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Accurate emotion recognition using 
Bayesian model based EEG sources 
as dynamic graph convolutional 
neural network nodes
Shiva Asadzadeh1, Tohid Yousefi Rezaii1*, Soosan Beheshti2 & Saeed Meshgini1

Due to the effect of emotions on interactions, interpretations, and decisions, automatic detection and 
analysis of human emotions based on EEG signals has an important role in the treatment of psychiatric 
diseases. However, the low spatial resolution of EEG recorders poses a challenge. In order to overcome 
this problem, in this paper we model each emotion by mapping from scalp sensors to brain sources 
using Bernoulli–Laplace-based Bayesian model. The standard low-resolution electromagnetic 
tomography (sLORETA) method is used to initialize the source signals in this algorithm. Finally, a 
dynamic graph convolutional neural network (DGCNN) is used to classify emotional EEG in which 
the sources of the proposed localization model are considered as the underlying graph nodes. In 
the proposed method, the relationships between the EEG source signals are encoded in the DGCNN 
adjacency matrix. Experiments on our EEG dataset recorded at the Brain-Computer Interface Research 
Laboratory, University of Tabriz as well as publicly available SEED and DEAP datasets show that 
brain source modeling by the proposed algorithm significantly improves the accuracy of emotion 
recognition, such that it achieve a classification accuracy of 99.25% during the classification of the two 
classes of positive and negative emotions. These results represent an absolute 1–2% improvement in 
terms of classification accuracy over subject-dependent and subject-independent scenarios over the 
existing approaches.

In human daily life, emotions affect interactions, interpretations, and decision-making1. In addition, information 
about emotional states is essential for a more natural human–computer interface. In order to reduce the gap 
between human–machine interactions, the design of emotion recognition systems has been considered as a major 
research field in recent decades2. This area is considered as the intersection of artificial intelligence and human 
communication analysis. Face expressions and speech are mostly used to convey people’s emotional states in daily 
life. However, these situations can be intentionally changed. Therefore, the use of this information will likely lead 
to the false classification of emotional states3,4. Electroencephalography (EEG) as a non-invasive physiological 
signal is suitable for direct measurement of the electrical activity of the brain in an emotional state. Hence, the 
study of these signals makes it possible to truly detect human emotions5. Despite the high temporal resolution 
of the EEG signal, the low spatial resolution of this signal poses a challenge when used in studies of functional 
brain activity. In order to increase the spatial resolution of EEG signal, this information is mapped from the 
sensor space to the space of brain sources. However, due to the limitations in the use of sensors, the number of 
brain sources is always more than the number of sensors6. This issue converts EEG signal mapping problem to an 
under-determined problem. EEG source imaging (ESI) becomes possible by solving an ill-posed inverse problem 
(Fig.‌‌ 1)7. ESI is a computational method for three-dimensional source localization of electrical activity in the 
cerebral cortex in the brain volume, also called EEG source localization. The estimation accuracy of this method 
depends on the choice of the head model and the inverse solution. The current due to postsynaptic potentials 
is propagated simultaneously by the pyramidal neurons according to Poisson equations, but this propagation is 
not homogeneous. High resistance of the skull weakens this current. This attenuation must be modeled in the 
calculations. MRI is used to determine the thickness of the skull and the resulting local conductivity properties. 
These properties are taken into account in the lead field to determine the relationship between electrical activity 
at a particular electrode and the activity of various sources in the brain. Accuracy in determining this lead field 
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leads to increased source localization accuracy. Among the various ways to induce emotions, such as watching 
movies, watching images, listening to music is a better approach to stimulate brain, because sensory content of 
music directly reaches the audience and does not require translation or another medium8,9.

In10, the spatial and temporal distribution of the emotional EEG signal is calculated using the Independent 
Component Analysis (ICA) algorithms on the results of the standard low-resolution electromagnetic tomography 
(sLORETA) algorithm. In this study, specific independent components (ICs) were identified for listening to a 
piece of music and scales. Significant differences were observed between these ICs and the ICs calculated for rest 
time EEGs10. Active brain regions were calculated using low-resolution electromagnetic tomography (LORETA) 
in11. Hjorth parameters, power spectrum density, and wavelet are used as properties extracted from this data 
to classify emotions using the support vector machine classification (SVM) method. 57.30% accuracy has been 
obtained for this method. The accuracy score for this method in another research12 was reported 85.92%. The 
study of the effect of age on neural activation and response to various emotional stimuli in13,14 showed that aging 
affects the limbic area and thus changes emotional processing and N170 amplitude. In this study, the database 
of facial emotion images (POFA)15, which includes 110 black and white images of facial expressions, was used 
as emotional stimuli. The brain areas involved during emotional interference conditions have been investigated 
in16. The brain source activities were computed using sLORETA. Considerable decreased activity [p < 0.05/66] 
with respect to baseline are observed in Eighteen gyri in face-word interference and fifty-four gyri in word-face 
interference, respectively16. To detect EEG emotions, a dynamic convolutional neural network (DGCNN) is 
presented in17. The DREAMER dataset (a database for detecting emotions through EEG and ECG signals)18 and 
Shanghai Jiao Tong University (SJTU) emotion EEG dataset (SEED)19 have been used to evaluate this method. 
The results show a mean accuracy of 86.23%, 84.54%, and 85.02% for capacity, arousal, and dominance classifi-
cation, respectively. The gender differences effect on EEG spectral power and source locations is evaluated in20.

