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Abstract

In this paper, we present dSASA (differentiable SASA), an exact geometric method

to calculate solvent accessible surface area (SASA) analytically along with atomic

derivatives on GPUs. The atoms in a molecule are first assigned to tetrahedra in

groups of four atoms by Delaunay tetrahedrization adapted for efficient GPU imple-

mentation and the SASA values for atoms and molecules are calculated based on the

tetrahedrization information and inclusion-exclusion method. The SASA values from

the numerical icosahedral-based method can be reproduced with more than 98% accu-

racy for both proteins and RNAs. Having been implemented on GPUs and incorporated
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into the software Amber, we can apply dSASA to implicit solvent molecular dynamics

simulations with inclusion of this nonpolar term. The current GPU version of GB/SA

simulations has been accelerated up to nearly 20-fold compared to the CPU version

and it outperforms LCPO as the system size increases. The performance and impor-

tance of the nonpolar part in implicit solvent modeling are demonstrated in GB/SA

simulations of proteins and accurate SASA calculation of nucleic acids.

Introduction

An accurate description of the solvent environment is essential for biomolecular modeling,

as biological machines are functioning in an aqueous environment. The solute-solvent in-

teractions and the rearrangement of water molecules induce the change of molecular shapes

and the solvation free energy ∆Gsol.
1 Including water molecules in explicit solvent simu-

lations produces more accurate simulation results at the cost of redundant calculation for

the pairwise interactions between water molecules, while the friction induced by collisions

with water molecules can further slow down the conformational sampling of the solute. In

implicit solvent models, the solvent is treated as a continuum and the system is simulated

without explicit water molecules. The major advantage of implicit solvent models is the

ability to explore the conformational space more efficiently, which can find applications in

protein folding studies and structure prediction,2,3 solvation free energy calculation using

Poisson-Boltzmann surface area (PBSA)4 or generalized Born surface area (GBSA),5 and

binding free energy calculation using molecular mechanics Poisson-Boltzmann surface area

(MM-PBSA).6

In implicit solvent modeling, the solvation free energy can be decomposed into polar and

nonpolar contributions7 and the expression is

∆Gsol = ∆Gpol +∆Gcav +∆GvdW = ∆Gpol +∆Gnp,
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where the polar term ∆Gpol gives the difference between the work of uncharging the solute in

vacuum and the work of charging the solute in solvent, ∆Gcav denotes the accommodation of

cavity in the solvent for solute and ∆GvdW represents the van der Waals interactions between

solute and solvent. The Poisson-Boltzmann (PB) equation models the electric field for the

electrostatic interactions between solvent and solute8 and can be used to compute ∆Gpol.

The ∆Gcav and ∆GvdW are usually combined into one nonpolar term ∆Gnp. It is considered

to be proportional to the number of atoms in the solute having direct contact with solvent

molecules and can be estimated in terms of the solvent accessible surface area (SASA).9

Although it was pointed out that incorporation of the volume term into the computation

can provide a more complete description of the nonpolar part,10,11 the surface area based

methods can still have good performance in the prediction of the native-like conformations

of proteins and the estimation of ligand-binding affinities.12

In implicit solvent molecular dynamics (MD) simulations, most of the effort was devoted

to the development of the dominant polar part. Due to the complexity of solving PB equa-

tion, the generalized Born (GB) method5 was proposed to approximate PB equation with

simple functions. The improvement of GB model on proteins13–15 and the variant to nucleic

acids16 and its implementation on graphics processing units (GPUs)17 helped GB achieve

popularity in recent years. The main goal of GB model is to reproduce the “perfect” ef-

fective radii and the free energies estimated from PB model. In particular, the pairwise

decomposition version of GB18 is ideal for implementation on GPU with parallel computing.

Although the performance of GB is improving, poor folding stabilities were observed in fold-

ing studies,2 structure predictions3 and de novo designed peptides with high helicity.19 As

hypothesized in,2 the ignored nonpolar solvation term might result in instability; this was

supported by improved fold stability when an approximate SASA-based nonpolar term was

added to the same GB model.20 As shown in that paper, the inclusion of the nonpolar term

in the GB/SA MD simulations can produce more stable trajectories and better simulated

melting temperatures than GB-only simulations.
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There exist several methods to calculate the molecular surface area on CPUs and GPUs.

However, only a few of them can be applied to MD simulations because most of them lack re-

liable derivatives for atoms. The solvent accessible surface was proposed by Lee and Richards

in.21 A numerical implementation by Connolly in22 is computationally expensive and lacks

analytical derivatives. The derivatives are unreliable or unavailable in other methods, such as

grid based, neighbor-counting or machine learning.23 The approximation methods on GPU

have similar issues.24,25 In CHARMM software, GBMV2/SA26 can reproduce the molecular

surface and has been implemented on GPUs.27 However, the computation is based on grid

points so lower resolution of the grids may generate less reliable results and higher resolution

may result in slower simulation speed. The first available method for approximating surface

area along with derivatives in Amber is LCPO28 which is able to estimate SASA based on

the neighbors of atoms. As the MD simulations in Amber are now primarily on GPUs,17,29

the data transfer between CPU and GPU deteriorates the performance because LCPO is

implemented only on CPUs. Recently, another approximate pairwise method with a faster

speed (up to 30 times faster), called pwSASA, was proposed and it achieved a comparable

accuracy to LCPO according to the testing of proteins in.20 The main purpose of pwSASA

was to investigate the impact of the nonpolar term on the MD simulations of proteins with

a simple and fast pairwise approximation suitable for running entirely on GPUs. The sim-

ple form of the functions provided faster simulation speed and did prove the significance of

nonpolar term in the simulations. However, the computed SASA values had various corre-

lation coefficients from 0.6 to 0.9 compared with the numerical computation for a number

of proteins, which is partly because the higher order interactions were ignored. Besides the

varied performance for different protein systems, a parametrization for nucleic acids or small

molecule ligands is not available in pwSASA because it was trained exclusively based on

proteins.

