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ABSTRACT: We perform simulations to compute the effective potential
between the centers-of-mass of two polymers with reversible bonds. We
investigate the influence of the topology on the potential by employing
linear and ring backbones for the precursor (unbonded) polymer, finding
that it leads to qualitatively different effective potentials. In the linear and
ring cases the potentials can be described by Gaussians and generalized
exponentials, respectively. The interactions are more repulsive for the ring
topology, in analogy with known results in the absence of bonding. We also
investigate the effect of the specific sequence of the reactive groups along the
backbone (periodic or with different degrees of randomness), establishing
that it has a significant impact on the effective potentials. When the reactive sites of both polymers are chemically orthogonal so that
only intramolecular bonds are possible, the interactions become more repulsive the closer to periodic the sequence is. The opposite
effect is found if both polymers have the same types of reactive sites and intermolecular bonds can be formed. We test the validity of
the effective potentials in solution, in a broad range of concentrations from high dilution to far above the overlap concentration. For
this purpose, we compare simulations of the effective fluid and test particle route calculations with simulations of the real all-
monomer system. Very good agreement is found for the reversible linear polymers, indicating that unlike in their nonbonding
counterparts many-body effects are minor even far above the overlap concentration. The agreement for the reversible rings is less
satisfactory, and at high concentration the real system does not show the clustering behavior predicted by the effective potential.
Results similar to the former ones are found for the partial self-correlations in ring/linear mixtures. Finally, we investigate the
possibility of creating, at high concentrations, a gel of two interpenetrated reversible networks. For this purpose we simulate a 50/50
two-component mixture of reversible polymers with orthogonal chemistry for the reactive sites, so that intermolecular bonds are only
formed between polymers of the same component. As predicted by both the theoretical phase diagram and the simulations of the
effective fluid, the two networks in the all-monomer mixture do not interpenetrate, and phase separation (demixing) is observed
instead.

1. INTRODUCTION
Single-chain nanoparticles (SCNPs) are soft nano-objects, of
size in the range 3−30 nm, which are synthesized through
purely intramolecular cross-linking of functionalized polymers
(precursors).1 Both for their size and for their internal
malleability that allows for quick response to environmental
changes, SCNPs are promising macromolecules for applica-
tions as catalytic nanoreactors, drug delivery nanocarriers, and
biosensing probes, to name a few.2−8 Depending on several
factors implemented on the precursor, such as the solvent
conditions, its molecular topology, chain stiffness, or the
presence of crowders, the resulting SCNPs present a broad
range of structural conformations, from very sparse objects9,10

to more compact and even nanogel-like SCNPs.11−13 In the
usual route (linear precursors in good solvent), the resulting
SCNPs are sparse objects where short-range loops dominate
the distribution of cross-links. This is a direct consequence of
the self-avoiding conformations of the linear precursor in good
solvent. In such conformations contacts between monomers
separated by long contour distances and formation of long-

range loopswhich are efficient for folding into globular
shapesare infrequent. The SCNP conformations are
dominated by short loops and have scaling exponents of ν ∼
0.5 for the dependence of the size on the number of monomers
(R ∼ Nν), far from the globular state ν ∼ 1/3.
Synthesis of SCNPs has been traditionally dominated by

irreversible intrachain cross-linking of the precursor. In recent
years, growing efforts have been dedicated to broaden the
functionalities and areas of applicability of SCNPs through the
implementation of reversible bonds in their backbone via
noncovalent and dynamically covalent interactions. The
current SCNP chemistry toolbox of reversible bonds includes,
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among others, hydrogen bonds, metal complex formation,
hydrazone, enamine, anthrazene, and so on.14−17 Because
breaking and formation of these bonds can be activated and
tuned through factors such as temperature, pH, or light, the
single-chain character of these objects in solution is lost when
their concentration is high enough, leading to the formation of
aggregates and eventually a percolating network. Because of
the reversibility of the bonds the bonding pattern of the
network is dynamic, allowing for viscous flow of the material
and for physical gelation if the external stimuli are switched off
(e.g., by decreasing temperature). The possibility of designing
smart polymers that can reversibly transform from solutions of
SCNPs to hydrogels has been demonstrated experimen-
tally.18,19 These findings pave the way to use polypeptide-
based SCNPs as building blocks for biocompatible and
biodegradable materials with self-healing properties and
applications in tissue engineering.19

Recent simulations have investigated the transition from a
solution of sparse SCNPs at high dilution to a dynamic
network in semidilute and concentrated conditions for a
system of linear chains with reversibly bonding sites in their
backbones.20 Some remarkable results have been reported: (i)
the intramolecular bonds still form the majority of the overall
bonding, and the connectivity of the network is mediated by a
few intermolecular bonds per chain; (ii) the bonding pattern of
the network is dynamic, and the polymers can diffuse long
distances through breaking and formation of bonds at different
sites without losing their connection to the percolating cluster;
(iii) the size and shape of the SCNP conformations at high
dilution are essentially unaffected by crowding and remain in
the network even at densities far above the overlap
concentration. The latter is a rather unusual result, in clear
contrast with the shrinkage found for other sparse objects such
as simple (unreactive) linear chains and rings, which by
increasing the concentration change their conformations from
self-avoiding (Flory exponent ν ≈ 0.59) to random walks (ν =
1/2) in the case of linear chains21 and to fractal (“crumpled”)
globules (ν = 1/3) in the case of rings.22,23 The weak effect of
crowding on the molecular conformations of the reversible
SCNPs is inherently related to the formation of intermolecular
bonds. Indeed, when the SCNPs are prepared at high dilution
through irreversible intramolecular cross-linking and are
transferred to high concentration, with no intermolecular
bonding, they show a collapse similar to that of rings to
crumpled globular conformations.24,25

The effective potential between two macromolecules
separated by a given distance is the free energy needed to
bring them from the infinity to that distance. Unlike in hard-
core colloids, the free energy cost for full interpenetration of
the macromolecules (zero distance) is finite because their
centers-of-mass can coincide in space. The cost of full
interpenetration strongly depends on the topology and internal
deformability of the two macromolecules, typically varying
between a few and tens of times the thermal energy.26,27

Averaging out the molecular internal degrees of freedom and
keeping one or a few relevant coordinates (usually the centers-
of-mass) reduces the system to an effective fluid of ultrasoft
particles interacting through the effective potential.28−32 This
methodology allows not only for simulating much larger scales
than in the monomer-resolved models but also for the
treatment of the system by methods from liquid state theory,
producing a powerful tool for predicting large-scale organ-
ization and phase behavior.33,34 A major limitation of this

approach is that because the effective potential is derived for a
pair of polymers in the absence of others, it neglects the many-
body interactions that are present in a crowded solution or a
melt. This approximation works well below and even slightly
above the overlap concentration (i.e., the concentration at
which the mean intermolecular distance is of the order of the
unperturbed molecular size). However, it fails dramatically far
above the overlap concentration when many-body effects
become a dominant contribution (shrinkage of molecular size
being a manifestation of them). A paradigmatic example is the
nonemergence of the cluster crystal phase predicted by the
effective potential for flexible ring polymers,35 which instead
collapse to crumpled globular conformations that hinder the
full interpenetration required to form the cluster nodes.
As mentioned above, when linear polymers with reversible

bonds assemble into a dynamic percolating network, they
essentially maintain the SCNP conformations adopted at high
dilution.20 This result suggests that many-body effects can be
negligible for this system, and the interaction of a tagged pair
with their neighboring molecules is effectively given by a flat
energy landscape not affecting the effective mutual force
between the two polymers of the tagged pair. In such a case,
the validity of the effective potential to describe the static
correlations between molecular centers-of-mass could extend
to unprecedented densities far above the overlap concen-
tration. With this idea in mind we investigate, by means of
simulations, the validity of the effective potential for a system
of generic bead−spring polymers that switches from a solution
of SCNPs at high dilution to a reversibly cross-linked polymer
network at high concentrations. We explore a broad
concentration range between both limits as well as the effect
of the molecular topology of the unbonded polymer (linear or
ring) and the sequence of reactive sites (with different degrees
of randomness) along the molecular backbone. We test the
accuracy of the effective potentials by comparing simulations of
the real all-monomer systems with their corresponding
effective fluids of ultrasoft particles as well as with predictions
from the test particle route.36 We also test the approach for a
ring−linear mixture as well as for a two-component linear/
linear mixture with orthogonal bonding chemistry, where
intermolecular bonding is only allowed between chains of the
same component. We find that both the topology of the
unbonded polymer and the specific sequence of the reactive
sites along the polymer backbone have a strong impact on the
effective potential. As suggested by the weak effect of the
concentration on the size and shape of the linear polymers with
reversible bonds, the simulations confirm that the effective
fluid provides a very good description of the real system at
densities far above the overlap concentration. In a similar
fashion to the case of ring polymers with no bonding, the
effective fluid approach is less satisfactory for the ring-based
system, and the predicted clustering behavior is not found in
the real system. The effective potential becomes much more
repulsive when intermolecular bonding is switched off. As a
consequence, the effective binary fluid representing the mixture
with orthogonal bonding chemistry shows demixing. This
behavior is confirmed in the all-monomer real mixture, which
shows spontaneous demixing within the simulation time scale.
This striking result suggests that experimental interpenetrated
networks with reversible bonds are kinetically trapped states
where demixing is prevented by large barriers arising from long
bond lifetimes and entanglements.
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The article is organized as follows. In section 2 we define the
model and interactions implemented in the all-monomer
simulations. We also give the simulation details for the
computation of the effective potentials and briefly describe the
analytical test particle route approach. In section 3 we report a
critical analysis of the obtained effective interactions as a
function of the topology of the precursor and the specific
sequence of reactive sites. In section 4 we present theory and
simulation results for the solutions at different concentrations
and for the phase behavior of the mixtures and discuss the
validity of the effective potentials to describe the behavior of
the all-monomer real systems. In section 5 we summarize our
conclusions.