Watching emotional music videos is applied as emotional stimuli in this research. In another study21, a com-
bined technique of electrode frequency distribution maps (EFDMs) with short Fourier transform (STFT) was 
proposed. In order to classify emotions, a deep convolutional neural network based on residual block (CNN) has 
been utilized in this approach. The average classification score of this technique has been obtained 90.59% and 
82.84% for SEED dataset and database of emotion analysis using physiological signals (DEAP)22, respectively. 
Researchers in23 used the Wigner-Will quasi-distribution (SPWVD) to convert filtered EEG signals into images. 
These images were intended as input to AlexNet, ResNet50 and VGG16, along with customizable CNN. The 
reported results show 90.98%, 91.91%, 92.71% and 93.01% accuracy for AlexNet, ResNet50, VGG16, and CNN, 
respectively. An instance-adaptive graph (IAG) approach has been suggested in24, in which sparse graphical 
representations of input EEG data have been constructed. According to the results, the accuracy of this method is 
86.30%. A regularized graph neural network (RGNN) has been offered in25 for the emotional EEG classification. 
Accuracy of 73.84% on the SEED-IV dataset is achieved and 85.30% on EEG SEED dataset for this procedure. 
In26, channel-wise features are applied as the input of two-layer stacked short-term memory (LSTM). Accura-
cies of 98.93% and 99.10% during the two-class classification of valence and arousal in the DEAP dataset and 
an accuracy of 99.63% during the three-class classification on the SEED dataset have been attained, respectively.

Examining existing methods for emotion recognition reveals that the high spatial resolution of the EEG 
signal is crucial for extracting sufficient information in the feature selection and extraction process for emotion 
recognition. As mentioned above, the mapping of the EEG signal from the scalp sensor space to the brain source 
space can accurately show the pattern of the brain areas involved during emotional stimuli. The relationship 
between different brain areas can be determined based on these source signals relation. The pattern of brain 
activity during emotional stimulation is determined by creating a graph based on the relationship of the brain 
source. These graphs are used to separate different emotions. In study17, raw EEG signal information is used as 
input to the DGCNN network, but in our proposed method, the raw EEG signal is first given to an EEG source 
localization algorithm—Bayesian model based on the Bernoulli-Laplace prior method—as input. The output 
of this algorithm contains spatio-temporal information of emotional EEG sources. Accordingly, in addition to 
temporal information, topographic and spatial information of electrical activity of the brain is entered in the 
recognition process. This information is encoded in a graph. Relationships between brain sources extracted from 

Figure 1.   Source localization procedure of emotional EEG signal (using drawing canvas of Microsoft office 
word 2016 https://​www.​micro​soft.​com/​en-​us/​downl​oad/​detai​ls.​aspx?​id=​51791 and Brainstorm version 3.211110 
https://​neuro​image.​usc.​edu/​bst/​downl​oad.​php).

https://www.microsoft.com/en-us/download/details.aspx?id=51791
https://neuroimage.usc.edu/bst/download.php
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the localization algorithm used to weight the adjacency matrix of this graph. The results are used in the DGCNN 
algorithm to classify emotions. The potentials recorded in the electrodes actually represent the superposition of 
these brain source activities. As a result, it is clear that the information obtained from the localization algorithms 
is more accurate and efficient than the raw EEG signal information.

In this study, features obtained from extracted Bernoulli-Laplace-based Bayesian model sources are con-
sidered as the signal of dynamical graph convolutional neural networks (DGCNN) nodes. By encoding the 
inter-source relations of EEG source signals in the adjacency matrix, the pattern of activity in different brain 
areas is used to increase the accuracy of emotion classification. This algorithm allows the classification of unseen 
emotional EEG signals into negative and positive emotional classes.

The main sections of this study are summarized as follows: In Section “Mathematical background”, Math-
ematical background of EEG Source localization and dynamical graph convolutional neural networks (DGCNN) 
have been introduced. Then, the proposed approach for emotional states classification has been provided in 
Section “Emotional EEG source recognition based on DGCNN”. In the “Simulation results” section, the results 
of the proposed method are explained. Finally, the results will be discussed.

Mathematical background
In this section, the basic theory of EEG source localization and dynamical graph convolutional neural networks 
will be presented.