As every atom in a molecule can be represented by a sphere, the surface areas have also

been studied by computational geometry methods. One reliable and accurate method was
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developed based on the Alpha Complex construction30 by which the geometric descriptors

of molecules can be computed through union of balls. The Alpha Complex is obtained with

the atomic coordinates and radii information and can be applied to decompose the space

into small segments through which the surface areas are computed by using Gauss-Bonnet

theorem31 or inclusion-exclusion formulas.32–34 Recently, the extension to other geometric

measures, such as volumes, mean and Gaussian curvatures, was proposed in35 where the

parallel implementation can achieve speed improvement over the serial version. However,

the full implementation of such method on GPUs is still unavailable because each step in

the method requires substantial effort to utilize the parallel computing property to improveh

performance.

Here we present dSASA, a new method to calculate SASA and its derivatives with respect

to atomic coordinates using Alpha Complex theory and inclusion-exclusion method. This

fully analytical and accurate algorithm has been implemented on GPUs and incorporated in

Amber software. The basic background and the procedures in the method will be first shown.

The results for the assessment of the method are next given: the accuracy of estimation is

examined by several protein systems with diverse topologies, the speed of the GPU version in

GB/SA simulations is compared with the CPU version and other methods, the performance

in GB/SA simulations on proteins by including this nonpolar term and the validation on

RNAs. The findings prove the valuable role of an accurate nonpolar term in improving the

ability to predict native-like structures using the implicit solvent simulations.

Methods

Theory and estimations for nonpolar solvation

In the implicit solvent model, the nonpolar solvation term is usually SASA-based.5 The

free energy is proposed to be proportional to SASA with a surface tension parameter (γ):

∆Gnp = γSASA. The surface tension is assumed to be identical for all atoms.
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The relatively accurate SASA values can be calculated by ICOSA numerical method36

(gbsa = 2 in Amber), in which starting from an icosahedron a water probe with radius

1.4 Å is recursively rolled on the van der Waals surface of the molecule. The implementation

of this method in current Amber MD simulations is unavailable because of the absence of

atomic forces. The linear combinations of pairwise overlaps (LCPO; gbsa = 1 in Amber) is

the first stable algorithm used in GB/SA MD simulations in Amber. The neighbor list of

a central atom is used to subtract the pairwise overlapping from its isolated sphere areas,

which results in the computation complexity O(N2), so it will slow down quadratically as

the size of the molecule increases. In the GPU version of GB/SA MD with this method, the

data transfer between CPU and GPU decelerates the simulations as its implementation is

CPU/GPU hybrid. The pairwise approximation of SASA (pwSASA; gbsa = 3 in Amber)20

is the recently developed algorithm to calculate SASA that is suitable for implementing on

GPUs. The idea is similar to LCPO but only considers the interactions between two atoms,

which would achieve a faster speed but result in inaccuracy especially when the molecule

contains some unusual atoms. The parameters for the atom types are trained exclusively

on proteins so the application to other systems, such as nucleic acids or small molecules, is

limited.

dSASA: an analytical method for SASA

Here we introduce dSASA, a geometric method (gbsa = 4 in Amber) to compute SASA. As

has been explored in,28,37 to be consistent with other methods, we assume that the heavy

atoms in molecules can have a good approximation to the molecular SASA, reducing com-

putational cost substantially. The atomic radii for four common elements (C, 1.7 Å; O, 1.5

Å; N, 1.55 Å; S, 1.8 Å) are used in ICOSA, pwSASA and dSASA, while LCPO is using

different radii (C, 1.7 Å; O, 1.6 Å; N, 1.65 Å; S, 1.9 Å). Every atom can be represented by a

weighted point p′i = (pi, di) in the point set A ⊂ R3 ×R, which contains the 3D coordinates

pi in space and one point weight di. The radius of water probe is set to 1.4 Å, and the weight
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di = (atom radiusi + 1.4)2. Here we present the key steps, while a complete description of

the analytical development of the method is given in.33,34 The method has three main steps

and the depiction of the method is shown in Figure 1.

Step 1. Calculate the 3D weighted Delaunay Tetrahedrization (wDT) of all points through

which the points are assigned into tetrahedra. This step has computation complexity

O(N logN) and is the dominating part of the method.

Step 2. Create and classify the dual complex C which denotes the possible interactions

among close atoms. The complex C contains the lists of simplices, such as the vertices (the

atoms), edges (interactions between two atoms), triangles (interactions among three atoms)

and tetrahedra (interactions among four atoms) from the tetrahedrization. These simplices

are then filtered and classified into interior and exterior (denoted by ∂C) based on their

connection information.

Step 3. Compute the surface areas using Laguerre intersection cells and inclusion-exclusion

method based on the exterior simplices ∂C.

Figure 1: Depiction of the method in 2D. Every solid circle is the expanded atom including
the water probe, black points show the center of atoms. The dashed black lines denote part
of the tetrahedrization of the molecule. The atoms in green and blue (such as p1, p2) are
exterior, grey atom p3 is interior. The boundary of Laguerre cells of atoms are shown in
solid red lines, and exterior boundary of Laguerre cells of molecule in solvent is represented
by the dashed red curves which correspond to SASA.
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In the following, we show the process to compute the atomic SASA based on the exterior

simplices ∂C because only the atoms having direct contacts with solvent contribute to the

surface areas. The simplices have been classified into interior and exterior at Step 2. The

Laguerre diagram of the point set is conjugate to the wDT. The space can be decomposed

into cells by the conjugated Laguerre diagram as shown in Figure 1. The Laguerre cell for a

weighted point (atom) p′i is defined by

Li = {x ∈ R3 : |pi − x|2 − di ≤ |pj − x|2 − dj, ∀p′j ∈ A}.