2. MODEL AND SIMULATION DETAILS
The precursors are modeled as fully flexible linear chains or
rings made of 200 beads (monomers). A fraction of these
monomers f = Nr/Nm = 20/200 = 0.1 are reactive, where Nr
and Nm are respectively the number of reactive sites and the
total number of monomers. The reactive sites can form and
break bonds with other reactive sites within the same polymer
(intrabonding) or with reactive sites belonging to other
polymers (interbonding). In all cases, we perform Langevin
dynamics simulations. In the first step we use them to obtain
the effective potentials (section 2.2); subsequently, we use
them to simulate the effective fluid at different concentrations,
and we compare results with simulations of the corresponding
all-monomer system (section 2.3). Moreover, we compare
simulation results with theoretical calculations by the test
particle route (section 2.4).
2.1. Model. We describe the polymer chains by the bead−

spring model of Kremer and Grest.37 Thus, excluded volume
interactions among the beads are modeled by the Weeks−
Chandler−Andersen (WCA) potential:
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The permanent bonds leading to the connectivity of the
precursor are implemented via a finite extensible nonlinear
elastic (FENE) potential between consecutive monomers. This
is given by
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where KF = 15 and R0σ = 1.5σ is the maximum elongation of
the bond.
For implementing the reversible bonds between the reactive

sites, we adopt the potential introduced by Rovigatti et al.:38
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In our system we set the capture radius rc = 1.3σ while ϵss =
12ϵ and Kss = [σ/2(σ − rc)]

2. With these choices the potential
and force are continuous and zero at the capture radius.
Moreover, the potential is short-ranged and has a deep

attractive minimum of energy Vss
min = −12kBT (which can be

seen as the bond energy) at the distance rmin = 1.0σ. When the
distance between two reactive sites is smaller than rc, the
interaction of eq 3 becomes nonzero and attractive and the
sites form a mutual bond. The bond is broken when a
fluctuation moves the mutual distance beyond rc. Because we
wish to limit the valence to a single reversible bond per reactive
site, we make use of the swapping algorithm introduced by
Sciortino.39 Thus, we add a repulsive three-body contribution
in such a way that it is switched on when a reactive site k enters
the capture radius of a reactive site i that is already bonded to
another one j. The three-body potential is defined as
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Therefore, 0 < V3body (r) ≤ |Vss
min| for each triplet, and when a

triplet is formed, the energy decrease resulting from the new
bond is compensated by the three-body repulsive term without
changing the potential energy of the system. This three-body
term makes triplets very short-lived and spontaneously leads to
bond swapping, which speeds up the exploration of different
patterns of the bond network. Moreover, monovalent bonding
is governed by a Hamiltonian, unlike methods based on
random choices when one site can bind to more than one
candidate.9

Because the polymer is fully flexible, a monomer
qualitatively corresponds to a Kuhn length (of the order of
10 monomers), so that the actual fraction of reactive sites
qualitatively corresponds to 1% in real polymers. Moreover,
because bonding is nondirectional (unlike in patchy models), a
reactive site qualitatively represents a functionalized pendant
group with high flexibility. The former conditions are indeed
common in experimental SCNPs, which are the natural state of
our systems at high dilution. For simplicity, we set m = 1 for all
monomers, so that the center-of-mass coincides with the

Figure 1. Representation of the different interaction potentials used in
this study. The combination of the WCA and FENE potentials results
in a deep potential well that sets the mean length of the permanent
bonds at rmin,irrev ≈ 0.96σ. The combination of the WCA and the
reversible bonding potential Vss(r) defines the mean length of the
reversible bonds at rmin,rev ≈ 1.0σ. The function |Vss

min|Φ3(r) represents
the contribution of a bond belonging to a triplet to the three-body
potential (see text).
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geometrical center. The simulations were performed at
temperature T 1.0

kB
= =ϵ by using a Langevin thermostat

with a friction coefficient γ = 0.05.40 Equations of motion were
integrated within the scheme of ref 41 by using a time step δt =
0.005.
2.2. Computation of the Effective Potential. The

effective potential acting between the two polymers (1, 2) can
be calculated by integration of the net force over the axis
joining their centers-of-mass (see e.g. ref 29): Feff,12 =
−∇R12

Veff(R12), where R12 is the distance between the two
centers-of-mass. The net force experienced by one of the
polymers is computed as the total force (nonbonded and
bonded) exerted on its monomers by the monomers of the
other polymer. In the following expression we consider the
force exerted by polymer 2 on polymer 1:

F F
i j

N

i j Reff,12
, 1

(1), (2)

m

12
∑= ⟨ ⟩

= (6)

where Fi(1), j(2) is the force exerted by the jth monomer of
polymer 2 on the ith monomer of polymer 1, the sum runs
over all i(1), j(2) pairs, and the subscript on the right-hand
side means that the average must be evaluated at the fixed
separation R12. Obviously the expression accounting for the
interactions of polymer 1 on polymer 2 just produces the
opposite result, and integration leads to the same effective
potential. The statistical averages of the components
perpendicular to the axis joining the centers-for-mass are zero.
We performed Langevin dynamics simulations where the

positions of the centers-of-mass of the two polymers, and
therefore their mutual distance R12, were kept fixed at every
time step. We performed the simulation runs at the fixed
distances R12/σ = 0, 1, 2, ..., 34, 35. For each distance we
performed an equilibration run of 107 time steps, followed by a
production run of at least 4 × 108 steps. To improve statistics
as much as possible, the total force Feff was obtained by on-the-
fly averaging the summation of eq 6 over all the time steps of
the production run. None of the initial bonds survived after
typically 6 × 106 steps. Therefore, the simulations were long
enough to achieve a good sampling of the ensemble of bonding
patterns.
To test if there is any dependence of the effective

interactions on the specific sequence of reactive sites along
the backbone of the precursor, we consider three different
cases to simulate for a couple of polymers with reversible
bonds: (i) A random sequence of the 20 reactive sites with the
constraint that there is at least nmin = 1 nonreactive sites
between consecutive reactive sites (to prevent trivial bonding).
This case will be denoted as “gap1”. (ii) A random sequence
with the constraint nmin = 4. This case will be denoted as
“gap4”. (iii) A periodic sequence; i.e., there is a constant
separation nmin = 9 between consecutive reactive sites. This
case will be denoted as “periodic”. In both cases i and ii the
sequences of the two polymers are different, with the only
condition that they have the same nmin. Moreover, to assess
whether even by using the same value of nmin the specific
realization of the sequences affects to the effective potential, we
simulated two different couples (denoted as couple 1 and
couple 2) for each of the cases “gap 1” and “gap 4”. Figures S1
(linear) and S2 (rings) in the Supporting Information show the
specific sequences of the simulated couples. Moreover, we
investigated a couple formed by a linear chain and a ring. In

this case the simulations were limited to the case nmin = 1 (gap
1), and we used the first polymer of their corresponding couple
1.

2.3. Simulations of All-Monomer and Effective Fluids.
We performed Langevin dynamics simulations of solutions of
the real all-monomer polymers and of the corresponding
effective fluids. We explored the validity of the effective fluid
approach in a broad concentration range below and above the
overlap concentration,21 which we define as ρ* = Nm/(2Rg0)

3,
where Rg0 is the radius of gyration of the isolated polymer (i.e.,
in the absence of all intermolecular interactions). Therefore, if
ρ = NpNm/V is the absolute density (number of monomers per
volume), with V the volume of the simulation box and Np the
number of polymers in the box, the reduced density
(normalized by ρ*) is ρ/ρ* = Np(2Rg0)

3 /V. In the case of a
binary mixture of components (1, 2) we define the reduced
concentration as ρ/ρ* = V−1[Np,1(2Rg0,1)

3 + Np,2(2Rg0,2)
3].

