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A B S T R A C T

Triple negative (TN) breast cancers make up some 15% of all breast cancers. Approximately

10e15% are mutant for the tumor suppressor, BRCA1. BRCA1 is required for homologous

recombination-mediated DNA repair and deficiency results in genomic instability.

BRCA1-mutated tumors have a specific pattern of genomic copy number aberrations that

can be used to classify tumors as BRCA1-like or non-BRCA1-like. BRCA1 mutation, promoter

methylation, BRCA1-like status and genome-wide expression data was determined for 112

TN breast cancer samples with long-term follow-up. Mutation status for 21 known DNA

repair genes and PIK3CA was assessed. Gene expression and mutation frequency in

BRCA1-like and non-BRCA1-like tumors were compared. Multivariate survival analysis

was performed using the Cox proportional hazards model. BRCA1 germline mutation

was identified in 10% of patients and 15% of tumors were BRCA1 promoter methylated.

Fifty-five percent of tumors classified as BRCA1-like. The functions of genes significantly

up-regulated in BRCA1-like tumors included cell cycle and DNA recombination and repair.

TP53 was found to be frequently mutated in BRCA1-like (P < 0.05), while PIK3CA was

frequently mutated in non-BRCA1-like tumors (P < 0.05). A significant association with

worse prognosis was evident for patients with BRCA1-like tumors (adjusted HR ¼ 3.32,

95% CI ¼ 1.30e8.48, P ¼ 0.01). TN tumors can be further divided into two major subgroups,
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BRCA1-like and non-BRCA1-like with different mutation and expression patterns and prog-

noses. Based on these molecular patterns, subgroups may be more sensitive to specific tar-

geted agents such as PI3K or PARP inhibitors.

ª 2015 The Authors. Published by Elsevier B.V. on behalf of Federation of European

Biochemical Societies. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction pattern of CNAs was used to develop classifiers to identify tu-
The heterogeneous nature of breast cancer, both at the histo-

logical and molecular levels, has been well documented and

this information is routinely used to guide treatment deci-

sions (Curtis et al., 2012; Dvinge et al., 2013; Perou et al.,

2000; Sørlie et al., 2001; van de Vijver et al., 2002). Despite

the reduced incidence of death from breast cancer overall in

the last two decades in the industrialized world, certain sub-

types remain difficult to treat due to limited treatment options

(Hudis and Gianni, 2011). One such subtype which makes up

around 12e17% of all breast cancers, triple negative (TN)

breast cancer, is characterized by low or lack of expression

of estrogen (ER) and progesterone (PR) receptors and lack of

human epidermal growth factor receptor 2 (HER2) over-

expression (Criscitiello et al., 2012; Foulkes et al., 2010). Other

than conventional chemotherapy few treatment options are

currently available for these patients (Linn and Van ’t Veer,

2009). Multiple studies have shown poor recurrence-free and

overall survival for patients with TN breast cancer, which

tends to be aggressive and metastasize early, independent of

other known breast cancer prognostic factors such as tumor

size, grade and number of positive lymph nodes (Hudis and

Gianni, 2011).

Depending on the ethnic background and age of the inves-

tigated cohort, around 10e15% TN breast cancers are mutant

for the tumor suppressor, BRCA1 (Foulkes et al., 2003).

BRCA1-associated breast cancer displays a high frequency of

TP53 mutations (Mani�e et al., 2009). Furthermore, BRCA1-

mutant breast cancers are commonly high-grade and most

frequently classified as basal-like breast cancers e those

that display basal cellular markers, such as cytokeratin5/6

(Foulkes et al., 2003). The categories of basal-like and TN do

not completely overlap, although, it has been previously re-

ported that a substantial proportion of BRCA1-mutant tumors

are TN, basal-like or both (Linn and Van ’t Veer, 2009).

DNA double-strand-breaks (DSBs), most frequently caused

by UV light and metabolic processes are repaired by several

mechanisms. Homologous recombination (HR) repair e is

the cell’s most error-free mechanism (Bouwman and

Jonkers, 2012; Moynahan et al., 1999). Cells without functional

BRCA1, most often through mutation and loss-of-

heterozygosity or promoter methylation, are deficient in HR.

These cells utilize an alternate mechanism to repair DSBs

known to be highly error-prone, called non-homologous-

end-joining (NHEJ), which results in genomic instability

(Turner et al., 2004;Wang et al., 2001). Thus, BRCA1-mutant tu-

mors have numerous copy number aberrations (CNAs).