Every weighted point can also be treated as a ball Bi = {x ∈ R3 : |pi−x|2−di ≤ 0}, and the

union of these balls B = ∪Bi forms the space filling model of A. As shown in Figure 1, the

Laguerre cells of exterior atoms can be unbounded or larger than the real size of the atoms,

then a more realistic representation for an atom is given by the Laguerre-intersection cell,

the intersection part of the Laguerre cell and the ball: LIi = Li ∩ Bi. The boundary area of

Figure 2: Inclusion-exclusion process of pi. The red circle denotes the standalone ball Si of
pi; the shaped region indicates the intersection Sij and Sik with pj, pk; the small red region
is the intersection of three atoms Sijk.

the Laguerre intersection part LIi of an exterior atom is the SASA value S i = surf(LIi).

Suppose there are k points in a subset T ⊂ A. The number of points in T is |T | = k and

the centers of points are denoted by T ′. The convex hull (conv) of points in T ′ is written as
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σT , and the term ST is the surface area of the intersection of the balls in T . By applying

the inclusion-exclusion method shown in Figure 2, the SASA of the molecule is

S =
∑

σT∈∂C

(−1)k+1cTST , k = 1, 2, 3.

The coefficients cT are given by the corresponding simplices. When |T | = 1, i.e. a vertex

vi: cT = ΩT is the fraction of the ball i outside the tetrahedra in C. ΩT is the normalized

outer solid angle subtended by the union of tetrahedra in C containing vi. When |T | = 2,

i.e. an edge eij: cT = ΦT is normalized outer dihedral angle of the union of tetrahedra in C

which contain the edge eij. When |T | = 3, i.e. a triangle tijk: cT = 1 or 0.5 is the fraction

of ST that is outside the union of tetrahedra in C. Here vi = pi, eij = conv({pi, pj}), and

tijk = conv({pi, pj, pk}).

The contribution of individual atom p′i to the molecular surface area is

S i = ΩiS
(i)
i −

∑
eij∈∂C

ΦijS
(i)
ij +

∑
tijk∈∂C

cijkS
(i)
ijk, (1)

where S
(i)
T is the contribution of ST to S i, and

∑n
i=1 S i = S.

Then the corresponding derivative for the points can be obtained on the basis of the

atomic surface area with respect to the atomic coordinates in the molecule as

∇S i = ∇ΩiS
(i)
i −

∑
eij∈∂C

(∇ΦijS
(i)
ij + Φij∇S

(i)
ij ) +

∑
tijk∈∂C

cijk∇S
(i)
ijk. (2)

The terms in the equations are calculated as follows. When |T | = 1, S
(i)
T = 4πdi. Let I1

be the set of tetrahedra in C to which the point p′i belongs to. For ζI ∈ I1 define ωI as the

normalized inner solid angle subtended by the tetrahedron ζI from the point p′i. Then

ΩT = 1−
∑
ζI∈I1

ωI
T , with the derivative ∇ΩT = −

∑
ζI∈I1

∇ωI
T . (3)
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The normalized inner solid angle, ωI , of a tetrahedron pipjpkpl subtended by the vectors a

= pj − pi, b = pk − pi, and c = pl − pi is shown in the left of Figure 3 and given by the

equation

ωI =
1

2π
arctan

(
|a · (b× c)|

abc+ (a · b)c+ (a · c)b+ (b · c)a

)
,

where a = |a| is the length of a and likewise for b and c.

Figure 3: Left: Tetrahedron formed by points pi, pj, pk, pl. Right: Center x of the intersection
of three balls and the resulting tetrahedron.

When |T | = 2, the intersection of two atoms p′i, p
′
j is shown in Figure 2. S

(i)
T = 2π

√
dihi.

Let I2 be the set of tetrahedra in C containing the edge σT . For ζI ∈ I2 define ϕI as the

normalized inner dihedral angle of ζI along σT . Then

ΦT = 1−
∑
ζI∈I2

ϕI
T .

The normalized inner dihedral angle between planes pipjpk and pipjpl with normals nk and

nl is shown in the left of Figure 3 and given by

ϕI =
arccos(nk · nl)

2π
, with ∇ϕI =

−∇(nk · nl)

2π
√

1− (nk · nl)2
. (4)
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Then the derivative terms for Eq.(2) are

∇S
(i)
T = 2π

√
di∇hi, ∇ΦT = −

∑
ζI∈I2

∇ϕI
T . (5)

When |T | = 3, consider T = {p′i, p′j, p′k}. The surface area of the common intersection

of three balls can be written as a weighted sum of the surface area of the single and double

intersections. If p′i, p
′
j, p

′
k have a non-empty intersection then there are two points in common

with the surfaces of all three balls, shown in the right of Figure 3. Denote one of the two

points x, define p′x = (x, 0) ∈ R3 × R, and let Tx = {p′i, p′j, p′k, p′x}. Let Sx
2 be the set of

edges defined by σTx and Sx
1 the set of vertices in σTx . The atomic surface area of p′i from

the intersection of p′i, p
′
j, p

′
k is given by

1

2
S(i)
T = Φx

ijS
(i)x
ij + Φx

ikS
(i)x
ik − Ωx

i S
x
i , (6)

where Φx
ij is the normalized dihedral angle of σTx along the edge σij, Ω

x
i is the normalized solid

angle of σTx subtended from pi and similarly for other combinations i, j, k. The derivative

of this term is

1

2
∇S(i)