Therefore, the overlap concentration of the binary mixture is
ρ* = (Np,1Nm,1 + Np,2Nm,2)/[Np,1(2Rg0,1)

3 + Np,2(2Rg0,2)
3]. For

the isolated linear and ring polymers we find Rg0/σ = 9.93 and
7.72, respectively. Therefore, the density of monomers at the
overlap concentration is ρ*σ−3 = 0.025 and 0.064 for the pure
solutions of linear chains and rings with reversible bonds,
respectively. For a 50/50 linear/ring mixture the overlap
concentration is ρ*σ−3 = 0.036.
In the all-monomer simulations we investigated the pure

systems of linear chains and rings with reversible bonds, a 50/
50 linear/ring mixture, and a mixture of linear chains with
orthogonal bonding. In the latter, bonding (intra- or
intermolecular) was only permitted between polymers of the
same component, and all WCA, FENE, and reversible bonding
interactions were the same as in the other simulated systems,
with the only condition that A- and B-reactive sites could not
form mutual bonds and only interacted through the WCA
potential. Although the breaking and formation of bonds can
lead to concatenation of reversible loops in both the linear
chain and ring-based systems, in the latter intermolecular
concatenation between the permanent ring backbones must be
avoided. Thus, nonconcatenated dilute ring-based systems
were initially prepared and compressed to the target
concentrations where they were further equilibrated. To
prepare the linear−linear mixture with orthogonal bonding
chemistry, configurations were taken from the one-component
system and half of the chains were randomly assigned to each
component of the mixture, which was further equilibrated with
no intermolecular bonding between different components.
Therefore, the final demixed state that we anticipated in the
Introduction was reached spontaneously from an initially
mixed state, demonstrating the robustness of this result.
The duration of the equilibration and production runs was

typically 107 and 8 × 107 time steps, respectively. To improve
statistics, eight independent runs were simulated at each
concentration. The polymers moved at least 5 times their own
diameter of gyration at all the investigated densities, thus
guaranteeing a good sampling of the configuration space. In all
cases the total number of polymers in the simulation box was
Np = 108, with Nm = 200 monomers and Nr = 20 reactive sites
per polymer, and the concentration was tuned by varying the
box size. All the polymers had different random sequences of
reactive sites corresponding to the case “gap 1”. The effective
fluids were simulated by using the corresponding effective
potentials obtained for the couple 1 of the case “gap 1”.
Because of the much smaller number of degrees of freedom, in
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the effective fluids we simulated larger boxes of Np = 1000
effective particles, rescaling the box size to have the same
concentrations as in the respective all-monomer systems.
Tables S1 and S2 show the simulated box sizes for each all-
monomer and effective system and the respective concen-
trations in absolute and reduced units. To test the effect of the
box size, some concentrations in the effective fluid were also
simulated with Np = 108 particles. Structural properties were
not changed within statistics. This is demonstrated in Figure
S3, which shows representative results of the radial distribution
function g(r) of the effective fluid of linear chains with
reversible bonds. Data are shown at the lowest and highest
investigated concentrations and in both cases for Np = 108 and
1000 effective particles (with the respective rescaling of the box
size to produce the same concentration). No differences are
found within statistics in the respective g(r)’s. Therefore, we
conclude that finite size effects are not significant (except for
the phase separating system of chains with orthogonal bonds,
where the phase growth is obviously limited by the box size).
2.4. Test Particle Route to Fluid Structure. The test

particle route (TPR) will allow us to compute the radial
distribution function of the effective fluid by using the
formalism of mean-field density functional theory (DFT) for
inhomogeneous fluids.36 In our study each particle of the
effective fluid represents the center-of-mass of one polymer
and interacts with the others via the effective potential Veff(r)
computed as described in section 2.2. Within TPR, a particle is
fixed at the origin of the system. As a consequence, the particle
perturbs the system, and the density of particles around it
changes from a constant bulk value ρb to a spatially varying
local density ρ(r). The external potential acting on the particle
at the origin is equal to the effective potential, implying that
the radial distribution function can be calculated as g(r) =
ρ(r)/ρb. Following the derivation from TPR based on DFT
suitable for soft potentials (see the Supporting Information for
details), the partial radial distribution function for the i, j
components of a mixture of n components is given by42

g r V r h V r( ) exp ( ) ( )( )ij ij k
n

b k ik kjeff, 1 , eff,β β ρ= [− − Σ ∗ ]= (7)

where ρb,i is the macroscopic density of the i component, hij(r)
= gij(r) − 1 is the ij component of the total correlation
function, Veff,kj(r) is the interaction potential between species k
and j, and the symbol ∗ denotes convolution: [hik∗Veff,kj](r) =
∫ hik(r′)Veff,kj(|r − r′|) d3r′.

3. MOLECULAR CONFORMATIONS AND
COMPUTATION OF THE EFFECTIVE POTENTIALS
3.1. Conformations of Two Interpenetrated Poly-

mers. We have investigated effective interactions between two
polymers with reversible bonds, namely two linear chains
(“linear−linear”), two rings (“ring−ring”), and a linear chain
and a ring (“linear−ring”). In all cases we have simulated two
possibilities of bonding. In the first one (denoted as “all
bonds”) we carry out standard runs where the two polymers
can form both intra- and intermolecular bonds. In the second
case (denoted as “only intra”) only intramolecular bonds are
allowed; i.e., reactive sites belonging to different polymers only
interact through the WCA potential and cannot form mutual
bonds. Before discussing the effective interactions, we
characterize conformations of the two interacting polymers
through their radius of gyration Rg and the asphericity
parameter a. This parameter (0 ≤ a ≤ 1) measures deviations
from spherosymmetrical conformations (a = 0) and is defined
as

a
( ) ( ) ( )

2( )
1 2

2
1 3

2
2 3

2

1 2 3
2

λ λ λ λ λ λ
λ λ λ

=
− + − + −

+ + (8)

where λ1 ≥ λ2 ≥ λ3 are the eigenvalues of the gyration tensor of
the polymer. Figure 2 shows for each of the topologies (linear,
ring) and sequences of reactive sites (couples 1, 2 of gap1 and
gap4, and periodic) the distributions of instantaneous values of
Rg and a collected from the trajectories. The data are shown for
isolated polymers (mimicking the case Veff(r → ∞) = 0). Only
the distributions for the first polymer of each couple of Figures
S1 and S2 are shown. Figures S4 and S5 compare for each case
the distributions of the two polymers of the couple. As can be
seen, the ring polymers with reversible bonds are smaller and
closer to spherical than their linear counterparts. For the same

Figure 2. Distributions of the instantaneous values of the radius of gyration (a, b) and the asphericity (c, d) for isolated polymers with reversible
bonds: linear chains (a, c) and rings (b, d). Different sets correspond to different sequences of reactive sites (see legend in panel (d)).
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value of nmin the specific sequences (4 in total for couple 1 or
couple 2) have at most a minor effect on the distributions
P(Rg) and P(a). However, Figure 2 shows that changing the
typical distance between consecutive reactive groups does have
a systematic effect on P(Rg). Namely, increasing nmin leads to
smaller sizes of the polymers. This is not surprising because
longer distances between consecutive reactive groups promote
the formation of longer loops, resulting in a stronger reduction
of the molecular size with respect to the linear precursor. No
significant effect of nmin on P(a) is found.
Figures S6 and S7 show the effect of the intermolecular

interactions on the size and shape of the two polymers. The
distributions P(Rg) (S6) and P(a) (S7) now correspond to a
distance between centers-of-mass r = 3σ and allowing for
intermolecular bonding. Similar results are found for other
close distances. As can be seen in Figure S6, the mutual
interaction tends to swell both polymers (the maxima of P(Rg)
are shifted by about 15%) with respect to the isolated (r→∞)
case. The mutual interaction also tends to increase the
asphericity (Figure S7). A remarkable effect for the ring−ring
case is that the two polymers do not swell in the same way.
This can be explained by the fact that at short intermolecular
distances one of the rings is threaded by the other one. Figure
3 shows typical conformations of the two polymers at mutual
distance r = 0 (from (a) to (c): linear−linear, ring−ring, and

linear−ring). Panels b and c illustrate the threading of one ring
by the other polymer (this also occurs in the linear−ring case).
The asymmetry found in the radii of gyration of the two
interpenetrated rings is also reflected in their different
asphericities (Figure S7), though the effect is less pronounced
than in P(Rg). Figure S8 shows the time dependence of the
ratio of the instantaneous Rg’s of the two polymers at a mutual
distance r = 3σ. Orange curves are the bare data. Blue curves
are the data smoothed by 100 point averaging. Whereas in the
linear case the ratio quickly fluctuates, in the ring case it is
relatively persistent, as expected for a threading mechanism.
Moreover, the fact that the ratio for the two rings fluctatuates
above and below 1 shows that both rings alternate their
threading/threaded character, which is a signature of good
configurational sampling.
Figure 4 shows the effect of switching on and off the

intermolecular bonds on the conformations of the two
polymers at a close distance r = 3σ. In the case of the linear
chains there is a tiny shrinking of the size of both polymers
when intermolecular bonding is allowed, which is presumably
due to the slight reduction of the fluctuations when a few
intermolecular bonds connect the two polymers. A different
behavior is observed in the pair of rings, whose sizes change in
opposite directions when they form intermolecular bonds and
their size disparity is reduced. Thus, the larger threaded ring

Figure 3. Typical snapshots from MD runs at a fixed distance r = 0 between centers-of-mass and with intermolecular bonding switched on: (a)
linear−linear, (b) ring−ring, and (c) linear (blue/cyan)−ring (red/yellow). Reactive sites are represented by cyan and yellow beads. Threading of
one ring by the other polymer is found in both (b) and (c).