Importantly, these tumors display a very characteristic

pattern of gains and losses of genomic DNA. This specific
mors with the same pattern and to identify some sporadic,

non-BRCA1-mutant tumors that have the same pattern of

CNAs as BRCA1-mutated tumors. This group with the charac-

teristic CNAs pattern, larger than the BRCA1-mutant tumors

alone, is referred to as BRCA1-like (Lips et al., 2011; Schouten

et al., 2013; Vollebergh et al., 2011; Wessels et al., 2002). These

tests assign copy number profiles to BRCA1-like or non-BRCA1-

like status based on the copy number pattern alone and can be

implemented on all types of copy number data such as array

data, next generation sequencing data and MLPA (multiplex

ligation-dependent probe amplification) data. The BRCA1-

like category, which is based on only copy number pattern

frequently includes tumors with a BRCA1 mutation (as the

classifiers were trained on these samples) and tumors with

BRCA1 promoter methylation. However, a large number of tu-

mors identified by these classifiers lack an apparent defect in

BRCA1 itself. A number of these classifiers are capable of pre-

dicting benefit from specific therapies regardless of mutation

status, particularly those utilizing DSB-inducing agents, such

as bifunctional alkylators and intensified platinum-based

chemotherapy (Lips et al., 2011; Schouten et al., 2015;

Vollebergh et al., 2011).

The mechanisms underlying genomic instability in TN

breast cancer are complex and although these tumors are

frequently BRCA1-associated, it remains unclear what role

BRCA1 deficiency may play in the process (Bouwman and

Jonkers, 2012; Turner et al., 2004). In this study, we first aimed

to characterize our TN cohort with respect to BRCA1mutation,

promoter methylation and BRCA1-like status. To gain insight

into the mechanism that results in genomic instability in TN

BRCA1-like tumors, we sought to identify genes and their

functions that are differentially expressed between BRCA1-

like and non-BRCA1-like tumors. In addition, we compared

the mutation frequency of non-BRCA1-like and BRCA1-like tu-

mors in a subset of DNA repair genes and PIK3CA, the second

most frequently mutated gene in breast cancer besides TP53

(Cancer Genome Atlas Network, 2012). Finally, we retrospec-

tively assessed outcome of BRCA1-like patients in comparison

to non-BRCA1-like patients.
2. Methods

2.1. Patient selection and characteristics

The FP7 European Union funded RATHER Project (Rational

Therapy for Breast Cancer) is a collaborative effort that aims

to integrate gene expression profiling, copy number aberra-

tions, kinome variation and kinase activation status in an
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effort to identify new targets for therapy of difficult-to-treat

breast cancer subtypes, including TN breast cancer (www.ra-

therproject.com). The RATHER Project retrospectively identi-

fied 112 TN breast cancer patients in total: 64 from

Netherlands Cancer Institute (NKI), Amsterdam, the

Netherlands and 48 fromAddenbrooke’s Hospital, Cambridge,

UK.

Potential TN primary tumors were selected from tumor

registration and existing study databases at both sites (bio-

bank). The primary inclusion criterion for this RATHER TN

cohort was availability of sufficient frozen tissue for DNA,

RNA and protein isolation for all RATHER project assays in

the tissue bank. As a result the cohort may be skewed towards

larger tumors. Neoadjuvant treated patients were an exclu-

sion criterion when establishing the cohort. In addition, we

enriched for patients diagnosed before 1999, since in that

era only node-positive patients received adjuvant systemic

therapy. Premenopausal node-positive patients would receive

adjuvant chemotherapy while postmenopausal node-positive

patients would receive adjuvant endocrine therapy. Only from

2000 onwards was the estrogen-receptor status taken into ac-

count when prescribing adjuvant endocrine therapy. These

historical treatments mean 23/112 patients were treated

with endocrine-therapy despite having TN disease. The

criteria allowed us to study a cohort of mainly adjuvant sys-

temic therapy-na€ıve patients with long-term follow-up. We

collected database information on ER, PR and HER2 status, tu-

mor size and grade, number of tumor positive lymph nodes,

surgery and treatment information, age at diagnosis, diag-

nosis date as well as follow-up data.

Frozen tumors with 30% or greater tumor content (based on

average score before and after sectioning, 2 � 8 mm serial sec-

tions, hematoxylin and eosin-stained (JJFM)) were used for

further analyses. Formalin fixed paraffin-embedded (FFPE)ma-

terial was used to construct tissue microarrays (TMAs) for

expert pathological review (KJ), which included ER, PR and

HER2 status, grade and tumor percentage determination. Sam-

pleswere defined as ER- or PR-positivewhen 10% ormore of tu-

mor cells stained positive with immunohistochemical

staining. HER2 sampleswith intensity�2were considered pos-

itive and confirmedwhen possible using TargetPrint� (Agendia

BV, Amsterdam, Netherlands) (Roepman et al., 2009). Samples

withmissing ER, PR or HER2 status upon reviewwere included,

as diagnostic information was originally indicative of TN sta-

tus. The local medical ethical authorities of both centers

approved of the collection protocols.

