibit or
exacerbate viral infection in the oral cavity. It is important for prevention of viral infection
by oral care based on evidence to draw perspective of the role of the oral cavity in the virus
infection. This review shows a proper direction toward this goal.
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