Figure 4. Left column: distributions of the radius of gyration for two linear polymers with reversible bonds at a distance r12 = 3σ between centers of
mass. Empty symbols correspond to simulations without intermolecular bonding. Filled symbols correspond to simulations where intermolecular
bonds are allowed. Right column: as the left column, for two rings.
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shrinks and the smaller threading ring swells. The combination
of both effects, occurring in the asymmetric pair created by
threading, reduces distances between segments of different
polymers and facilitates the formation of intermolecular bonds.
3.2. Effective Potentials. In Figure 5a we show the

effective potentials obtained for the interaction between two

linear chains with reversible bonds. Figure 5b shows the
corresponding results for two rings, and Figure 5c compares
results of the former cases with the effective potential between
a linear chain and a ring. All data sets in Figure 5c correspond
to sequences gap 1, namely, the couples 1 of Figure 5a,b for the
linear−linear and ring−ring case. For the linear−ring case the

simulations used the first polymer of the couples 1 of the
linear−linear and ring−ring cases. The symbols in all panels
are the results obtained from the simulations. The solid lines
are fits to a main function plus a tail, both given by generalized
exponentials,43 βVeff(r) = a1 exp(−b1rm1) + a2 exp(−b2rm2). The
tail is added to obtain the best possible description of the data
sets not only for the core of the potential but also for all
distances and down to energies much lower than kBT. In
general, the interactions between the linear chains with
reversible bonds can be described by Gaussian functions
(even without needing the tail), whereas exponents mi > 2 are
needed for ring−ring and ring−linear interactions. Table 1

shows the functions that fit the potentials found for the linear−
linear (all bonds and only intra), ring−ring (all bonds), and
linear−ring (all bonds) interactions, namely, in the cases “gap
1, couple 1”. These are the potentials that will be used in the
simulations of the effective fluids discussed in the next section.
Figure 5 reveals several trends. The potentials (both with

intermolecular bonding switched on and off) are more
repulsive for ring−ring than for linear−linear interactions,
the linear−ring case being intermediate between the former
two. This is consistent with the findings in the linear and ring
precursors (i.e., in total the absence of both intra- and
intermolecular bonding) and reveals that the topological
interaction is again relevant. As can be seen in Figure 5a,b, if
only intramolecular bonding is allowed (empty symbols), the
amplitudes of the potentials are systematically higher than in
their respective precursors (about 2.5kBT and 6kBT for linear−
linear and ring−ring precursors, respectively35). This result is
not surprising because the presence of intramolecular loops,
even if they are transient, enhances steric hindrance and
topological constraints and creates higher effective barriers for
interpenetration than in the respective precursors.
As can be seen, the effective potential becomes systemati-

cally stronger, with variations of about 30−50% in its
amplitude, by moving from the “gap 1” to the periodic
sequence of the reactive groups. As mentioned before,
increasing the distance between consecutive reactive groups
promotes the formation of longer intramolecular loops and
reduces the molecular size. This hinders interpenetration and
leads to stronger effective repulsions. For a f ixed value of nmin
the specific sequence of reactive groups has some small, but
visible, effects on the effective potential (see e.g. data for the
two couples “gap 4” in Figure 5a). We assert that this small
effect will vanish for long polymers because pairs of segments
interacting intra- or intermolecularly will sample a huge
amount of local sequences within the scale of an interacting
segment, so that averaging over the local sequences for a fixed
nmin will always lead to the same effective potential, irrespective

Figure 5. Effective potentials (scaled by β = (kBT)
−1) for linear−

linear (a) and ring−ring interactions (b). Distances are normalized by
the radius of gyration Rg0 of the isolated polymers. Different data sets
correspond to different sequences of reactive groups (see main text).
Filled and empty symbols correspond to simulations with and without
intermolecular bonding. Solid lines are fits to model functions (see
main text). Panel (c) compares results for the linear−ring interaction
with the linear−linear and ring−ring cases. Here results for “gap 1,
couple 1” are only included, and for the linear−ring interaction the
distance is normalized by the average of the respective Rg0’s of the
linear chain and the ring.

Table 1. Effective Potentials Used in the Effective Fluids
(See Main Text for Explanation)a

linear−linear, all
bonds V r( ) 1.57e r R

eff
( /1.04 )g0

2
β = −

ring−ring, all bonds V r( ) 1.87e 2.35er R r R
eff

( /1.009 ) ( /1.48 )g0
3.997

g0
3.105

β = +− −

linear−ring, all
bonds V r( ) 1.66e 0.72er R r R

eff
( /1.005 ) ( /1.46 )g0

2.35
g0

2.31
β = +− −

linear−linear, only
intra V r( ) 2.32e 0.56er R r R

eff
( /1.18 ) ( /0.97 )g0

2
g0

3.012
β = +− −

aRg0 is the radius of gyration of the isolated polymer, and in the case
of the linear−ring interaction we use the average of the respective
Rg0’s of the isolated linear and ring polymers.
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of the specific realization of the full sequence. On the other
hand, we expect that the dependence on nmin will persist for
long polymers because nmin affects to the typical intra- and
intermolecular distances between reactive groups (e.g., a larger
nmin leads to longer intramolecular loops on average, which
tend to increase steric repulsion).
Figure 5 shows that when intermolecular bonding is

switched on (filled symbols), the effective potentials
experience a marked reduction with respect to the case of
pure intramolecular bonding. Interestingly, the effect of the
sequence of reactive sites when intermolecular bonds are
allowed is the opposite to that found when they are not:
increasing the distance between consecutive reactive sites
decreases the effective interaction. As a consequence, the
periodic sequences of reactive groups lead to the strongest
reductions of the effective potential when intermolecular
bonding is switched on (with differences of ΔβVeff(r = 0) ∼
−3 and −5 for linear−linear and ring−ring interactions,
respectively).
The analysis of the number of bonds can shed some light on

the origin of the former trends for the effective potentials. The
average total number of bonds (intra- and intermolecular) is
ntot ≈ 17 in all systems, i.e., 85% of the maximum ntot = 20 that
would correspond to the fully bonded state. No differences are
found within statistics, and this observation is independent of
the topology of the precursor, the sequence of reactive sites,
the distance between the centers-of-mass, and intermolecular
bonding being switched on or off. Although the total number
of bonds is unaffected, varying the former parameters leads to a
different balance between intra- and intermolecular bonds.
Figure 6 shows, for the cases of Figure 5 (same symbol codes),
the variation of the number of intermolecular bonds, ninter, with
the distance between the centers-of-mass of the two polymers.
The number of intermolecular bonds increases by moving from
gap 1 to periodic sequences, i.e., by increasing the distance
between consecutive reactive sites. Because increasing such a
distance eliminates the shortest intramolecular loops, the
observed conservation of the average total number of bonds is
achieved by exchanging the shortest loops by longer ones or by
forming more intermolecular bonds. The second option is
preferred, as shown by Figure 6. Figure S9 shows the
distribution of instantaneous values of ninter at distance r1,2 =
3σ. As can be seen, ninter can fluctuate in a broad range from 0
to 8−12 bonds, and the distribution becomes more symmetric
with decreasing randomness of the sequence of reactive sites.
Because the effective potential Veff(r) is the free energy cost

of changing the mutual distance from infinity to r, the
difference between the effective potentials without and with
intermolecular bonding is ΔβVeff(r) = βVeff,only intra(r) −
βVeff,all bonds(r) = βΔU(r) − kB