T = ∇Φx
ijS

(i)x
ij + Φx

ij∇S
(i)x
ij +∇Φx

ikS
(i)x
ik + Φx

ik∇S
(i)x
ik −∇Ωx

i S
x
i . (7)

By substituting Eqs. (3), (4), (5), (6) and (7) into Eqs. (1) and (2), we can obtain the

surface area and the derivative for every atom. More details of the description and the

equations can be found in33,34 . However, the atomic derivatives may become discontinuous

when atoms are approaching. Through detailed analysis in33 , it can be seen that most com-

mon type of discontinuities occur when two atoms become externally tangent. We examine

here the simplest case where only two atoms with extended radii ri = 2.9, rj = 3.1 Å are

considered to show the possible singularity in the calculation. The changing process of the

SASA values and the atomic derivatives is given in Figure 4. In the left, the summation
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of SASA values is continuous as two atoms are approaching from a long distance and the

minimal value occurs when two atoms are internally tangent. In the right, the magnitude

of the atomic derivatives has a leap when two atoms are externally tangent at which the

singularity occurs. As investigated in33 , the singularity rarely happens when the solvent

radius is 1.4 Å. In the implementation, we need one threshold value ϵ to determine the ex-

ternal tangency if ||pi − pj| − (ri + rj)| < ϵ. When ϵ = 10−6, the external tangency was not

detected after simulating a few systems for thousands of steps. When ϵ = 10−3, it may have

one such case after dozens of steps simulation. On the other hand, the magnitude of the

leap in the atomic derivatives is less than 20 Å2 and the surface tension is usually less than

0.01 kcal/(mol· Å2), so the impact of such singularity is insignificant compared to the overall

forces for exterior atoms whose magnitude can be more than 10 kcal/(mol· Å2). Given the

little chance of happening and the tiny impact of the singularity on the overall forces of the

atoms, we can expect that the discontinuity in SASA calculation will have negligible impact

on the trajectories in GB/SA simulations.
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Figure 4: Trend of SASA and the magnitude of atomic derivatives as the distance of two
atomic centers is changing. The x-axis shows the distance between the atomic centers. The
summation of SASA values is on the left, while the atomic derivatives are on the right.
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Implementation of dSASA on GPU

As the implementation of MD in Amber has been done on GPUs17,29 , our main concern

here is to implement the method on GPUs to speed up the calculation, making it applicable

to longer time MD simulations, so we discuss more details about the necessary treatments

on GPUs below.

Weighted Delaunay Tetrahedrization

In the wDT, all possible connections among local points can be detected. Based on the coor-

dinates and weights, four local points are assigned to a tetrahedron having the property that

no other points will be inside the circumsphere of this tetrahedron. The wDT can be sequen-

tially computed on CPUs with complexity O(N logN). One parallel algorithm on GPUs to

generate exact wDT for a large dataset remains a challenge. The typical GPU implementa-

tion of wDT often obtains a near-Delaunay tetrahedrization followed by transformation to

CPU to generate the valid wDT. However, an algorithm gReg3D38 which is able to compute

the exact wDT on GPUs was implemented a few years ago. In the algorithm, all points are

first included into a cube with an appropriate size and next the points will be assigned to

smaller cubes. The local tetrahedrization for these small cubes are calculated in parallel,

followed by checking the consistency and applying necessary modifications to achieve the

final wDT. The largest size of the initial cube in this algorithm is 512, so the point set with

a greater size will be rescaled to fit into the cube, which may introduce a few errors. As the

SARS-CoV-2 spike protein containing nearly 4000 residues typically occupies a cube with

size 256, this algorithm can compute an exact wDT for proteins with thousands of residues

on GPUs. As shown in Figure 1, the black points are the center of atoms and dashed lines

connecting black points denote the edges in the tetrahedrization. The purpose of this step is

to obtain the dual complex C and the conjugated Laguerre diagram. In this diagram, every

point is represented by a cell enclosed by the red solid lines and dashed curves, then the

surface area can be calculated with such information.
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Extraction of exterior simplices and calculation of surface areas

The information of close atoms in the tetrahedra has been achieved in the wDT above.

However, some unrealistic connections and the interior contacts will not have contribution

to surface areas. Then we need to extract the exterior simplices ∂C containing the feasible

vertices, edges and triangles along with the connections among them, which will finally

be used to calculate SASA. The extraction of simplices on CPUs is serial and cannot be

implemented on GPUs directly. Here we provide more details for the extraction of simplices

on GPUs.

We first need to create lists of unique triangles, edges and vertices with connection infor-

mation. Take one tetrahedron as an example. It contains 4 triangles as faces, 6 edges and 4

vertices. One element in the list of triangles contains the information of three vertices and

the tetrahedra it belongs to, one edge element contains the information of two vertices and

the triangles and tetrahedra it is in, while one vertex element has the information of the

associated edges and tetrahedra.

The exported information from gReg3D provides the vertex indices of all tetrahedra, so

we can pull out all the information of edges and triangles in tetrahedra by taking advantage

of the parallelism on GPUs. One list of all possible triangles is created and every element

has three vertices and the associated tetrahedra. The list of all possible edges is constructed

with each element containing two vertices and the associated tetrahedra. Suppose there are

N tetrahedra, then 4N possible triangle elements and 6N possible edge elements are in the

lists respectively. However, some duplicate elements need to be filtered out to create the

lists of unique elements. Take the list of triangles as an example shown in Figure 5. We

first do lexical sorting for the list of triangles by the first three indices, bringing the same

triangles next to each other. Next, with parallel computing, we can identify the number of

the associated tetrahedra for a triangle. One triangle can belong to at most two tetrahedra.