2.2. DNA/RNA isolation

All samples were processed following one standard operating

protocol to isolate high quality nucleic acids. Each frozen tu-

mor was serially sectioned for DNA and RNA isolation

(30 � 30 mm serial sections for both). DNA was isolated using

the DNeasy kit for purification of total DNA for animal tissues

using two spin columns (Qiagen). On each column samples

were eluted twice with 100 ml volumes of buffer AE for a final

volume of 400 ml. For RNA extraction, depending on the size

of the tumor sample, 20e30 sections of 30 mm were used for

RNA extraction. Sections were homogenized in Qiazol (Qia-

gen) using a tissue lyser (Qiagen) and total RNA was isolated
with Qiazol according the manufacturer’s instructions. The

RNA was further purified using the RNeasy Mini Kit (Qiagen).

2.3. Microarray hybridization and analysis

The RNA quality was assessed by a 2100 Bioanalyzer (Agilent

Technologies) and samples with RIN above 5 were selected

for further analysis. RNA was amplified, labeled and hybrid-

ized to the Agendia custom-designed whole genome microar-

rays (Agilent Technologies) and raw fluorescence intensities

were quantified using Feature Extraction software (Agilent

Technologies) according to the manufacturer’s protocols.

The microarray expression dataset was imported into R/Bio-

conductor software (R version 3.0.2, www.bioconductor.org)

for pre-processing.

Feature signal intensities were processed and extracted ac-

cording to the ‘limma’ Bioconductor R package (Bolstad et al.,

2003) with background subtraction using an offset of 10. All

probe intensities <1 were set as missing values. The log2-

transformed probe intensitieswere quantile normalized using

‘limma’. A principal component analysis showed a batch ef-

fect for biobank, which was adjusted for using ComBat

(Johnson et al., 2007). Missing values were imputed by 10-

nearest neighbor imputation. Genes with multiple probes

were summarized by the first principal component of a corre-

lating subset.

Differential analysis, clustering and visualization of the

data was performed with R (version 3.1.2) using the ‘heat-

map.3’ package standard settings. Differential expression be-

tween classes was assessed using ANOVA in R with the

significant genes selected univariately with FDR <0.001 and

a fold change >1.

2.4. Capture library and next-generation sequencing
and analysis

For each sample, Illumina TruSeq indexed libraries were con-

structed according to manufacturer’s instructions (Illumina)

before enrichment by capture with a biotinylated RNA probe

set targeting the human kinome and a range of cancer related

genes (Agilent Technologies). We sequenced 10e12 samples

on a single Illumina HiSeq lane to generate 50, 51 or 60 bp

paired-end reads. Raw sequence data were aligned using Bur-

rowseWheeler Aligner (BWA) to the human genome (Ensembl

37). Single nucleotide variants and indels were called using

SAMTools on unique paired aligned data. Matched normal

germline DNA was unavailable for most samples so we used

dbSNP and variant data from the Exome Variant Server to

remove potential germline variants. We further focused on

variants predicted to alter protein coding sequence or splicing

of genes according to Ensembl VariantEffectPredictor and not

identified in a pool of 80 normal DNAs taken from various tis-

sues. All variants found in the COSMIC database were

retained. In addition, we retained any BRCA1 or BRCA2 vari-

ants that were clinically relevant according to the Breast Can-

cer Information Core database (BIC, http://

research.nhgri.nih.gov/bic/). Following our filtering steps,

samples with variants were termed BRCA1/2-mutant. For all

other genes, the same criteria were applied except the BIC

database step and the remaining variants were termed

http://www.ratherproject.com
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Figure 1 eHeatmap indicating data collected for all 112 TN samples.

Each box represents one sample, with color indicating type of data for

that sample in each row: positive (black), negative (gray) and no data

due to failed experiment (white). BRCA1 mutation, promoter

methylation and -like status data were obtained for 104, 98 and 112

samples, respectively.
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mutant. BRCA1 mutations were validated when possible by

germ-line sequencing using the Nextera Custom Enrichment

kit (Illumina) on matched normal DNA according to manufac-

turer’s instructions, traditional capillary sequencing, or small

PCR amplicon pooling targeting the variant using Illumina

TruSeq indexing.

2.5. BRCA1-like classification

We used the MLPA (multiplex ligation-dependent probe

amplification) method to determine the BRCA1-like status of

the tumor DNAs. The assay was performed, fragments

analyzed and data normalized according to the manufac-

turer’s protocol using the SALSAMLPA P376 BRCA1ness probe-

mix (MRC-Holland). Class prediction (BRCA1-like/non-BRCA1-

like) was carried out on the normalized data according to pub-

lished instructions (Lips et al., 2011).

2.6. BRCA1 promoter methylation

Semi-quantitative BRCA1 promoter methylation was deter-

mined using the MS-MLPA (methylation-specific-MLPA)

method. This assay combines copy number detection with

methylation-specific enzymatic restriction. The assay was

performed, fragments analyzed, data normalized and a cutoff

of 20% was used to call a sample methylated according to

manufacturer’s protocols using the SALSA MLPA ME001

Tumour suppressor probemix 1 (MRC-Holland).