−1ΔS(r), with ΔU(r) and
ΔS(r) the corresponding energetic and entropic changes. For
the same pair of polymers, switching intermolecular bonding
on or off should not change excluded volume interactions
significantly, and as mentioned before, it does not affect the
total number of bonds. Therefore, ΔU(r) ≈ 0, and the
difference between the effective potentials without and with
intermolecular bonding is essentially of entropic origin, i.e.,
ΔβVeff(r) ≈ −kB−1ΔS(r). Figure 6 shows (lines) the
corresponding data for ΔβVeff(r). Because this quantity is
positive for all distances, it is clear that forming intermolecular
bonds involves an entropic gain with respect to the only
intramolecularly bonded system. In principle, intermolecular
bonds limit conformational and translational fluctuations,

leading to an entropic loss. Therefore, there should be a
source of entropic gain that exceeds the former loss, resulting
in a net entropic gain when intermolecular bonds are formed.
As can be seen in Figure 6, the net entropic gain is qualitatively
given by kB times the number of intermolecular bonds; i.e., the
number of additional states of the pair of polymers that are
introduced by intermolecular bonding is essentially the
exponential of the number of intermolecular bonds.
The mechanism leading to the observed entropic gain is not

clear. The concept of combinatorial entropy,44 accounting for
the different connectivities of the bonding network, has been
invoked to accurately describe a similar effect in the case of
hard nanoparticles grafted by chains with sticky ends. An
expression has been proposed for the number of bonding
patterns that can be produced by the sticky ends that can, at
each distance, potentially bind to the other nanoparticle.45

Though it is plausible that the combinatorial entropy is a major
contribution to the ΔβVeff shown in Figure 6, obtaining an

Figure 6. Symbols: as Figure 5 for the number of intermolecular
bonds vs the distance between centers-of-mass. Lines (same color
codes as symbols): difference between the effective potentials without
and with intermolecular bonding.
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analytical accurate expression for our system is highly
nontrivial46 and is beyond the scope of this work.
On the other hand, as can be seen by comparing Figures 5

and 6, increasing the number of intermolecular bonds leads to
lowering the effective potential. This is consistent with the fact
that Veff(r)/kBT = −ln g(r), with g(r) the radial distribution of
the centers-of-mass.26 A higher number of intermolecular
bonds leads to more tightly linked pairs, resulting in higher
values of g(r) at short distances and, through the negative
dependence, to lower values of Veff(r)/kBT. A similar trend
should be found by increasing the total number of bonds (and
concomitantly the intermolecular ones) through rising the
ratio of the bond to the thermal energy.

4. CROWDED SOLUTIONS AND PHASE BEHAVIOR
The main motivation behind the coarse-graining approach is to
reduce as much as possible the degrees of freedom that define
the system. Deriving the expression of an effective potential Veff
able to mimic the interactions between macromolecules
enables the description of them only in terms of a few
coordinates (usually the centers-of-mass). Thus, in a dense
system as a crowded solution the degrees of freedom
associated with the individual monomers are wiped out and
the whole solution is effectively described as a fluid of particles
interacting through the obtained Veff. This strategy largely
reduces the computational cost of the all-monomer simu-
lations, allows to investigate longer time and length scales, and
facilitates the applications of methods from e.g. liquid state
theory. However, it involves a strong assumption; namely,
because the effective potential has been derived for two
polymers in the absence of others, its use implicitly neglects
the effective many-body interactions in the crowded solution.
In general, this approximation is justified and works well for
densities below the overlap concentration, but it fails, even
severely, as one goes deep in the semidilute and concentrated
regimes.26 A well-known effect of the many-body interactions
in dense solutions is the shrinkage found in simple linear
chains, leading to the change from self-avoiding to Gaussian
chain statistics.21

Recent simulations of solutions of reversibly cross-linking
linear chains similar to those investigated here have shown,
interestingly, that the polymer size and shape are weakly
affected by the concentration, essentially retaining the
conformational properties of high dilution.20 Instead of
shrinking, the chains keep such mean conformations through
forming a few intermolecular bonds with their neighbors. This
weak effect of the concentration on the molecular
conformations suggests that the many-body interactions
experienced by a tagged couple of chains are in a first
approximation given by a flat energy landscape. In such
conditions the effective potential derived at high dilution may
provide a good description of the structural properties of the
solution even far above the overlap concentration.
Figure 7 shows the radii of gyration, normalized by their

values at ρ = 0, as a function of the normalized concentration
ρ/ρ* for the linear chains and rings with reversible bonds, both
in the pure systems and in the linear/ring mixture. The results
for the pure linear case confirm those of the model of ref 20,
with a shrinkage of just 4% at about 7 times the overlap
concentration. A much steeper dependence on the concen-
tration is found for the case of rings, with a shrinkage of 15% at
the highest simulated concentration of about 4 times the
overlap concentration (for comparison, at the same effective

density the shrinkage of the linear chains is <2%). This very
different response of the molecular size of linear chains and
rings to crowding is also found in the mixture of both
molecules, though differences are less pronounced than in the
pure systems. In the mixture the size of the linear chains shows
a steeper dependence on the concentration than in the pure
system, whereas the rings show the opposite effect. Having said
this, in all cases the shrinkage is much weaker that in the
absence of bonding. Solid symbols in Figure 7 are the values
for the unbonded precursors at the highest effective densities
of the bonded counterparts. Such values have been estimated
through the power laws Rg/Rg0 ∼ (ρ/ρ*)−1/8 (linear chains21)
and Rg/Rg0 ∼ (ρ/ρ*)−1/4 (unentangled rings47). Shrinkage
factors of 22% (linear) and 30% (ring) vs the respective
aforementioned values of 4% and 15% are obtained,
demonstrating the dramatic effect of intermolecular bonding
on reducing the impact of crowding on the molecular
conformations.
Beyond the effect of the concentration on the molecular size,

the scattering form factor provides more detailed information
about the molecular conformations. The form factor is
calculated as

w q
N

qr

qr
( )

1 sin( )

m j k

jk

jk,

∑=
(9)

where rjk = |ri − rj|; the sum is performed over all pairs of
monomers j, k belonging to the same polymer and is averaged
over all the polymers in the solution and different
configurations. Figure 8 shows for both linear and ring
architectures the form factor at high dilution and at the highest
investigated concentration. As q grows, the form factor shows
the crossover from the limit w(q = 0) = Nm to the fractal
regime,21 w(q) ∼ q−1/ν, which originates from the scaling of the
intramolecular distances with the contour length. Similar to the
overall molecular size, we find a tiny effect of crowding on the
effective exponent of the linear chains, which changes from ν =
0.58 to 0.54 from high dilution to ρ/ρ* ∼ 7, i.e., a narrow
range between the Flory value (ν = 0.59) for self-avoiding
chains and ν = 1/2 for Gaussian chains. The more pronounced
effect of crowding on the molecular size of rings is also
reflected in the scaling behavior, with a change from ν = 0.44 at
high dilution to ν = 0.35 at ρ/ρ* ∼ 4, resembling crumpled
globule behavior22,23 (ν = 1/3). Similar trends are found in the

Figure 7. Radius of gyration Rg normalized by its value at high
dilution Rg0 as a function of the effective density for the pure solutions
of linear chains and rings with reversible bonds and for the 50/50
mixture of both polymers. For comparison, we add the values for the
linear and ring precursors (no bonding) estimated at the highest
simulated concentrations of their bonded counterparts (see text for
explanation).
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50/50 mixture of linear chains and rings. Consistently with the
observations for the molecular size, the conformations of the
linear chains in the mixture are slightly more affected by
crowding than in the pure system, and the opposite effect is
found for the rings.
In summary, Figures 7 and 8 show that the typical

conformations of the linear chains are weakly distorted by
crowding, and hence the two-body approximation under which
the effective potential is derived might work reasonably even at
unusually high densities, far above the overlap concentration.
Comparatively, crowding has a stronger effect on the
conformations of the rings, and their effective potential is
expected to work in a narrower range of concentrations than in
their linear counterparts. In what follows we test these
expectations by comparing the results for the all-monomer
solutions with those for the corresponding effective fluids.
Moreover, we test the validity of mean-field DFT in our
systems through calculations from test particle route (TPR).
As mentioned in section 2, all the simulated solutions
correspond to sequences of type “gap 1”. The interactions in
the all-monomer simulations are given by eqs 1−4. The data

for the corresponding effective potentials of Figure 5 were
fitted by the functions of Table 1, and these functions were
used in the simulations and TPR calculations of the effective
fluids. Namely, the “linear−linear, all bonds” and the “ring−
ring, all bonds” potentials were used in the effective fluids of
the pure (one-component) systems of linear and ring polymers
with reversible bonds. They were also used for the linear−
linear and ring−ring interactions in the effective linear−ring
mixture, while the “linear−ring, all bonds” potential was used
for the linear−ring interactions. In the mixture (A/B) of linear
chains with orthogonal chemistry, the “linear−linear, all
bonds” potential was used for the A−A and B−B interactions.
Because by construction there were no intermolecular A−B
bonds in the all-monomer simulations, the “linear−linear, only
intra” potential was used for the A−B interactions in the
effective fluid.
Figure 9 shows the radial distribution function g(r) of the

centers-of-mass in the pure solutions of linear chains with
reversible bonds. Figure 9a compares the correlations for the
centers-of-mass of the real all-monomer (AM) system with
those for the particles of the effective fluid (EF). Figure 9b

Figure 8. Form factors for linear chains (a, b) and rings (c, d) with reversible bonds at two densities far below and far above the overlap
concentration. Panels (a, c) and (b, d) correspond to the pure systems and to the mixture, respectively. Lines are fits in the fractal regime to power
laws of the form w(q) ∼ q−1/ν.