In the following assignment, every element will check the three vertices of the next element

in the list, if three vertices are identical, then we will assign ‘1’ to the newly created array
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“idxTri” which indicates the triangle is duplicate, otherwise we assign ‘0’. We then can

identify the unique triangle elements in the list and record the indices in one array “Tri”:

a ‘1’ in “idxTri” is a new element, and the second ‘0’ in two consecutive ‘0’s indicates a

new element as well. Now we have the indices for all unique triangles and the number of

associated tetrahedra, then we can create the data structure “TriList” for these triangles.

When creating triangles, we extract a list of edges and assign the associated triangle indices

to this new list, which will provide partial information to edges. Following the similar process

above, we can create the lists of unique edges and unique vertices respectively.

Figure 5: Procedures to create the list for unique triangles.

With the lists for vertices, edges and triangles, we next can classify them into interior

and exterior, and record the indices of exterior simplices. The basic rule is: the triangle

with at most one associated tetrahedron is exterior, and one edge is exterior only if its two

vertices are both exterior. As shown in Figure 1, the atoms in green and blue are exterior

while the grey atom p3 is interior whose SASA value will be 0, the edge p1p2 is exterior and

the edges p1p3, p2p3 are interior. For a molecule with 1700 atoms, the numbers of tetrahedra,

triangles and edges are more than 11200, 22600 and 13000 respectively. These simplices can

be independently implemented in parallel on a GPU to speed up the classification. Given

the lists of exterior vertices, edges and triangles, we then can calculate atomic surface areas
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and gradients by Eqs. (1) and (2) in parallel and assign the values to individual atoms.

Simulated protein systems, RNA systems

Trp-cage variant Tc5b (PDB code, 1L2Y39) has 20 residues with the sequence NLYIQWLKD

GGPSSGRPPPS, and the burial of the hydrophobic tryptophan side chain provides the

driving force for its folding. It contains an α-helix, a 310-helix and a C-terminal PPII helix

and the Trp indole ring encapsulated in a cluster of Pro rings. It was designed and solved

via NMR experiment.

Homeodomain variant (PDB code, 2P6J40) contains 52 residues with sequence MKQW

SENVEEKLKEFVKRHδQRITQEELHδQYAQRLGLNEEAIRQFFEEFEQRK. It is a vari-

ant of Drosophila melanogaster engrailed homeodomain and was solved by NMR. It consists

of three α-helices connected by loop regions.

The 14-mer cUUCGg tetraloop hairpin RNA (PDB code, 2KOC41) is NMR-solved model

and contains 14 bases with sequence GGCACUUCGGUGCC, with the common and highly

stable UUCG loop.

The stem loop C 5‘AUA3’ triloop of Brome Mosaic virus RNA (PDB code, 1ESH42) is

composed of 13 bases with sequence GGUGCAUAGCACC. It is designed to contain the

triloop AUA in the middle and is an NMR-solved model.

The CD experiments provide the melting curves for Trp-cage39 and the melting temper-

ature for homeodomain variant.40 These two protein systems were studied in20 and the ab

initio folding experiments in2 using the same force field and solvent model, providing a good

reference to quantify the possible improvement by addition of a nonpolar solvation term.

Details of MD simulation

In the GB and GB/SA MD simulations, replica exchange molecular dynamics (REMD) was

applied to enhance the efficiency of sampling. The setting for the system is as follows: all

bonds involving hydrogen were added SHAKE constraints; Langevin dynamics (ntt = 3)
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with 1 ps−1 collision frequency was used; the time step was 4 fs by following the protocol

in43 through which the masses of hydrogen atoms can be repartitioned; exchanges between

adjacent temperature replicas were attempted every 1 ps; conformations were extracted every

0.1 ns. Trp-cage and homeodomain were parametrized by ff14SBonlysc44 with GBNeck215

and mbondi3 radii. The surface tension parameter was extensively tested in pwSASA20

for proteins and 5, 7 and 10 cal/(mol· Å2) were working properly in Amber. Then we

implemented the GB/SA simulations for LCPO, pwSASA and dSASA with 5 or 7 cal/(mol·

Å2).

For Trp-cage, two production runs starting from unfolded and the first NMR structure

were simulated for 1.0 µs in GB, LCPO, pwSASA and dSASA, with a REMD ladder of 8

temperatures (247.7, 264.0, 281.4, 300.0, 319.8, 340.9, 363.3, 387.3 K) . The backbone RMSD

cutoff 2.0 Å was applied to calculate the fraction of folded. For homeodomain variant, two

production runs starting from extended and the first NMR structure were simulated with

a ladder of 10 temperatures (288.7, 300.0, 311.7, 323.9, 336.6, 349.8, 363.5, 377.7, 392.4,

407.8 K) for 2.0 µs in GB and pwSASA, 1.0 µs for LCPO and 0.7 µs for dSASA. The

backbone RMSD cutoff 5.0 Å was used to calculate the fraction of folded. These cutoffs are

consistent with the study in.2,20 MD simulations were not performed for the RNA systems,

since weaknesses in current RNA force fields make it challenging to obtain stable simulations

for stable hairpins such as 2KOC even with fully explicit water.45

Results

Molecular SASA estimation

In the test set to validate SASA estimation, we selected eight proteins from the set of the

previously examined proteins for ab initio protein folding,2 in which the set of proteins

have diverse topologies: Trp-cage (20 residues), Fip35 (33 residues), NTL9 (39 residues),