EEG source localization.  EEG source localization method provides spatio-temporal information about 
the activity of different areas of the brain. Brain source localization improves the non-invasive detection of func-
tional, mental, and even physiological abnormalities related to the brain in clinical applications27. In these meth-
ods, the sources are considered as several discrete magnetic dipoles in the three-dimensional space of the brain. 
One of the most common methods in this field is the LORETA method. The basic hypothesis in this method 
is that the current density of brain source at any point in the cortex is close to the average current density of its 
neighbors. A major problem in this method is the low spatial resolution and the blurring and scattering noise 
of the point sources of the images28. In order to solve this problem, using the current density standardization 
hypothesis, the sLORETA method has been proposed as a generalization of the LORETA method29. Since the 
electric potential at any point on the scalp is a linear combination of the dipole amplitudes of the brain sources, 
therefore, the relationship between the potential in the scalp and the dipole amplitudes of the sources is defined 
as follows30,31:

where, y ∈ R
N is the EEG data of N electrodes and the amplitudes of M dipoles in the 3D spatial space is shown 

by x ∈ R
M . The N × M lead field matrix H models the propagation of the electromagnetic field from the sources 

to the sensors and the noise of recorded EEG data is considered as an additive white Gaussian noise e32,33.
As mentioned above, the inverse problem is an under-determined problem due to the limited placement of 

electroencephalogram sensors and a large number of brain sources. This imposes more constraints on achieving 
a unique solution. Proper regulation is usually required to solve an ill-posed inverse problem. Solutions that are 
considered the usual l2 norm have low computational complexity. However, in several cases, it is believed that 
the actual activity of the brain is concentrated in several focal areas. In such situations, the l2 norm creates over-
estimating problem of active space areas. To solve this problem, the promotion of sparse solutions is proposed, 
for example, based on l1 norm that can be easily controlled by optimization techniques. In34, it is considered to 
use a l0 + l1 norm to apply sparse source activity (ensuring that a small number of non-zero elements are present 
in the solution) while regulating the non-zero amplitudes of the solution. More precisely, the norm limits the 
amplitude values of non-zero elements while the pseudonorm controls their position. Using Bernoulli–Laplace 
prior, the hybrid l0 + l1 norm is introduced in the Bayesian framework. The proposed Bayesian model uses the 
Markov chain Monte Carlo sampling technique to estimate the model hyperparameters. It has been proven that 
this model is in favor of sparsity. It is very common to consider an additive white Gaussian noise with variance 
σ 2
n in EEG analysis30.
θ =

{

x, σ 2
n

}

 is unknown parameter vectors related to the proposed model (1). Priors of these parameters 
for Bayesian inference are given as follow:

(1)	 Dipole Amplitudes Prior: A l0 + l1 regularization using Bernoulli-Laplace prior distribution for each x 
vector element is introduced similar to Bayesian to encourage sparse solutions whose non-zero elements 
have small amplitudes. The corresponding pdf for the ith element of x is

where the parameter of the Laplace distribution is � , the Dirac delta function is δ(.) . ω as a weight balances 
the effects of the Laplace distribution and the Dirac delta function.

(2)	 The Noise Variance Prior: A noninformative Jeffrey’s prior is considered for the noise variance:

(1)y = Hx + e

(2)f (xi|ω, �) = (1− ω)δ(xi) + ω
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−|xi|
�
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(3)f (σ 2
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where 1R+(ξ) = 1 if ξ ∈ R
+ and 0 otherwise. This is a very common choice for a noninformative prior35. 

Attend that a more informative prior distribution of signal-to-noise ratio can also be considered.

The hyperparameter vector of the previous priors is � = {ω, �}.
The joint posterior distribution of the model can be represented by considering the previously introduced 

likelihood and priors using the following hierarchical construction:

where the model parameters and hyperparameters vector is {θ,�} . The Bayesian estimators of {θ,�} cannot be 
calculated with simple closed-form declarations, because this posterior distribution has complexities. In order 
to sample the joint posterior distribution, a Markov chain monte carlo (MCMC) method can be used (4). This 
method uses the generated samples to build Bayesian estimators of the unknown model parameters. For this 
purpose, a Gibbs sampler35 is considered, which generates samples repeatedly from conditional distributions 
(4), i.e., from f

(

σ 2
n |y, x

)

, f (�|x), f (ω|x) and f
(

xi|y, x−i ,ω, �, σ
2
n

)

.
The likelihood and the prior distribution of x are used to calculate the conditional distribution of each signal 

element xi. This distribution can be defined as follows:

where the truncated Gaussian distributions on R+ and R− are shown using N+ and N− , respectively. The vector 
x can be decomposed on the orthonormal basis B = {n1, … ,nM} such that x = x̃−i + xini where x̃−i is obtained 
by setting the ith element of x to 0. Defining νi = y − Hx̃−i and hi = Hni , the weights are defined as

where

and

Dynamical graph convolutional neural network.  Network data can be easily modeled as a graph 
signal. In this situation, the fundamental network topology is demonstrated using a graph. Data values are 
consecrated to the graph nodes. An undirected graph G = (V ,D,W) with node set V = {1, ...,M} , edge set 
D ⊆ V × V and W ∈ R

M×M define an weighted adjacency matrix that explains the connections between any 
two nodes in V . wij is the entry of W in the i-th row and j-th column. The set of nodes that share an edge with 
node i is called the neighborhood of node i ∈ V , which are defined as Ci =