Figure 9. Radial distribution function of solutions of linear chains with reversible bonds, in a broad range of densities from high dilution to far
above the overlap concentration. Panel (a) compares the results for the molecular centers-of-mass in the all-monomer simulations (AM, full
symbols) with the results for the particles of the effective fluid simulations (EF, empty symbols). Panel (b) compares the EF simulations with the
theoretical predictions of the test particle route (TPR, lines).
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compares the results for the effective fluid with the calculations
from TPR. An excellent agreement between effective fluid and
TPR is obtained, demonstrating the validity of the mean-field
approximation for the effective fluid even at low densities. The
comparison between the all-monomer and effective fluid
reveals some interesting trends. Contrary to the usual
observations in macromolecular systems, the effective potential
provides a very good description of the real system at ρ/ρ* >

5, i.e., far above the overlap concentration, where many-body
effects are usually expected. This finding confirms that the
many-body effects are basically averaged out and lead to a flat
energy landscape. Again contrary to the usual observations,
there are systematic differences between the all-monomer and
effective fluid at densities below the overlap concentration,
even at values as low as ρ/ρ* ∼ 0.1, for which one might
expect an excellent accuracy of the two-body approximation.

Figure 10. As Figure 9 for the solutions of rings with reversible bonds.

Figure 11. Radial distribution function of the 50/50 mixture of linear chains and rings with reversible bonds. Panels (a, c, e) compare results for the
AM and EF simulations. Panels (b, d, f) compare the EF simulations with the predictions of TPR. Panels (a, b), (c, d), and (e, f) show such
comparisons for the partial linear−linear, linear−ring, and ring−ring correlations, respectively.
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As can be seen in Figure 9a, the g(r) for the all-monomer
system is shifted to longer distances, indicating less inter-
penetration than predicted by the effective fluid. The reason
for this small but significant disagreement is likely the
significant number of clusters of three polymers found at low
concentrations in the real system. Figure S10 shows the cluster
size distribution P(n) at the lowest investigated concentration,
where n is the number of polymers in a cluster and two
polymers belong to a same cluster if they are mutually linked
by at least one intermolecular bond. As can be seen, the ratio
of clusters of n = 3 vs those of n = 2 is non-negligible (about
0.1). In these clusters (which do not exist in simple systems
with no bonds) the three-body interaction cannot be
oversimplified by a flat landscape, and the two-body
approximation just gives a semiquantitative description of the
static correlations.
Results for the solutions of rings with reversible bonds are

shown in Figure 10. In comparison with the linear case, the all-
monomer rings show a larger correlation hole and therefore a
weaker interpenetration. This is consistent with the observed
stronger response of their conformations to crowding (Figures
7 and 8), which leads to objects similar to crumpled globules
(ν ∼ 1/3) and therefore less penetrable than their linear
counterparts (ν ∼ 0.5). Although at low concentrations there is
still a systematic small disagreement between the g(r) of the
effective fluid and the all-monomer system, this effect is weaker
than for the linear counterparts. This is consistent with the
smaller number of three-body clusters found for the rings
(Figure S10). In this case the ratio of n = 3 vs n = 2 clusters is
about 0.05. For concentrations higher than ρ/ρ* the effective
fluid provides a much worse description than in the linear
system, and indeed the all-monomer solution of rings does not
show the peak at r = 0 found in the effective fluid. In a similar
fashion to the simple case of rings without bonds, the peak
formed at r = 0 and growing with the concentration is the
signature of a fluid of clusters formed by strongly inter-
penetrated particles. The effective fluid will ultimately show a
transition to a cluster crystal phase, where the clusters are
arranged in the nodes of a regular lattice that is sustained
through incessant hopping of the particles between the
clusters. The existence of cluster crystal phases is predicted
within mean-field DFT for potentials that are bounded and
show negative values in their Fourier transform.48 Both
conditions are fulfilled by the effective potentials of the rings
with reversible bonds. Indeed, they can be described by
generalized exponential functions (Table 1), which for
exponents higher than 2 have negative Fourier components.33

Moreover, the mean-field approximation is justified, as can be
seen in Figure 10b by the good agreement between the TPR
and the simulations of the effective fluid. However, the cluster
fluid is not found in the all-monomer system. As found for
simple rings without bonding interactions,35 the preferred
crumpled globular conformations prevent the degree of nesting
and threading needed to form the characteristic peak at r = 0.
Figure 11 shows the partial correlations of the radial

distribution function for the 50/50 ring−linear mixture. As in
Figures 9 and 10 the left column compares AM and EF
simulations, whereas the right column compares the EF
simulations with the predictions of TPR. The top panels (a, b)
display the partial correlations between the linear chains, gll(r).
The middle panels (c, d) show the cross-correlations (linear−
ring, glr(r)), and the correlations between the rings (grr(r)) are
displayed in the bottom panels (e, f). At low and moderate

concentrations, the small but systematic deviations between
the AM and EF for the linear−linear correlations in the
mixture are similar to those found in the pure system.
However, whereas at large concentrations (ρ/ρ* > 4) there is a
very good agreement between the AM simulations and EF in
the pure linear system, significant differences are observed in
the mixture. This suggests that the picture of an effective flat
energy landscape describing the many-body interactions in the
pure linear system is an oversimplification when the linear
neighbors are partially substituted by rings adopting less
penetrable crumpled globular conformations and hence leading
to an heterogeneous landscape. This is consistent with the
found deviations between the EF and TPR (see panel (b)), in
contrast to the excellent agreement observed in the pure
system. The description of the ring−ring AM correlations by
the effective potentials is improved in the mixture with respect
to the pure solutions. Indeed, the presence of a 50% of
particles (representing the linear chains) in the EF interacting
through Gaussian potentials (which do not lead to cluster
phases) reduces the tendency to the cluster phase of the
particles representing the rings, and the EF becomes closer to
the real system where no peak at r = 0 is found. On the other
hand, the TPR provides a worse description of the ring−ring
correlations in the EF of the mixture than in the EF of the pure
system of rings. Again, this might be related to the structural
heterogeneity of the EF of the mixture that worsens the mean-
field approach of TPR, though surprisingly, TPR does provide
a very good description of the cross-correlations (linear−ring)
in the EF. A reasonably good agreement is also found between
the cross-correlations in the AM and EF systems. The results
for the cross-correlations in panel (c) show a good mixing of
the linear chains and rings with reversible bonds, with no
signatures of segregation or incoming phase separation.
Indeed, the correlation holes are just intermediate between
those for the self-correlations.
Finally, we push further our investigation on the validity of

effective potentials to describe correlations in crowded
solutions of polymers with reversible bonds. Our last question
is whether it is possible in our model to form interpenetrated
networks (IPNs) from two polymers with reversible bonds and
orthogonal chemistry. For this purpose, we consider a linear
binary mixture with the same fraction x = 50% for both
components. As mentioned before, in the all-monomer
simulations the WCA, FENE, and reversible bonding
interactions are identical for both components, with the only
difference that intermolecular bonding is switched off between
chains of different components. In the effective fluid, the
interactions between particles of the same component are the
same as in the EF of the pure linear case (“linear−linear, all
bonds” in Table 1), whereas for the cross-interactions we use
the effective potentials derived in the absence of intermolecular
bonding (“linear−linear, only intra”). To have a first idea of
the emerging scenario for this system, we obtain the theoretical
phase diagram for the effective fluid in the plane of reduced
concentration (ρ/ρ*) vs composition (0 ≤ x ≤ 1) of the
mixture using the random phase approximation for the partial
correlations as a closure to the Ornstein−Zernike rela-
tion.29,42,49,50 This should be a reasonable approximation on
the basis of the observed quality of the mean-field TPR. We
find a spinodal line (dashed line in Figure 12) attesting to the
existence of a region with macrophase separation (demixing)
which, because self-interactions for both components are
identical, becomes symmetric with respect to the composition.