BBL (47 residues), NuG2variant (56 residues), Cspa (69 residues), Lambda-repressor (80
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residues) and Top7 (92 residues). An ensemble of structures for every protein were extracted

from the protein folding trajectories in that work with an even interval, obtaining a set of

conformations with diverse atomic and molecular SASA values. The corresponding data

were estimated for every conformation using ICOSA, LCPO and pwSASA and dSASA. The

numerical method ICOSA can provide more accurate SASA estimation for molecules than

LCPO and pwSASA, so we mainly compared the molecular SASA values from dSASA with

ICOSA. The results are shown in Figure 6 and every point represents one conformation in

the trajectory. In all the systems, dSASA can generate well-correlated SASA values with

ICOSA as Pearson correlation coefficients of the linear regression are R2 = 0.98, 0.99 and

the slopes are also close to 1. We note that this close agreement in fact demonstrates the

relative accuracy of ICOSA as compared with our exact geometric method.

1700 2100 2500 2900

1700

2100

2500

2900

Slope=1.08
R2=0.99

Trp-cage

2700 3500 4300 5100

2700

3500

4300

5100

Slope=1.06
R2=0.99

Fip35

3000 3500 4000 4500 5000

3000

3500

4000

4500

5000

Slope=1.02
R2=0.98

NTL9

4000 5000 6000 7000

4000

5000

6000

7000

Slope=1.09
R2=0.99

BBL

4000 5000 6000 7000 8000

4000

5000

6000

7000

8000

Slope=1.05
R2=0.99

NuG2variant

4500 5250 6000 6750

4500

5250

6000

6750

Slope=1.01
R2=0.98

CSPA

6000 8000 10000 12000

6000

8000

10000

12000

Slope=1.07
R2=0.99

Lambda-repressor

5500 6500 7500 8500 9500

5500

6500

7500

8500

9500

Slope=1.01
R2=0.99

Top7

dSASA estimated molecular SASA ( Å2 )

IC
OS

A/
Nu

m
er

ica
l m

ol
ec

ul
ar

 S
AS

A 
( Å

2  )

Figure 6: Comparison of molecular SASA between dSASA and ICOSA numerical method for
the proteins. Each point represents one conformation of the protein. The diagonal dashed
lines indicate perfect agreement.

The molecular SASA values from LCPO and pwSASA were calculated using the same

conformations and compared with ICOSA method. As shown in Figure 7, the discrepancy of

LCPO molecular SASA values with ICOSA values varies for different conformations in the

systems. Overall, the LCPO tends to underestimate the values with most of the values are
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above the perfect agreement line. The correlation coefficients are around 0.9 but it is lower

than 0.9 for NTL9 and Cspa while the slopes are less than 0.9 for these two systems as well.

The results became worse with pwSASA shown in Figure 8, where the similar phenomenon

arose: the discrepancy of pwSASA molecular SASA values with ICOSA values varies for

conformations in the systems; furthermore, all the correlation coefficients are less than 0.9

and the coefficients can be less than 0.8 for NTL9, BBL, NuG2variant and Cspa.
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Figure 7: Comparison of molecular SASA between LCPO and ICOSA numerical method for
the proteins. Each point represents one conformation of the protein. The diagonal dashed
lines indicate perfect agreement.

Both LCPO and pwSASA use pairwise overlaps which can be relatively faster, but the

inexact calculation will lead to inaccuracy especially for some types of atoms, for example

both methods occasionally produce negative SASA values for individual atoms while the

atomic values from dSASA are all nonnegative. LCPO includes the higher order correction

terms to account for the overlap between two neighbors of the central atom. Then several

atom types are defined by the environment, such as the atomic number, the number of bonded

neighbors and the state of hybridization. Every atom type has predefined parameters through

training. Because of less data for certain atom types, the parameter values for these atoms

may generate unexpected values which explains the discrepancy for the proteins above. As
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Figure 8: Comparison of molecular SASA between pwSASA and ICOSA numerical method
for the proteins. Each point represents one conformation of the protein. The diagonal dashed
lines indicate perfect agreement.

noticed in,28 the method works better for more exposed atoms and tends to overestimate

the surface area of some buried atoms, such as the carboxyl carbons of the amino acids

Asp, Asn, Gln and Glu. pwSASA only considers the overlap between neighboring pairs

and was trained based on a number of protein systems to match the values of LCPO. Even

though introducing more atom types, it suffers similar problems as LCPO, likely due to

insufficient training data and accounting for 3-body and higher terms only in an average

way. In fact, the pwSASA values are not the original SASA values because it introduces an

empirical adjustment to the SASA values to compensate for a systematic divergence from

the numerical ICOSA calculations, which may adversely affect the overall accuracy as well.

Speed Comparison in GB/SA MD

The original version of dSASA was implemented on CPUs, and the transformation to GPU

version speeds up the computation by taking advantage of the parallel computing. The

program written in CUDA was integrated to the Amber20 version. In sander, pmemd, or

pmemd.cuda, setting the gbsa flag to 4 in GB suite will activate GB/SA simulations with
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dSASA. We first compared the speed of GB/SA MD on GPU with CPU and next with other

methods using 10 proteins with various sizes ranging from 10 residues to 190 residues. 4

of them were selected from above and the PDB code of the rest are given: 10 (PDB code,

5AWL), 20, 33, 52 (2P6J), 69, 92, 110 (1BYW), 130 (1E6K), 162 (2B75) and 190 (1BK7).