{

j ∈ V : (j, i) ∈ D
}

.
A common signal processing method for graph data operation is graph convolution or spectral graph filter-

ing, in which graph Fourier transform (GFT)36 is typically used. The Laplacian matrix of the graph G is defined 
using L. L can be represented as follow:

where ith diagonal element of S ∈ R
M×M diagonal matrix can be computed by Sii =

∑

j wij . The GFT of a given 
signal x ∈ R

M is represented as:

where the transformed signal in the frequency domain is defined by x̂ . The singular value decomposition (SVD) 
of the graph Laplacian matrix L is an orthonormal matrix U as follow37:

By considering (10), the inverse GFT can be declared as follows:

For the two signals x and z , the convolution on the graph ∗G can be defined as follows38:

where ⊙ shows Hadamard’s product in terms of element.
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(9)L = S−W ∈ R
M×M ,

(10)x̂ = UTx,

(11)L = U�UT ,

(12)x = UU
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The optimal adjacency matrix W∗ can be learned. The spatial filtering g(L∗) defines the graph convolution of 
x signal with the vector U∗g(�∗) , which can be demonstrated as follows:

where g(�) is demonstrated as

where the L∗ can be computed based on (9) using W∗ , and �∗ = diag([�∗0, · · · , �∗N−1]) is a diagonal matrix, 
whereas direct calculation of g(�∗) expression is difficult, we use, e.g. the Kψ order Chebyshev polynomials to 
fastly calculate the polynomial expansion of g(�∗) as follow38:

where the following recursive expressions can be used to Tk (x) recursively calculation. θk is the coefficient of 
Chebyshev polynomials.

Therefore, (16) is used to rewrite the convolution graph operation of (14) as follow:

where L̃∗ = 2L∗
/

�
∗
max − IM .

The backpropagation (BP) method is used to iteratively optimize the optimal network parameters, in which 
the network parameters update until the optimal or suboptimal solutions are attained. Thus, a loss function is 
expressed based on cross-entropy cost. In order to dynamically learn the optimal adjacency matrix W∗ of the 
DGCNN model in the BP method, we must calculate the partial derivative of the loss function relative to W∗ . 
After that, the updating formula of the optimal adjacency matrix W∗ can be expressed as:

where the learning rate of the network is shown by ψψ.

Emotional EEG source recognition based on DGCNN
In this section, how to extract signals from the brain sources of emotions, the use of the DGCNN algorithm to 
classify the types of emotional states, and detailed information about the data used in this study are described 
in detail.

Proposed classification algorithm using DGCNN and Bayesian model based emotional EEG 
source.  Considering the challenges of feature selection and extraction in previous methods and the need to 
increase the accuracy of classifying both positive and negative emotions, this section presents a method based 
on EEG source localization and graph theory. To this end, Fig. 2 shows a block-diagram of the proposed method 
for classifying two emotional classes:

•	 Emotional EEG source localization using Bernoulli-Laplace-based Bayesian model: The brain sources that gen-
erate the EEG signal are calculated using Bernoulli-Laplace-based Bayesian model algorithm. This algorithm 
is initialized using the sLORETA method.

•	 Graph generation: In the proposed method, a graph signal on the top of each graph node is obtained based 
on each extracted source signal. The graph adjacency matrix is  also weighted based on the calculated cor-
relation between the extracted source signals.

•	 Graph pattern classification using the DGCNN algorithm: The weighted graph adjacency matrix, the graph 
corresponding to the extracted source signals, is given as input to the DGCNN algorithm for recognizing 
and classifying emotions.

In this study, active areas of the brain during two kinds of emotional stimuli are identified using the proposed 
Bayesian model based on Bernoulli-Laplace prior. The sLORETA method is applied to initialize the source signals 
in this algorithm. To calculate the results of the sLORETA algorithm, we use the Colin27 brain atlas model from 
the Montreal Neurological Institute (MNI) and the OpenMEEG BEM head model39,40. The localization solu-
tion space is surrounded by the gray matter of the cortex. A resolution of 5 mm (mm/voxel) with 5614 voxels at 
MNI coordinates is used for this space in localization. If the number of vertices in the space of the localization 

(14)z = g(L∗)x = U∗g(�∗)U∗Tx,
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solution increases, the recognition accuracy of the active areas during emotion induction increases. The dif-
ferences between the active brain sources for recorded dataset in the Bradmann (BA) of cerebral cortex41 for 
sLORETA and Bayesian model based on Bernoulli-Laplace prior methods are shown in Fig. 3. The lateral view 
of the active brain areas for subject 1 during positive and negative emotional stimulation using the sLORETA 
method is shown in Fig. 3a and c, respectively. In addition, the lateral view of the active brain areas for subject 1 
during positive and negative emotional stimulation using the Bayesian model based on Bernoulli–Laplace prior 
is presented in Fig. 3b and d, respectively.

In the results of sLORETA topographic images, the areas including the auditory cortex, lingual gyrus, and 
amygdala located in the lower and middle temporal cortex and the middle occipital cortex show the most activ-
ity during emotional stimulation of the brain. Considering the results of the sLORETA method, 26 Broadman 
regions are considered as the region of interest (ROI) for feature extraction. BA5, 6, 7, 9, 10, 11, 18, 19, 21, 22, 
29, 37, 38, 39, and 40 with bilateral hemispheres are selected as ROI areas (Fig. 4).