2.7. Statistical analysis

Patient characteristics were compared between BRCA1-like

and non-BRCA1-like classes and statistical significance was

examined by a Wilcoxon rank-sum test or Pearson’s chi-

squared test using R version 3.1.2. Survival analysis was con-

ducted in R using the ‘survival’ package to employ the Cox

proportional hazards model. We observed patients from date

of diagnosis until 2012 for distant recurrence-free survival

and censored data in accordance with the STEEP (Standard Ef-

ficacy Endpoint) system (Hudis et al., 2007). We used only

follow-up data up to 10 years. An event includes distant recur-

rence, death from breast cancer, death from non-breast can-

cer cause and death from unknown cause. Co-variates in the

Cox proportional model included BRCA1-like status, patient

age at diagnosis, treatment (radiotherapy/hormonal/chemo-

therapy), tumor size, grade and number of tumor positive

lymph nodes. We included stratification of all Cox models

for biobank (NKI/Addenbrooke’s Hospital). To assess the accu-

racy of the model we included a test for the Proportional Haz-

ards (PH) assumptions using cox.zph in the ‘survival’ package.

The ‘Mutascape’ R package (manuscript in preparation)

was employed to test differences in gene mutation frequency

for two analyses: 1) within classes and 2) between classes

(BRCA1-like and non-BRCA1-like). Within classes a binomial

test was employed to determine if the number of mutations

in a genewas greater than expected by chance. Given the total

number of mutations in the dataset and the size of the gene,

probabilities of occurrence were computed, which can be

interpreted as the probability of a gene’s mutation frequency

being random (modeled by the null binomial distribution) or
not. A multiple testing correction was applied to the p-values

with the BenjaminieHochberg method. The distribution of

mutation location was also determined and visualized in a

bubble plot to examine mutation recurrence as well as fre-

quency within genes. For genes identified as significantly

mutated we used the Fisher’s exact test to compare the distri-

bution between the BRCA1-like and non-BRCA1-like groups.

The p-values were adjusted as above.
3. Results

112 TN samples were available for further analysis based on

inclusion criteria, central pathological review of TN immuno-

histochemical status and BRCA1-like status data availability.

To characterize the TN cohort with respect to BRCA1 defi-

ciency and characteristic genomic instability, we assessed

the samples for BRCA1 mutation, promoter methylation and

BRCA1-like status. We identified 62 of 112 as BRCA1-like tu-

mors, 10 of 104 as BRCA1 mutated tumors (8 with missing

data) and 14 of 94 (18 with missing data) as BRCA1 promoter

methylated tumors (Figure 1). ‘Missing data’ indicates a failed

experiment. We found BRCA1 germline mutation and BRCA1

promoter methylation overlap with BRCA1-like status in 70%

(7/10) and 79% (11/14) of the samples, respectively. Patient

characteristics and association with BRCA1-like status are

found in Table 1.

To better understand the mechanisms that can result in

genomic instability, we analyzed gene expression data of the

TN samples in combination with BRCA1 mutation/promoter

methylation and BRCA1-like status. We aimed to explore the

gene expression data for association with BRCA1-like status

(top variable genes with a fold change >1, N ¼ 3569).

Figure 2A shows the unsupervised clustering of the 279 most

significantly differentially expressed genes between BRCA1-

like and non-BRCA1-like samples (ANOVA, FDR < 0.001, fold-

change >1). We also classified our samples according to

known gene expression TN subgroups from the Lehmann

group with the TNBCType tool (http://cbc.mc.vanderbilt.edu/

tnbc/) using the top variable genes with a fold change >1

(N¼ 3569). Significantly different genes showed no specific as-

sociation with TNBCType classifications (Chen et al., 2012)

(Supplementary Figure 1).
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Table 1 e Patient characteristics.

Variable Non-BRCA1-like
N ¼ 50
No. (%)

BRCA1-like
N ¼ 62
No. (%)

P

Year of diagnosis 0.69a

Mean 2001 2001

Range 1989e2009 1988e2009

Age at diagnosis 0.02a

Mean 59 52

Range 31e88 26e78

Time to last followup

(days)

0.10a

Mean 1973 2024

Range 0e5267 242e5634

Tumor size (cm) 0.42b

0e1 5 (10.0) 2 (3.2)

>1e2 15 (30.0) 21 (33.9)

>2e5 22 (44.0) 34 (55.0)

>5 3 (6.0) 3 (4.8)

Mean 2.7 2.8

Number positive lymph

nodes

0.51b

0 29 (58.0) 42 (67.7)

1e3 12 (24.0) 12 (19.4)

4e9 3 (6.0) 1 (1.6)

�10 3 (6.0) 5 (8.1)

Mean 2.0 1.6

Tumor histological grade 0.20b

1 0 (0.0) 0 (0.0)