Macromolecules pubs.acs.org/Macromolecules Article

https://doi.org/10.1021/acs.macromol.1c02610
Macromolecules 2022, 55, 2659−2674

2670

https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.1c02610/suppl_file/ma1c02610_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.1c02610/suppl_file/ma1c02610_si_001.pdf
pubs.acs.org/Macromolecules?ref=pdf
https://doi.org/10.1021/acs.macromol.1c02610?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Forming a pair of interpenetrated networks (IPN) first requires
percolation of both components of the mixture, which does
not occur if the composition is very asymmetric. On the other
hand, we find that, except for very asymmetric compositions,
the system demixes when the density is increased slightly
above the overlap concentration. Because the onset of network
percolation occurs at such concentrations or above them,20 the
theoretical phase diagram of Figure 12 suggests that it is not
possible to form an IPN in the mixture of chains with
reversible bonds, this being frustrated by the demixing of both
components.
Figure 13 shows AM and EF simulation snapshots at

different concentrations for the 50/50 mixture of linear chains
with reversible bonds and orthogonal chemistry. The beads
represent the monomers and the effective particles in the AM
and EF systems, respectively. By depiction of the two

components with different colors, demixing (which as
anticipated in section 2 occurs spontaneously by evolution
from an initially mixed state) is evident and confirms the
expectation from the theoretical phase diagram. This is
quantitatively reflected in the partial components of the total
static structure factor of the molecular centers-of-mass, Sαβ(q),
where α, β refer to the components (1,2) of the mixture, so
that S11(q) and S22(q) represent correlations within a same
component and S12(q) represents cross-correlations between
chains of different components. These quantities are calculated
as

S q N N iq r r( ) ( ) exp ( )
j k

j k
1/2

,

∑= ⟨ [ · − ]⟩αβ α β
α β−

(10)

In this equation Nα is the number of relevant coordinates of
the α-component in the simulation box (the molecular centers-
of-mass in the AM and all the effective particles in the EF), and
rj
α denotes the coordinate of the jth molecule of the α-
component. The average is performed over several realizations
of the box and different runs at the same concentration. The
total structure factor, S(q), accounting for all the correlations
without distinguishing components of the mixture, is just
obtained by running the sum over all pairs of coordinates in
the box (irrespective of their respective components) and
normalizing the sum by the inverse of the total of number
molecules NA + NB. Figure 14 shows the total S(q) (panel (a))
and the partial components Sαβ(q) (panels (b−d)) of the
molecular centers-of-mass in the AM system. It should be
noted that because the composition is equimolar and the self-
interactions of the two components are identical, S11(q) =
S22(q). No signatures of growing length scales are observed in
the total S(q), which shows the typical behavior of a
homogeneous fluid with increasing the concentration. The
growing length scales of the two separating phases are
evidenced by the growing peaks of the partial S11(q) =

Figure 12. Theoretical phase diagram (reduced concentration ρ/ρ*
vs composition) for the binary mixture of linear chains with
orthogonal reversible bonds The dashed and thick lines are the
spinodal and binodal lines, respectively. The thin straight lines join
the coexistence points.

Figure 13. Snapshots from the all monomers simulations (upper row) and the effective fluid simulations (bottom row) at different concentrations
of the binary mixture of linear chains with orthogonal chemistry of bonding. The beads represent the actual monomers (21600 in total) in the AM
case and the effective ultrasoft particles (1000) in the EF. Molecules belonging to different components of the mixture are represented by different
colors. Demixing is evident in both the AM and EF simulations.
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S22(q) at q → 0, with the corresponding anticorrelation for
S12(q).
Phase separation has been found in a simplified mixture

where all nonbonded and bonded interactions are identical,
with the only constraint that intermolecular bonds between
different components of the mixture are not allowed. A more
realistic model should at least introduce different activation
energies for the two kinds of orthogonal reactive sites. This
would likely break the symmetry of the phase diagram with
respect to the mixture composition, but the qualitative
emerging scenario (demixing and impossibility of forming
the IPN in equilibrium) is robust. Indeed, demixing is
inherently connected to the more repulsive character of the
cross-interactions than of the self-interactions. Introducing
different bond activation energies will lead to different bonding
probabilities and hence different self-interactions of the two
components, but the cross-interaction should still be much
more repulsive than the self-interactions because, as discussed
in section 3, the latter contain the combinatorial entropic gain
associated with intermolecular bonding, this being absent
between polymers of different components of the mixture.
Having said this, there is plenty of evidence in the literature on
formation of IPNs with purely reversible cross-links.51−55 Our
results suggests that such IPNs are kinetically trapped states.
The typical activation energies of the dynamic bonds in these
IPNs are of several hundreds of kJ/mol,55 i.e., of the order of
100kBT, whereas in our simulations they are about 10kBT.
Moreover the experimental chains are much longer than the
unentangled chains used here (the entanglement monomer
density for our linear precursors is20 ρe ≳ 0.42σ−3). Thus, our
results suggest that in real systems the combination of both
high molecular weights and long lifetimes of the bonds creates
large barriers impeding relaxation to the equilibrium demixed
state, and the IPNs (created in out-of-equilibrium conditions)
remain stable.

5. CONCLUSIONS
We have systematically investigated effective potentials
between polymeric molecules functionalized with groups that
can form intra- and intermolecular reversible bonds. A rich
scenario emerges for the dependence of the effective potential
on the relevant control parameters. In spite of the additional

complexity introduced by the high number of instantaneous
intramolecular loops originated by the reversible cross-links,
the topological interaction of the unbonded precursor (linear
or ring) still has a dominant contribution in the bonded state,
leading to very different strengths of the effective interaction
(being more repulsive for the ring-based system). Even if the
molecular weight and the fraction of reactive sites are fixed, the
effective potentials exhibit a significant dependence on the
degree of randomness of the sequence of reactive sites (from
fully random to periodic). If the reactive sites of the two
polymers are orthogonal, so that only intramolecular bonds are
formed, decreasing randomness leads to longer intramolecular
loops, which hinders interpenetrability and leads to a stronger
effective intermolecular repulsion. The opposite effect is found
if reactive sites of both polymers are identical and both intra-
and intermolecular bonding occur. We suggest that the free
energy loss caused by the intermolecular bonds is mainly given
by combinatorial entropy arising from the exponential number
of bonding patters that the two intermolecularly bonded
polymers can adopt.
We have explored the accuracy of the effective potentials to

describe the equilibrium correlations between centers-of-mass
in the crowded solutions. In the case of the linear chains a very
good agreement between the effective fluid and the all-
monomer simulations is found ever far above the overlap
concentration. This is consistent with the fact that shrinking is
highly prevented by forming intermolecular bonds with
neighboring chains, which makes the conformations at high
dilution weakly sensitive to crowding, and many-body effects
basically contribute as a flat energy landscape. In a similar
fashion to the case of rings with no bonds, the comparison with
the effective fluid is less satisfactory in the system of rings with
reactive sites, which does not show the cluster phase predicted
by the effective fluid. This is consistent with the crowding-
driven collapse to crumpled globule-like conformations,
reflecting the relevance of the many-body interactions. We
have further extended our investigation to a 50/50 mixture of
the former types of polymers. The results for the partial
correlations are qualitatively similar to those of the pure
polymers and the system is fully miscible.
Finally, we have explored the possibility of forming two

interpenetrated networks in a linear−linear mixture where the
reactive sites of the two components are orthogonal; i.e.,
intermolecular bonds only occur between chains of the same
component. In agreement with the energetic penalty found for
the effective cross-interaction potential, the simulations of the
effective fluid, and the phase diagram obtained by the test
particle route, no interpenetrated networks are found, and the
two components demix. This result suggests that real
interpenetrated networks, where the lifetimes of the reversible
bonds are much longer than in our simulations, are kinetically
trapped states with large entropic barriers impeding the
relaxation to the equilibrium demixed state (arrested
demixing). Our results may motivate future experimental
tests in mixtures of oligomers with low bond energies. On the
other hand, an interesting problem to address in the future is
the accuracy of the effective fluid approach in dual networks,
where both types of orthogonal reactive sites are present in all
the chains, including the determination of the phase behavior
in mixtures with different fractions of both sites in each
component. Another future line of research would be to
improve the description of the real system through the
incorporation of additional degrees of freedom. A promising

Figure 14. Total (a) and partial static structure factors (b−d) of the
centers-of-mass in the AM binary mixture of linear chains with
reversible bonds and orthogonal chemistry. Because the fraction and
the self-interactions of each component are identical, S11(q) = S22(q).
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approach56 is to introduce an intermediate pair potential that
depends on the instantaneous values of the intermolecular
distance and of the two molecular sizes. The latter are coupled
to the density of the solution through the equations of motion,
leading to an effective potential (averaged over the size
distribution) that becomes density dependent. Work in these
directions is in progress.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.macromol.1c02610.

Derivation of TPR equations; Tables S1 and S2: details
of the simulated boxes for the crowded solutions;
Figures S1 and S2: sequence of reactive sites for the
systems used in the derivation of the effective potentials;
Figures S3−S10: characterization of several conforma-
tional and structural properties (PDF)

■ AUTHOR INFORMATION
Corresponding Author
Angel J. Moreno − Centro de Física de Materiales (CSIC,
UPV/EHU) and Materials Physics Center MPC, 20018 San
Sebastián, Spain; Donostia International Physics Center,
20018 San Sebastián, Spain; orcid.org/0000-0001-9971-
0763; Email: angeljose.moreno@ehu.es

Authors
Mariarita Paciolla − Centro de Física de Materiales (CSIC,
UPV/EHU) and Materials Physics Center MPC, 20018 San
Sebastián, Spain

Christos N. Likos − Faculty of Physics, University of Vienna,
A-1090 Vienna, Austria; orcid.org/0000-0003-3550-
4834

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.macromol.1c02610

Notes
The authors declare no competing financial interest.
An initial draft of the manuscript can be found at 10.48550/
arXiv.2112.13067.