However, the Bayesian model based on Bernoulli–Laplace prior method concentrates the active areas and thus 
reduces the number of these areas. Unlike previous methods, this method simplifies the complex pattern of most 
active brain areas. Differences in the brain areas that are activated during positive and negative stimuli indicate 
that a spatial-information-aware classifier can be used to accurately classify emotions. In the proposed method, 
most activities are seen in BA 19, 37, 18 areas due to the induction of negative emotions and BA 20, 21, 22 due 
to the induction of positive emotions. Bayesian model based on Bernoulli–Laplace prior method calculates the 
current source density (CSD) for each voxel (in amperes in each region). In order to reduce the computational 

Emotional EEG recording

Emotional EEG source localizing using sLORETA

Calculating source signals correlation

Creating the adjacency matrix of brain sources based on sources 

correlation DGCNN classifier Train data

Positive emotionNegative emotion

Classification

Graph signal

Weighted adjacency matrix

Calculation of sources using Bayesian model-based localization

Figure 2.   Flowchart of the proposed method (using drawing canvas of Microsoft office word 2016 https://​www.​
micro​soft.​com/​en-​us/​downl​oad/​detai​ls.​aspx?​id=​51791).

Figure 3.   The differences of active brain sources for subject 1 during positive and negative emotional 
stimulation in cortical level and BA. lateral view of active brain areas for subject 1 during positive emotional 
stimulation (a) using the sLORETA (b) using the Bayesian model based on Bernoulli-Laplace prior. lateral view 
of brain active areas for subject 1 during negative emotional stimulation (c) using the sLORETA (d) using the 
Bayesian model based on Bernoulli–Laplace prior (Brainstorm version 3.211110 https://​neuro​image.​usc.​edu/​
bst/​downl​oad.​php).

https://www.microsoft.com/en-us/download/details.aspx?id=51791
https://www.microsoft.com/en-us/download/details.aspx?id=51791
https://neuroimage.usc.edu/bst/download.php
https://neuroimage.usc.edu/bst/download.php
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volume of the proposed method and identify a set of the powerful dipoles and their corresponding neighbors, 
we calculate the energy of all source signals and then choose all signal sources whose power is greater than 50% 
of the maximum power of the activity amplitude. The signals from each source are used as input to the clas-
sification algorithm. Sources with less than 50% of the maximum power are discarded to reduce computational 
complexity. From what has been said, it is clear that the formation of source signals graph can provide a pattern 
of different areas activity during an emotional stimulus to classify emotions. In this case, there will be a graph of 
brain sources for each emotional stimulus. For this purpose, an adjacency matrix that describes the relationships 
between nodes will be needed. In this matrix, if there is an edge from node i to node j, Aij ,Aji = 1 , otherwise 
Aij ,Aji = 0 (Fig. 5).

The location of the vertices in the MNI coordinates is considered as graph nodes and the corresponding source 
signal is considered as the graph signal at the top of that node. In the proposed approach, the correlation between 
the two corresponding nodes signals of one edge is considered as the initial value of the graph edge weight. More 
precisely, the correlation between the i-th source xi and the j-th source xj can be computed as follows:

where i, j ∈ {1, ...,M},t ∈ {1, ...,T}.
Here, we define a threshold β , such that when wij > β , the i-th source is linked with the j-th source in the 

constructed graph G . In this paper, a model based on graph-structured data is proposed to learn and classify 
the patterns of EEG source. In DGCNN, the adjacency matrix is updated with graph model parameters changes 
during model training to learn the relationships between EEG source signals according to (19), unlike the tra-
ditional graph convolutional neural network (GCNN) method, in which the adjacency matrix was determined 
before model training. This approach improves the classification results. In the proposed algorithm, the network 
parameters are frequently updated to achieve optimal or semi-optimal solutions according to (16). The structure 
of the proposed algorithm is indicated in Fig. 6, which includes the graph filtering layer, convolutional layers, and 
one fully connected layer. The detailed procedures of the proposed algorithm are summarized in Algorithm 1.

(20)wij =

T
∑

t=1
(xit − xi)

(

xjt − xj
)

√

T
∑

t=1
(xit − xi)

2

√

T
∑

t=1

(

xjt − xj
)2

,

Figure 4.   The labels of Brodmann areas (using Paint 3D version 6.1907.29027.0 https://​apps.​micro​soft.​com/​
store/​detail/​paint-​3d/​9NBLG​GH5FV​99?​hl=​en-​us&​gl=​US).

Figure 5.   Example of a graph and its adjacency matrix17.

https://apps.microsoft.com/store/detail/paint-3d/9NBLGGH5FV99?hl=en-us&gl=US
https://apps.microsoft.com/store/detail/paint-3d/9NBLGGH5FV99?hl=en-us&gl=US
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Emotional EEG datasets.  SEED dataset.  In this data set, the EEG signal of 15 Chinese people (8 females 
and 7 males, age range: 23.27 ± 2.37) was recorded while watching 15 video clips. Chinese film clips with three 
types of emotions, i.e., negative, positive and neutralis shown for subjects.The sampling rate is 200 Hz. After 
watching each clip, participants immediately chose emotional labels that included positive, neutral, and negative 
attributes. A bandpass frequency filter from 0 to 75 Hz was applied. A hamming window with a specific duration 
with non-overlap was used to divide each signal into 8 data segments.