2 7 (14.0) 4 (6.5)

3 33 (66.0) 53 (85.5)

Mean 2.8 2.9

Adj. chemotherapy 0.01b

No treatment 32 (64.0) 23 (37.1)

Treatment 18 (36.0) 39 (63.0)

Biobank 0.02b

Addenbrooke’s Hosp. 28 (56.0) 20 (32.3)

NKI 22 (44.0) 42 (67.7)

Abbreviations: Adj., adjuvant; Hosp., hospital; NKI, Netherlands

Cancer Institute.

a Wilcoxon-rank-sum-test.

b Pearson’s chi-squared test.
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Ingenuity Pathway Analysis (IPA, Ingenuity) was used to

identify key biological processes regulated by the differen-

tially expressed genes. The most down-regulated genes in

BRCA1-like tumors are related to cellular maintenance and

proliferation and development of lymphocytes

(Supplementary File 1). The most up-regulated genes were

enriched for cell cycle and DNA replication, associated with

recombination and repair, within a network centered on

FOXM1 (Figure 2B). FOXM1 gene expression was significantly

up-regulated in BRCA1-like samples (P < 0.001) along with

CDK4 and CDK6 (P < 0.001 and P ¼ 0.03, respectively).

Although MYC has been found to be amplified in BRCA1

germline mutated tumors (Adem et al., 2004; Grushko et al.,

2004) with associated over-expression (Blancato et al., 2004)

we did not observe significant increased MYC gene expres-

sion in BRCA1-like versus non-BRCA1-like tumors (P ¼ 0.78).

BRCA1-mutant versus wild type (BRCA1-like removed)

showed no significant difference in MYC gene expression

(P ¼ 0.41).
Using next-generation sequencing, we analyzed the exons

of 21 genes known to be involved in DNA repair for mutations

as well as PIK3CA (Supplementary File 1). Significantly

mutated genes were identified taking their genomic size into

account (see Methods). In both classes, TP53 was significantly

more frequently mutated than expected by chance, with non-

BRCA1-like tumors mutated at 50% and BRCA1-like at 84%

(adjusted P < 0.001 and adjusted P < 0.001, respectively)

(Figure 3A and B). Only TP53 was significantly differentially

mutated between classes with BRCA1-like tumors more

frequently mutated than non-BRCA1-like tumors (adjusted

P ¼ 0.002). Additionally, we investigated the type of TP53 mu-

tations (non-truncating or truncating) identified in both clas-

ses and found a trend indicating more truncating mutations

in BRCA1-like tumors than in non-BRCA1-like tumors

(Figure 3B, Supplementary File 1). Interestingly, we only

observed a high frequency of PIK3CA mutations in the non-

BRCA1-like tumors (21%; adjusted P ¼ <0.001). There was no

evidence of significant associations with PIK3CA hotspot mu-

tations between the two classes although numbers were

very small (Supplementary File 1).

We observed 33 events in 112 patients. Distant recurrence-

free survival of the cohort was visualized with respect to

BRCA1-like status (univariate analysis stratified for biobank)

using the KaplaneMeier method, which indicated a trend in

association with worse outcome for BRCA1-like patients

(adjusted log rank, P ¼ 0.08) (Figure 4). We calculated the

adjusted hazard ratios in multivariate and found patients

with a BRCA1-like tumor had a significantly worse prognosis

than patients with a non-BRCA1-like tumor (HR ¼ 3.32, 95%

CI ¼ 1.30e8.48, P ¼ 0.01) (Table 2). The proportional hazards

assumption test was not significant (P ¼ 0.13) in the global

model indicating the accuracy of the constructed Cox model

for the dataset. The significant prognostic findings were also

true for breast cancer specific survival and recurrence-free

survival. The test for interaction between chemotherapy and

BRCA1-like status was not significant (P ¼ 0.75,

Supplementary Table 1). There are no patients for whom

treatment data were not available. Because of the significant

difference in TP53 mutation frequency between classes, we

also calculated adjusted hazard ratios in a multivariate model

for TP53 mutation status. We observed no significant associa-

tion with prognosis for TP53 mutation status (HR ¼ 1.39, 95%

CI ¼ 0.55e3.53, P ¼ 0.49).
4. Discussion

The underlying mechanisms responsible for genomic insta-

bility are complex and although BRCA1 deficiency and

genomic instability are frequently associated, the exact role

of BRCA1 in the process remains elusive. To further explore

the role of BRCA1 and characteristic genomic instability in

TN tumors, we examined differences in mutation and gene

expression patterns between BRCA1-like and non-BRCA1-like

tumors combined with BRCA1 mutation and promoter

methylation data. The percentages of BRCA1 mutation, pro-

moter methylation and BRCA1-like status indicate the group

is representative of the larger TN population. In addition,

although our selection criteria may have skewed the cohort

http://dx.doi.org/10.1016/j.molonc.2015.04.011
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Figure 2 e A, Unsupervised clustering of 279 top variable genes most differentially expressed between BRCA1-like and non-BRCA1-like status