We examined the method on the CPU Intel Platinum 8268 2.90GHz and on the GPU

Nvidia RTX 2080 Ti. The estimated wallclock time for one step SASA calculation on CPU

is from 12 ms (10 residues) to 90 ms (190 residues), while the time trend on GPU is from 12

ms to 30 ms. The wallclock time here and below is averaged over several simulations. The

speed on CPU is comparable to the speed on GPU when the size of protein is small, and the

speed on GPU becomes relatively faster as the size of the protein increases. The estimated

wallclock time in hours required to complete 1 ns GB/SA simulation in Amber is given in the

left of Figure 9. The wallclock time required to finish 1 ns simulation on the CPU increases

from 0.87 hour (10 residues) to 33.80 hours (190 residues), while the corresponding trend of

timing on the GPU is from 0.6 hour to to 1.87 hours. When the size of protein is small, the

improvement of GPU over CPU version is small with multiplicity 1.44 times for 10 residues,

while the multiplicity grows as the size of molecule is increasing with 18.07 times for 190

residues.
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Figure 9: Left: Performance of dSASA for various sizes of proteins on CPU and GPU. The
y-axis shows the wallclock time in hours to complete 1 ns simulation. Right: Performance
of different methods for proteins on GPU.
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We next compared the speed with other methods in Amber using the same set of systems

above. The wallclock time in hours needed to complete 1 ns simulation is provided in the

right of Fig. 9. The speed of pwSASA is stable and much faster than other two methods as it

is designed to have a fast and simple estimation with more approximations, so we can confirm

that the accuracy of the method is at cost of speed as LCPO and dSASA can reproduce

more accurate SASA values by the testing above. As can be seen in Fig. 9, the speed of

dSASA is more stable as the size of the system grows, while LCPO has a steeper increasing

trend when the size of the molecule becomes larger. When the size of the system is small

(10 residues), dSASA is slower than LCPO. While the crossing point is around the size of 69

residues and after that, dSASA starts to gain advantage over LCPO for 69, 92 residues and

the multiplicity becomes greater for larger systems. This phenomenon fits the computation

complexity for these two methods: the computation complexity of LCPO is O(N2) while

the complexity of dSASA is O(N logN) (the complexity of tetrahedrization algorithm), so

the system with a larger size will have relatively better performance. Another reason is that

the GB/SA simulation with LCPO is CPU/GPU hybrid so the data transfer further hinders

the performance. On the other hand, pwSASA is ∼80 times faster than dSASA for small

proteins, reducing to ∼50 times for larger proteins. While pwSASA is a pairwise method

and its computation complexity is also O(N2), its computation is efficiently embedded in

the overall energy computation which is of the same order.

Stability Analysis of Proteins

dSASA can estimate the molecular SASA accurately in proteins with diverse shapes based on

the testing above. With the speedup on GPUs, it is now possible to examine its performance

in GB/SA simulations and evaluate its effect on the stability of protein structures. Then we

simulated two proteins with dSASA and compared the results with experiments, GB-only

and other SASA methods. The simulation results are still dominated by the force field and

the solvent model, so such comparisons should be used by caution as the inaccuracies in the
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solute force field may affect the simulations and the solvent models may become less reliable

away from 300 K. The trends in the simulations can provide useful information albeit with

these limitations. The thermal stability profiles of Trp-cage and the fraction of folded on

homeodomain are calculated from REMD at various temperatures. The temperature ladder

for Trp-cage contains 8 replicas (247.7-387.3 K, see Methods for full list). The ladder for

homeodomain has 10 replicas (288.7-407.8 K).

As investigated in,20 the surface tension 5 cal/(mol· Å2) is working properly and is the

default value in GB/SA in Amber, and larger value 7 cal/(mol· Å2) is expected to give more

structures within native range and the value is 7.2 cal/(mol· Å2) as proposed in.5 For Trp-

cage system, we tested the surface tension 5 and 7 to check the performance of the method.

For homeodomain, we only used the value 7, which can produce more near-native states in

the trajectories.

The thermal stability profiles of Trp-cage with surface tension 5 and 7 cal/(mol· Å2) were

first computed and the fractions of the near native conformations are given in Figure 10 for all

methods. The left shows the results with the surface tension 5 cal/(mol· Å2), while the right

shows the results with the surface tension 7 cal/(mol· Å2). At the surface tension 5, all three

methods incorporating the nonpolar term can achieve better agreement with experiments

by creating closer thermal stability profiles at various temperatures. At 300 K, dSASA

can generate ∼75% fraction of folded states while other methods with nonpolar term and

experimental results are ∼80% and the GB-only can produce ∼50%. When the temperature

is greater than 310 K, the fraction of folded from dSASA is still slightly smaller than other

methods but dSASA can produce closer results to the experiments. The predicted melting

temperature Tm is 316.8 K and the experimental result is around 317 K, which is better than

the GB-only (predicted Tm is around 300 K) and other methods (predicted Tm is greater

than 320 K for LCPO and pwSASA). Moreover, it is expected that a larger surface tension

can generate more native-like conformations through which we can prove that the nonpolar

term does not destroy the system. As shown in the right of Figure 10, all three methods
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can generate more native-like structures with surface tension 7 cal/(mol· Å2). To show the
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Figure 10: Thermal stability profiles for Trp-cage with surface tension 5 (left) and 7 cal/(mol·
Å2)(right) in GB and GB/SA simulations respectively, including experimental data.

changing process of RMSD, we provide the detailed trajectories at several temperatures for

Trp-cage starting from extended and native states with surface tension 5 cal/(mol· Å2) in

Supporting Information.