DEAP dataset.  DEAP is a database containing physiological signals for analyzing emotions. EEG and envi-
ronmental physiological signals were recorded by 32 healthy participants (16 males and 16 females, aged 19 to 
37 years) while each watching 40 one-minute pieces of music videos. 32 active AgCl electrodes (placed accord-
ing to International System 10–20) with a sampling rate of 512 Hz were used for EEG recording. This database 
includes peripheral nervous system signals: GSR, respiratory rate, skin temperature, electrocardiogram, blood 
volume by plethysmography, zygomatic and trapezoidal muscle electromyogram, and electrooculogram (EOG). 

Figure 6.   The framework of the DGCNN model for EEG emotion recognition, which consists of the graph 
convolutional operation, activation function and a fully connected layer. The inputs of the model are the 
EEG source signals, where each EEG source signal is represented as a node of the graph. The outputs are the 
predicted labels through softmax function.
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The 32-channel EEG data sampling were reduced to 128 Hz and the EOG was removed by filtering 4.0–45.0 Hz 
from the data. And then, a 5 s hamming window with non-overlap was used to divide each signal into 12 data 
segments.

Recorded EEG.  In the database of the Brain-Computer Interface Research Laboratory, University of Tabriz, 
Iran, the EEG signals of 16 people without a history of mental illness (6 women and 10 men between 28 and 
21 years old) were recorded while listening to emotional music42,43. The 21-channel Encephalan Medicom device 
was used to record the EEG signal. The sampling rate in this experiment is about 250 Hz. The international 
standard system 10–20 is utilized to arrange the electrodes on the head (Fig. 7). In the questionnaire version, the 
Self-Assessment Manikin (SAM)44 and in the test process, a 9-point test was used to assess positive and negative 
emotions. In addition, the participants45 completed the Beck Depression Inventory (BDI) questionnaire. The 
SAM results and description of the BDI test are presented in Table 1. Details of the selected music for each theme 
are demonstrated in Table 2. The sequence of how to play musical stimuli for participants is shown in Fig. 8. A 
fifteen-second silence is applied between the two pieces of music. An intermediate filter with cut-off frequen-
cies of 0.5 and 70 Hz is used to extract useful EEG signal information. According to Fig. 8, the number of data 
related to the neutral class is less than the data of the positive and negative classes, which causes an imbalance 
between the data and may cause the problem of over-fitting. In addition, an imbalance between the data of each 
class leads to bias in the classification results and a decrease in accuracy. To solve this problem, using overlap-
ping methods, all the corresponding epochs of each emotion are connected to form a long signal. Rectangular 
windows are then executed with a specific duration and overlap so that the number of epochs collected is equal 
to each of the emotion classes. In the proposed method for each channel, 5 min of recorded signal (as shown 
in Fig. 3) is selected for each emotion. In this case we have 2 data classes (negative and positive) with 75,000 
sample points for each channel. The data is then split into 8-s intervals per channel, using the overlap technique 
to prevent over-fitting.

Simulation results
The Brainstorm toolbox in MATLAB R2019a was used to calculate the active brain regions by sLORETA method. 
The results of this method are used as the initial value for the Bayesian model based on Bernoulli-Laplace prior. A 
server with an NVIDIA 1080TI GPU and an Intel Core i7 CPU is intended to implement the proposed algorithm 
in Tensorflow 2.0.0 in Python programming language. The results of the proposed algorithm for automatic detec-
tion of emotions are presented in the continuation of this section. In this study, unlike many studies, the evalua-
tion results of the proposed method for inducing emotion with both music and image are presented, so to fairly 
compare the proposed and the existing state-of-the-art methods; we implement both categories of approaches 
on our recorded data, SEED and DEAP datasets. The sources with less than 50% of a subject’s maximum power 
are eliminated to reduce the computational cost of algorithm.

The proposed method is evaluated in two subject-dependent and subject-independent scenarios. In the 
subject-dependent scenario, 4 out of 10 trails are randomly considered as a training set and the remaining 6 
experiments are considered as a testing set. In addition, in a subject-independent scenario, the data of 40% 
subjects are used for training and 40% subjects for testing and 20% subjects for validation of proposed method. 
Finally, the average accuracy performance of the proposed method is reported to all subjects.

The accuracy of the subject-dependent scenario of the proposed method and the existing methods11,12,17,21,23,25,26 
are compared in Fig. 9. The lowest accuracy in this comparison is related to the method in11 with 67.7%. However, 

Figure 7.   The schematic image of 21 electrodes on the head (using Paint 3D version 6.1907.29027.0 https://​
apps.​micro​soft.​com/​store/​detail/​paint-​3d/​9NBLG​GH5FV​99?​hl=​en-​us&​gl=​US).

https://apps.microsoft.com/store/detail/paint-3d/9NBLGGH5FV99?hl=en-us&gl=US
https://apps.microsoft.com/store/detail/paint-3d/9NBLGGH5FV99?hl=en-us&gl=US
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for the method26, the average accuracy is 96.87%. It can be seen that in all subjects, the highest accuracy is 
related to the proposed method with 98.95%. The proposed method and the methods11,12,17,21,23,25,26 in Fig. 10 
were compared in the form of subject-independent scenario. As can be seen, the best accuracy of the subject-
independent scenario is related to the method in26 with 95.83%. However, our proposed algorithm in this scenario 
gives 97.91% accuracy.