(ANOVA, FDR <0.001, fold-change >1) in 112 TN breast tumors. Scaled expression value is denoted as the column Z-score and plotted in

redeblue color scale. Red indicates high expression and blue low expression. Information Columns 1, 2 and 3 depict BRCA1-like status, BRCA1

promoter methylation status and BRCA1 mutation status, respectively. For all sample columns, assay positive is indicated by blue, negative by gray

and no data due to failed experiment by white. B, Network analysis of up-regulated differentially expressed genes, indicating level of up-regulation

in BRCA1-like compared with non-BRCA1-like (red shading), direct relationships (solid lines), and indirect relationships (interrupted lines).
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toward larger tumors, we did not observe evidence for this

when comparing tumor size classes with a similar previously

published cohort (n ¼ 180, Fisher’s exact test, P ¼ 0.69) (Dent

et al., 2007) (data not shown). We did find tumors of grade III

were more frequent in the RATHER cohort compared to the

Dent cohort (Fisher’s exact test, P < 0.001) (data not shown).

As has been reported previously, we found overlap of

BRCA1-like status with most BRCA1 germline mutation and

promoter methylation cases. Consistent with other reports,

not all BRCA1 mutations are co-detected with the BRCA1-like

assay. The relative ability to detect true signal between muta-

tion detection methods and the BRCA1-like status assay may

be a contributing factor in these apparent discrepant samples.

It is also possible that a BRCA1 germline mutation carrier may

develop a non-BRCA1-like (sporadic) tumor. Our definition of

mutation status is however imperfect as we have no support-

ing functional data to determine the impact of the putative

mutation on the protein function.

Both classes, BRCA1-like and non-BRCA1-like alone, had a

significantly higher frequency of TP53mutation than expected

by chance. While TN tumors are known to be enriched for

TP53 mutations and are frequently associated with BRCA1

associated breast cancer (Mani�e et al., 2009), we observed

TP53 was more frequently mutated in the BRCA1-like than

the non-BRCA1-like class. Although TP53 has been reported
to be mutated at around 80e90% in basal-like breast cancers

(Cancer Genome Atlas Network, 2012; Mani�e et al., 2009),

this study and another using similar sequencing technology

have found a slightly lower frequency in TN breast cancer

(54 and 68%, respectively) (Shah et al., 2012). This difference

may be reflective of the difference between basal-like and

TN disease or because many of the reports of TP53 mutation

and basal-like breast cancer have been carried out using capil-

lary sequencing technology. This technology is likely to have

more precision in mutation detection in low complexity re-

gions and for insertions/deletions, but is economically unfea-

sible for large sequencing projects. The prognostic value in

breast cancer of mutations in TP53 has been found to be spe-

cific to ER-positive disease (Silwal-Pandit et al., 2014). Howev-

er, the predictive capacity of TP53 mutations in breast cancer

for various therapies has not been thoroughly examined. In

recent findings a combination of Chk1 inhibition with irinote-

can, a DNA-damage inducing agent has shown promise in TN

xenograft experiments in mice (Ma et al., 2012). BRCA1-like tu-

morsmay bemore susceptible to such treatments due to their

high frequency of TP53 mutation.

It has been shown that TN breast cancer can be further

subdivided into different molecular subtypes based on

mRNA expression (Chen et al., 2012; Teschendorff et al.,

2007; Waddell et al., 2010) and that these subtypes differ in

http://dx.doi.org/10.1016/j.molonc.2015.04.011
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Figure 3 e Bubble plot of mutational analysis of 21 DNA repair genes and PIK3CA. Panels A and B depict analysis within non-BRCA1-like

(n [ 48 samples) and BRCA1-like classes (n [ 56 samples), respectively. Each mutated gene is represented as a bubble positioned according to its

size on the x-axis (Gene coverage [ log basepair) and its mutation frequency within the group on the y-axis. Bubble size indicates the statistical

significance and color represents the type of mutation pattern, recurrent or non-recurrent (genes in red tend to have mutations at recurrent

positions, e.g. ‘hotspots’, while genes in white tend to have mutations at unique positions in the various samples). Genes are listed in