■ ACKNOWLEDGMENTS
We acknowledge Grant PGC2018-094548-B-I00 funded by
MCIN/AEI/10.13039/501100011033 and by “ERDF A way
of making Europe”. We also acknowledge Grant IT-1175-19
funded by Eusko Jaurlaritza (Basque Government). We thank
F. Sciortino and L. Rovigatti for valuable discussions. Part of
this work was performed during M.P.’s secondment at the
University of Vienna. M.P. acknowledges the travel grant from
Materials Physics Center MPC and thanks the staff of
University of Vienna for their hospitality.

■ REFERENCES
(1) Pomposo, J. A., Ed.; Single-Chain Polymer Nanoparticles:
Synthesis, Characterization, Simulations, and Applications; John Wiley
& Sons: Weinheim, Germany, 2017.
(2) Lyon, C. K.; Prasher, A.; Hanlon, A. M.; Tuten, B. T.; Tooley, C.
A.; Frank, P. G.; Berda, E. B. A brief user’s guide to single-chain
nanoparticles. Polym. Chem. 2015, 6, 181−197.
(3) González-Burgos, M.; Latorre-Sánchez, A.; Pomposo, J. A.
Advances in single chain technology. Chem. Soc. Rev. 2015, 44, 6122−
6142.

(4) Hanlon, A. M.; Lyon, C. K.; Berda, E. B. What Is Next in Single-
Chain Nanoparticles? Macromolecules 2016, 49, 2−14.
(5) Rothfuss, H.; Knöfel, N. D.; Roesky, P. W.; Barner-Kowollik, C.
Single-Chain Nanoparticles as Catalytic Nanoreactors. J. Am. Chem.
Soc. 2018, 140, 5875−5881.
(6) Kröger, A. P. P.; Komil, M. I.; Hamelmann, N. M.; Juan, A.;
Stenzel, M. H.; Paulusse, J. M. J. Glucose Single-Chain Polymer
Nanoparticles for Cellular Targeting. ACS Macro Lett. 2019, 8, 95−
101.
(7) Verde-Sesto, E.; Arbe, A.; Moreno, A. J.; Cangialosi, D.; Alegría,
A.; Colmenero, J.; Pomposo, J. A. Single-chain nanoparticles:
opportunities provided by internal and external confinement. Mater.
Horiz. 2020, 7, 2292−2313.
(8) Deng, L.; Albertazzi, L.; Palmans, A. R. A. Elucidating the
Stability of Single-Chain Polymeric Nanoparticles in Biological Media
and Living Cells. Biomacromolecules 2022, 23, 326−338.
(9) Moreno, A. J.; Lo Verso, F.; Sánchez-Sánchez, A.; Arbe, A.;
Colmenero, J.; Pomposo, J. A. Advantages of Orthogonal Folding of
Single Polymer Chains to Soft Nanoparticles. Macromolecules 2013,
46, 9748−9759.
(10) Rabbel, H.; Breier, P.; Sommer, J.-U. Swelling Behavior of
Single-Chain Polymer Nanoparticles: Theory and Simulation. Macro-
molecules 2017, 50, 7410−7418.
(11) Lo Verso, F.; Pomposo, J. A.; Colmenero, J.; Moreno, A. J.
Multi-orthogonal folding of single polymer chains into soft nano-
particles. Soft Matter 2014, 10, 4813−4821.
(12) Lo Verso, F.; Pomposo, J. A.; Colmenero, J.; Moreno, A. J.
Simulation guided design of globular single-chain nanoparticles by
tuning the solvent quality. Soft Matter 2015, 11, 1369−1375.
(13) Formanek, M.; Moreno, A. J. Effects of precursor topology and
synthesis under crowding conditions on the structure of single-chain
polymer nanoparticles. Soft Matter 2017, 13, 6430−6438.
(14) Murray, B. S.; Fulton, D. A. Dynamic Covalent Single-Chain
Polymer Nanoparticles. Macromolecules 2011, 44, 7242−7252.
(15) Sánchez-Sánchez, A.; Fulton, D. A.; Pomposo, J. A. pH-
responsive single-chain polymer nanoparticles utilising dynamic
covalent enamine bonds. Chem. Commun. 2014, 50, 1871−1874.
(16) Liu, Y.; Pauloehrl, T.; Presolski, S. I.; Albertazzi, L.; Palmans, A.
R. A.; Meijer, E. W. Modular Synthetic Platform for the Construction
of Functional Single-Chain Polymeric Nanoparticles: From Aqueous
Catalysis to Photosensitization. J. Am. Chem. Soc. 2015, 137, 13096−
13105.
(17) Chen, J.; Wang, J.; Bai, Y.; Li, K.; Garcia, E. S.; Ferguson, A. L.;
Zimmerman, S. C. Enzyme-like Click Catalysis by a Copper-
Containing Single-Chain Nanoparticle. J. Am. Chem. Soc. 2018, 140,
13695−13702.
(18) Whitaker, D. E.; Mahon, C. S.; Fulton, D. A. Thermoresponsive
Dynamic Covalent Single-Chain Polymer Nanoparticles Reversibly
Transform into a Hydrogel. Angew. Chem., Int. Ed. 2013, 52, 956−
959.
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Polymer Networks Incorporating Dynamic Covalent Bonds. Polymers
2021, 13, 396.
(56) Baul, U.; Dzubiella, J. Structure and dynamics of responsive
colloids with dynamical polydispersity. J. Phys.: Condensed Matt. 2021,
33, 174002.

Macromolecules pubs.acs.org/Macromolecules Article

https://doi.org/10.1021/acs.macromol.1c02610
Macromolecules 2022, 55, 2659−2674

2674

https://doi.org/10.1021/acs.jpclett.6b00144?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.6b00144?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.7b02438?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.7b02438?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/S0370-1573(00)00141-1
https://doi.org/10.1016/S0370-1573(00)00141-1
https://doi.org/10.1039/b601916c
https://doi.org/10.1103/PhysRevLett.80.4450
https://doi.org/10.1103/PhysRevLett.80.4450
https://doi.org/10.1063/1.1689292
https://doi.org/10.1063/1.1689292
https://doi.org/10.1021/ma400308x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma400308x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C2SM27199K
https://doi.org/10.1039/C2SM27199K
https://doi.org/10.1038/s41467-021-27412-3
https://doi.org/10.1038/s41467-021-27412-3
https://doi.org/10.1063/1.2738064
https://doi.org/10.1063/1.2738064
https://doi.org/10.1063/1.2738064
https://doi.org/10.1103/PhysRevLett.96.045701
https://doi.org/10.1103/PhysRevLett.96.045701
https://doi.org/10.1039/c001523g
https://doi.org/10.1039/c001523g
https://doi.org/10.1063/1.458541
https://doi.org/10.1063/1.458541
https://doi.org/10.1021/acs.macromol.7b02186?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.7b02186?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.7b02186?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1140/epje/i2017-11496-5
https://doi.org/10.1140/epje/i2017-11496-5
https://doi.org/10.1063/1.1332996
https://doi.org/10.1063/1.3182848
https://doi.org/10.1063/1.3182848
https://doi.org/10.1021/acsnano.9b10123?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.9b10123?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C4SM01904K
https://doi.org/10.1039/C4SM01904K
https://doi.org/10.1103/PhysRevE.63.031206
https://doi.org/10.1103/PhysRevE.63.031206
https://doi.org/10.1103/PhysRevE.63.031206
https://doi.org/10.1063/1.2172596
https://doi.org/10.1063/1.2172596
https://doi.org/10.1063/1.2172596
https://doi.org/10.1103/PhysRevE.62.7961
https://doi.org/10.1103/PhysRevE.62.7961
https://doi.org/10.1002/adfm.201404357
https://doi.org/10.1002/adfm.201404357
https://doi.org/10.1002/adfm.201404357
https://doi.org/10.1002/macp.201700348
https://doi.org/10.1002/macp.201700348
https://doi.org/10.1002/macp.201700348
https://doi.org/10.1021/acsmacrolett.7b00172?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsmacrolett.7b00172?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsmacrolett.7b00172?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.0c00494?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.0c00494?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3390/polym13030396
https://doi.org/10.3390/polym13030396
https://doi.org/10.1088/1361-648X/abdbaa
https://doi.org/10.1088/1361-648X/abdbaa
pubs.acs.org/Macromolecules?ref=pdf
https://doi.org/10.1021/acs.macromol.1c02610?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