These results indicate the robustness of the proposed algorithm against cross-subject variations. According to 
the results, the accuracy of subject-independent scenario is less than the accuracy of subject-dependent scenario, 
the reason for this issue is the use of unseen data to test the algorithm in a subject-independent scenario. It is clear 
from the results that the accuracy of the proposed algorithm in both subject-dependent and subject-independent 

Table 1.   Validation of individuals participating in the EEG signal recording process in order to identify 
positive and negative emotions43.

Subject number Sex Age BDI
Mean valence for 
positive emotion

Mean arousal for 
positive emotion

Mean valence for 
negative emotion

Mean arousal for 
negative emotion Validation result

Reason for subject 
removal

1 Male 25 16 9 9 1.8 1 Valid –

2 Male 24 22 6.8 6.2 3.6 2 Invalid Beck depression 
(22 > 21)

3 Female 27 19 6.2 7.4 4.2 4.6 Invalid
Mismatch of the 
control question in 
the SAM test

4 Male 24 4 7.4 7.6 2.4 2.6 Valid –

5 Male 24 0 5.8 5 4.4 5.6 Invalid
Mismatch of the 
control question in 
the SAM test

6 Male 28 10 5.6 5.4 2 1.6 Invalid
Lack of desired 
induction in positive 
emotional class

7 Male 28 13 7.2 7.4 3.8 3.8 Invalid
Lack of desired 
induction in nega-
tive emotional class

8 Male 20 19 7.8 7.4 2.8 3 Valid –

9 Male 26 9 7.4 7 3.4 5.4 Invalid
Lack of desired 
induction in nega-
tive emotional class

10 Female 23 9 6.8 6.6 3.8 3.2 Invalid
Lack of desired 
induction in nega-
tive emotional class

11 Female 25 22 7.8 8 4.5 3 Invalid Beck depression 
(22 > 21)

12 Female 27 1 8.6 8.6 2 1.2 Valid –

13 Female 29 9 6 6 2 1.2 Valid –

14 Male 26 8 8 8 1.8 1.6 Valid –

15 Female 25 12 – – – – Invalid Motion noise

16 Male 27 0 7.4 8 1.8 2 Valid –

Table 2.   Sequence and type of music used for positive (P), and negative (N) emotional stimulation43.

Used song Type of induced emotion Symbol

Prelude to Isfahan
By Mohammad Reza Lotfi Negative N1

Six and eight Azeri Positive P1

Homayoun Preface
By Faramarz Payvar Negative N2

Six and eight Azeri Positive P2

Six and eight ports Positive P3

Afshari piece
By Sohrab Pournazeri Negative N3

Prelude to Isfahan
By Mohammad Reza Lotfi Negative N4

Six and eight Persian Positive P4

Precursor Dashti
By Hossein Alizadeh And
Kayhan Kalhor

Negative N5

Six and eight ports Positive P5
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scenarios is better than the methods available in11,12,17,21,23,25,26. The evaluation results of the proposed method and 
the existing methods are presented for the SEED and DEAP dataset in Tables 3 and 4, respectively. The accuracy 
of the subject-independent scenario is 98.51% and 98.32% and the subject-dependent scenario is 99.25% and 
98.96% for our proposed method on the SEED and DEAP dataset, respectively. The highest accuracy for subject-
dependent scenario and the subject-independent scenario for the proposed method26 among the available meth-
ods have been calculated as 98.51% and 97.77%, respectively. The accuracy obtained for our proposed method 

Figure 8.   The procedure of musical stimulation to recognize emotions43, (Paper43 was published in IEEE Access 
under a Creative Commons 4.0 license).
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Figure 9.   Subject-dependent scenario accuracy of the proposed method as well as the methods presented in 
methods11,12,17,21,23,25,26 for recorderd EEG.
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Figure 10.   Subject-independent scenario accuracy of the proposed method as well as the methods presented 
in11,12,17,21,23,25,26 for recorderd EEG.
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Table 3.   Classification accuracy and details of the proposed method and deep neural network approaches 
which used raw EEG signals11,12,17,21,23,25,26 for the SEED dataset. Significant values are in bold.