Supplementary File 1. *Adj. P indicates the BenjaminieHochberg adjusted p-value.
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their response to therapy (Lehmann et al., 2011; Masuda

et al., 2013). We added the Lehmann TNBCType classifica-

tions to the heatmap depicting the most differentially

expressed genes based on BRCA1-like status and found both

‘basal-like 1’ and ‘mesenchymal’ categories are most associ-

ated with BRCA1-like status (Pearson’s chi squared test,

P < 0.001). This indicates that BRCA1-like based gene expres-

sion patterns, which identify a different group of patients are

novel in TN breast cancer (Supplementary Figure 1). Through

differential gene expression analysis, we have identified

BRCA1-like TNs may be susceptible to therapies targeting

DNA repair and cell cycle pathways. The up-regulated genes

in BRCA1-like tumors formed a network centered on the

FOXM1 gene, which is a key regulator of cell cycle progression

and DNA damage repair and has been found to be over-

expressed in most human cancers (Alvarez-Fern�andez and

Medema, 2013). This may explain the BRCA1-like status of

these samples regardless of their BRCA1 mutation/promoter

methylation status as aberrant FOXM1 can lead to re-entry

into the cell cycle after DNA damage induced arrest rather

than apoptosis (Alvarez-Fern�andez et al., 2010). Furthermore,

breast cancer cell lines with FOXM1 over-expression are

linked to acquired resistance to specific chemotherapeutics;

these cell lines can be re-sensitized to these treatments

when FOXM1 is depleted, potentially explaining the poor

prognosis of BRCA1-like patients in our study (Kwok et al.,

2010). Targeting FOXM1 through CDK4/6 inhibitors has

shown promising results in melanoma cell lines (Anders

et al., 2011) and FOXM1 suppression increases sensitivity to

certain DNA damaging agents in tumor cell lines (Kwok

et al., 2010; Zhang et al., 2012).
Our finding that FOXM1, CDK4 and CDK6 are highly

expressed in BRCA1-like tumors is of particular interest in

light of recent reports that CDK4/6 inhibitors are effective in

various breast tumors (Dean et al., 2012; Finn et al., 2009).

BRCA1-mutated breast tumors, which are deficient in HR-

mediated DNA double-strand-break-repair are known to

respond to PARP inhibitors, such as olaparib (Gelmon et al.,

2011; Kaufman et al., 2014; Tutt et al., 2010). Inhibition of

FOXM1 may sensitize cells to PARP inhibition allowing for

effective combination treatments. In addition, previous

studies have shown that BRCA1-like breast cancer patients

benefit substantially from intensified alkylating chemo-

therapy in comparison to those treated with conventional

chemotherapy (Lips et al., 2011; Schouten et al., 2015;

Vollebergh et al., 2011).

Multivariate survival analysis is routinely employed in

retrospective studies to determine the independent prog-

nostic factors, which reduce survival time. The Cox propor-

tional hazards model was used to estimate the hazard for

each co-variable including all potentially confounding co-

variables in the model. Using this analysis we identified

BRCA1-like status to be an independent prognostic factor

with BRCA1-like patients associated with a worse prognosis.

In the multivariate Cox model, although it is not significant,

there is an indication that chemotherapy treatment may be

an influencing factor on prognosis when stratifying patients

for BRCA1-like status (Table 2). To rule out that the prognostic

association is influenced by a differential treatment effect, we

employed a test for interaction with chemotherapy and

BRCA1-like status. This test was not significant (P ¼ 0.75) indi-

cating the differential prognosis is not influenced by

http://dx.doi.org/10.1016/j.molonc.2015.04.011
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http://dx.doi.org/10.1016/j.molonc.2015.04.011


Figure 4 e Survival analysis. Distant recurrence-free survival

(univariate) of the cohort with respect to BRCA1-like status using the

KaplaneMeier method (adjusted log-rank, P [ 0.08). The blue line

indicates non-BRCA1-like patients and the red line indicates BRCA1-

like patients. Patients at risk are shown on the x-axis in corresponding

colors.
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chemotherapy treatment (Supplemental Table 1). In addition

we tested association of biobank with chemotherapy and

found no significant association (P ¼ 0.52). These findings sug-

gest BRCA1-like status is a prognosticmarker in TN breast can-

cer and is not influenced by treatment effect in this cohort. It

is important to note, we have only examined the prognostic

capacity of the biomarker, BRCA1-like status in our series

and are unable to determine its power to predict derived

benefit from specific treatments such as platinum salts as

we do not have access to those data and the setting is not

amenable to those analyses. It remains that specific treat-

ments which may be present in our series may mask the

BRCA1-like prognostic effect. To examine this, we employed

multivariate survival analysis on only the non-adjuvant-

systemically treated patients in the series (no chemo-/
Table 2eCox proportional hazards model for DRFS in TN patients
(N [ 112).