Subject-dependent/independent Methods Used signals Accuracy (%)

Subject-dependent

Jin et al.26 (2020) Raw EEG 98.51

Zhong et al.25 (2020) Raw EEG 92.58

Khare et al.23 (2020) Raw EEG 91.10

Wang et al.21 (2020) Raw EEG 89.62

Song et al.17 (2018) Raw EEG 84.43

Chen et al.12 (2020) Raw EEG 81.47

Padilla et al.11 (2016) Raw EEG 62.95

Proposed method EEG source signal 99.25

Subject-independent

Jin et al.26 (2020) Raw EEG 97.77

Zhong et al.25 (2020) Raw EEG 88.88

Khare et al.23 (2020) Raw EEG 81.48

Wang et al.21 (2020) Raw EEG 74.07

Song et al.17 (2018) Raw EEG 72.59

Chen et al.12 (2020) 70.37

Padilla et al.11 (2016) 59.25

Proposed method EEG source signal 98.51

Table 4.   Classification accuracy and details of the proposed method and deep neural network approaches 
which used raw EEG signals11,12,17,21,23,25,26 for the DEAP dataset. Significant values are in bold.

Subject-dependent/independent Methods Used signals Accuracy (%)

Subject-dependent

Jin et al.26 (2020) Raw EEG 97.91

Zhong et al.25 (2020) Raw EEG 92.05

Khare et al.23 (2020) Raw EEG 90.88

Wang et al.21 (2020) Raw EEG 89.19

Song et al.17 (2018) Raw EEG 83.20

Chen et al.12 (2020) Raw EEG 79.81

Padilla et al.11 (2016) Raw EEG 58.36

Proposed method EEG source signal 98.96

Subject-independent

Jin et al.26 (2020) Raw EEG 97.52

Zhong et al.25 (2020) Raw EEG 87.24

Khare et al.23 (2020) Raw EEG 80.72

Wang et al.21 (2020) Raw EEG 72.39

Song et al.17 (2018) Raw EEG 71.48

Chen et al.12 (2020) 69.66

Padilla et al.11 (2016) 57.94

Proposed method EEG source signal 98.31

Table 5.   Subject-independent classification accuracy and details of the proposed method and hybrid method 
and CNN classifier.

EEG source localization method The type of classifier SEED dataset (%) Recorded dataset (%) DEAP dataset (%)

sLORETA CNN 95.56 93.75 95.18

sLORETA DGCNN 97.78 97.50 97.65

Bernoulli–Laplace-based Bayesian model CNN 96.67 95.31 96.48

Bernoulli–Laplace-based Bayesian model DGCNN 98.51 97.91 98.31



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10282  | https://doi.org/10.1038/s41598-022-14217-7

www.nature.com/scientificreports/

is greater than other methods. As shown in Table 5, when Bernoulli-Laplace-based Bayesian model is used for 
source localization, the accuracy of the proposed algorithm is higher than when sLORETA is used. According 
to Table 5, if CNN classifier is used instead of DGCNN, the accuracy of the proposed algorithm be lower.

Discussion and conclusion
In this study, we propose an algorithm based on DGCNN and EEG sources to recognize emotions. A mapping 
of scalp sensors to brain sources is performed to extract the pattern of each emotion using Bayesian model 
based on Bernoulli-Laplace prior. The results of sLORETA method is used for initialization of this model. In the 
proposed method, a DGCNN is used to classify emotion-based EEG in which the sources of the Bayesian model 
based on Bayesian model based on Bernoulli–Laplace prior method are considered as underlined graph signals. 
Finally, emotional EEG signals are divided into negative and positive emotional classes using this approach. The 
proposed method is compared with existing standard methods in subject-independent and subject-dependent 
experiments on our emotional EEG dataset, DEAP and the SEED dataset.

Feature extraction from EEG data in all previous methods is a major challenge. In this study, to solve this 
problem, the spatio-temporal information of emotional EEG sources is encoded in a graph. The DGCNN algo-
rithm is then used to classify these graphs. Using purposed approach, acceptable accuracy for the data is obtained 
without the need to design the feature extraction process. According to the results, the proposed technique has 
made the brain areas involved in emotions processing more focused. Significant differences can be seen in the 
areas involved during the induction of positive and negative emotions. This issue significantly increases the 
accuracy of the emotion classification. Another point in the proposed method is the updating of the adjacency 
matrix in DGCNN algorithm, which in itself improves the emotion classification accuracy.

Increasing the number of electrodes used to record the signal based on the results of previous studies in the 
field of EEG signal processing46, improves classification accuracy. However, the problem is that it is costly and 
time-consuming to use high-density EEG sensor arrays in a clinical or field environment. In this study, we use 
the source localization technique to increase spatial information in EEG recordings. The spatial resolution of EEG 
recordings can be expanded by increasing the number of sources. These sources contain good spatio-temporal 
information. According to the concepts mentioned in the results section, the accuracy of the subject-dependent 
scenario and the subject-independent scenario for our proposed method are 99.25% and 98.51%, respectively. 
These accuracies are greater than the values obtained in existing state-of-the-art methods.

The use of video or music video to induce emotions, in addition to the areas related to emotion processing, 
also involves the visual and memory areas11,12,17,21,23,25,26. Considering the results of emotion induction using 
music in this study and this issue, it is clear that auditory induction can be an easier and more appropriate way 
to induce emotions. In this study, the weight of each graph edge is determined by calculating the correlation 
between the graph signal sources. In future studies, another feature of graph signals can be used as a criterion 
to calculate the weight of edges.
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