Variable HR 95% CI P

BRCA1-like (BRCA1-like vs

non-BRCA1-like)

3.32 1.30e8.48 0.01

Tumor size (cm) 1.41 1.02e1.95 0.04

Number of positive lymph nodes 1.11 1.01e1.21 0.03

Tumor histological grade 0.88 0.23e3.34 0.85

Hormonal treatment (true vs false) 0.89 0.31e2.55 0.83

Adj. chemotherapy treatment

(true vs false)

0.43 0.17e1.12 0.09

Radiotherapy treatment

(true vs false)

0.59 0.23e1.52 0.27

Age at diagnosis 0.98 0.94e1.01 0.19

Abbreviations: DRFS, distant recurrence-free survival; TN, triple

negative; HR, hazard ratio; Adj., adjuvant; CI, confidence interval.
hormonal therapy). We observe in this subgroup the same

trend of BRCA1-like status associated with a worse prognosis

(HR ¼ 6.75, 95% CI ¼ 0.85e53.72, P ¼ 0.07) lending further sup-

port that BRCA1-like status is an independent prognostic fac-

tor in this series (Supplementary Figure 2 and Supplementary

Table 2).

Both these and previous findings identified that a portion

of BRCA1-like tumors are not BRCA1mutated/promoter meth-

ylated (Lips et al., 2013; Vollebergh et al., 2011), indicating that

alterations in another gene or genes involved in DNA-repair

besides BRCA1 may be associated with the characteristic

genomic instability of BRCA1-like tumors. Based on previous

reports, the BRCA1-like group is likely to be susceptible to spe-

cific treatments aimed at DNA damage and cell cycle path-

ways, such as PARP, Chk1 or CDK4/6-FOXM1 inhibitors and/

or intensified alkylating agents or platinum compounds,

regardless of BRCA1mutation or promotermethylation status.

Prospective clinical trials should deliver final proof for these

assumptions. Recently we found evidence that BRCA1-like

breast cancer patients derivedmore benefit from neoadjuvant

carboplatin/veliparib added to a standard regimen of

doxorubicin-cyclophosphamide, followed by paclitaxel, than

non-BRCA1-like patients in the I-SPY 2 trial (Glas et al., 2014).

The biomarker� treatment interaction odds ratio of achieving

a pathological complete remission was 9.3 (P ¼ 0.02) with car-

boplatin/veliparib added to standard chemotherapy, when

compared to standard chemotherapy alone, according to

BRCA1-like status (Glas et al., 2014). These interesting data

need confirmation in a second (neo)adjuvant trial where the

addition of DNA damaging agents to standard chemotherapy

has been studied. Recently Tutt et al. presented very inter-

esting response and progression-free survival data regarding

first line treatment of M1 TNBC patients randomized between

docetaxel or carboplatin. Only BRCA1 mutation status inter-

acted significantly with treatment, while another homologous

recombination deficiency test (Myriad HRD Assay, Myriad Ge-

netics) did not (Tutt et al., 2014) indicating some BRCA-associ-

ated tests are not capable of predicting response in the

metastatic setting. We have recently initiated a prospective

randomized-controlled trial with a 2 � 2 factorial design of

paclitaxel � bevacizumab versus carboplatin-

cyclophosphamide � bevacizumab in first line metastatic

TNBC patients (NCT01898117). One of the primary endpoints

of this trial is to validate the BRCA1-like status as a biomarker

for alkylating chemotherapy benefit.

PIK3CA is a frequently mutated gene in breast cancer,

although most often associated with luminal-type tumors

rather than basal-like or TN tumors (Cancer Genome Atlas

Network, 2012). Patients with tumors mutated in PIK3CA

may benefit from inhibitors of the PI3K/AKT/mTOR pathway.

We found PIK3CA mutation frequency significantly higher

than expected within the non-BRCA1-like class alone with a

frequency of 21%. This is roughly 2 times higher than previous

reports of basal-like tumors (Cancer Genome Atlas Network,

2012) suggesting non-BRCA1-like classification enriches for

patients who may benefit from PI3K inhibitors. To substanti-

ate this, a small trial with a Bayesian design would be helpful.

It has been reported that not all hotspot mutations confer

pathway activation as measured by downstream-activated

proteins (Beelen et al., 2014). For this reason, downstream-

http://dx.doi.org/10.1016/j.molonc.2015.04.011
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activated proteins should be included in any trials assessing

the inhibition of PI3K pathway in PIK3CAmutated patients. Pa-

tients with TN tumors are currently unlikely to be tested for

PIK3CA mutations or pathway activation, however, our find-

ings indicate a portion of these patients may benefit from

PI3K/AKT/mTOR pathway inhibition. Importantly, the non-

BRCA1-like subgroup makes up �45% of all TNs.

In summary, our data indicate one sizeable subgroup

(around 9.5%) may bemore susceptible to PI3K/AKT/mTOR in-

hibitors which are currently available in clinical practice but

are not routinely administered to TN patients. In addition,

we have indicated a second subgroup which is more likely to

respond to DNA damaging agents and putatively also to

CDK4/6 inhibitors based on the gene expression pattern and

high frequency of TP53 mutations. In conclusion, while TN

breast cancer currently has few treatment options, using mu-

tation and gene expression analysis to molecularly character-

ized these tumors we have identified relatively large

subgroups within the subtype that may benefit from specific

tailored treatments, potentially impacting a substantial

portion of TN breast cancers in total.
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