For homeodomain variant, we first simulated REMD with surface tension 5 cal/(mol·

Å2) using pwSASA for 2 µs, but we noticed that the fraction of folded was far from the

experimental results at higher temperatures. The experimental measured Tm is greater than

372 K, so we expect a larger surface tension can achieve better agreement with experiments.

We then simulated with surface tension 7 cal/(mol· Å2) for all GB/SA methods. All three

methods with nonpolar term can improve the fraction of folded at various temperatures

compared to GB-only. The fractions of native-like starting from native and unfolded states at

selected temperatures are shown in Figure 11. Since the experimental Tm is greater than 372

K, we expect that the system will not collapse at high temperatures. As two better methods,

LCPO and dSASA can produce more native-like conformations at higher temperatures as

shown in Figure 11. Moreover, dSASA generated more native-like conformations than LCPO

at various temperatures, proving that our method can have a better effect on stabilizing the

system. The detailed trajectories of homeodomain at selected temperatures starting from
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Figure 11: Fraction of native-like structures for homeodomain starting from native (solid
lines) and extended (dashed lines) at 5 selected temperatures. Top left: dSASA; Top right:
LCPO; Bottom left: pwSASA; Bottom right: GB-only.
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extended and native states with surface tension 7 cal/(mol· Å2) are given in Supporting

Information. Furthermore, at the temperature 300 K, the difference between the native-like

fractions of the simulations starting from native and extended is around 20% for dSASA and

LCPO after 500 ns simulations, while that difference is around 40% for GB and pwSASA

even after 1000 ns simulations, indicating that the inclusion of an accurate SASA term might

be able to result in converging simulations at a faster rate. The improved performance from

dSASA still has variance from the experimental results, for example the fraction of native-

like at 377.7 K is around 35% while it is 50% in experiment. Such discrepancy may come

from limitations of the SASA-based nonpolar term, or from the force field and the polar GB

term, which are under active development.

We carried out another set of simulations for LCPO and dSASA, and the trajectories

of fraction of folded are given in Supporting Information Figure 18. The simulation with

dSASA can produce relatively less native-like conformations at lower temperatures in the

trajectories starting from the native state while the fractions of folded starting from extended

do not increase much at higher temperatures. On the other hand, in LCPO, the trajectories

starting from native state produce less native-like conformations at lower temperatures than

the trajectories starting from extended state. The results from both methods were not as

expected because the MD simulations converge more slowly as the topological complexity of

the system increases. Longer time simulations are clearly needed in such situation.

Performance on RNA systems

Another advantage of dSASA over pwSASA is that it can be applied to other types of

systems such as nucleic acids or small-molecule ligands, because only the radii of the atoms

are considered without defining diverse atom types. Here we test this aspect using two RNA

systems, 2KOC and 1ESH, and compare the molecular SASA values with ICOSA and other

methods to see if the excellent performance on proteins is transferable to other biopolymers.

To validate the SASA estimation, we simulated the systems with GB-only method for
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1 µs and extracted 104 conformations for each system respectively. The comparison of the

molecular SASA values between all methods is shown in Figure 12. dSASA can reproduce

SASA values from ICOSA with more than 98% accuracy for both systems while LCPO and

pwSASA produced divergent results for two systems and they had overall underestimation of

the SASA values. The SASA estimates from pwSASA have large discrepancy from ICOSA

method because it was trained exclusively on protein data so that the specific atom types

in RNA were not represented properly by their definitions and the empirical adjustment is

inadequate.
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Figure 12: Comparison of molecular SASA values from various methods; each point repre-
sents one conformation of the RNA. The first row is for 2KOC and the second is for 1ESH.
The diagonal dashed lines indicate perfect agreement.

Conclusions

In this work, we present dSASA, an analytical SASA evaluation method for molecules and

its implementation on GPUs. In this approach, the weighted Delaunay tetrahedrization

is first computed with the atomic coordinates and radii. Next the atomic and molecular

SASA values are estimated using inclusion-exclusion method based on exterior simplices

from tetrahedrization, resulting in more accurate estimation than LCPO and pwSASA in
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reproducing numerical ICOSA SASA values. The pre-trained parameters for atoms in LCPO

and pwSASA can speed up the calculation, but the data sometimes will provide biased values

for certain types of atoms so the computed molecular SASA values had smaller correlation

coefficients with the values from ICOSA method, such as in the protein systems Cspa and

Nug2variant and RNAs. The estimation from dSASA can reproduce ICOSA values with

correlation coefficients greater than 98%. Moreover, the current GPU version speeds up the

calculation substantially compared with the CPU version, making it applicable for longer

time GB/SA MD simulations especially for larger systems. The gain of speed arises from

the complexity of the algorithm itself which will scales well for larger systems and from the

full implementation on GPU devices removing the data transfer with CPUs. dSASA had a

stable trend of speed as the size of molecule increases but it was still relatively slower than

pwSASA. However, dSASA started to outperform LCPO when the system contains around

70 residues, and the performance for larger molecules would be more stable than LCPO

because the computation in LCPO is pairwise and its implementation is CPU/GPU hybrid

in Amber.

In the GB/SA simulations, two proteins (Trp-cage and homeodomain) were simulated

and compared to other methods and experimental results. dSASA achieved comparable

performance with LCPO and pwSASA on the small protein, and the performance became

better for the larger system. The simulated melting curve with nonpolar term for Trp-cage

was more consistent with the experimental measures compared with that without nonpolar

term. In homeodomain variant, the melting temperature is greater than 372 K so we expect

the system can maintain some amount of native-like conformations at higher temperatures.

The simulations generated more extended conformations with other methods at high tem-

peratures while dSASA can produce more native-like conformations in the trajectories which

is closer to the experimental data.

As the program has been rigorously examined, we anticipate to extend its applications

to other functions in Amber software, such as post-processing of the trajectories. Given the
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accuracy of dSASA, the calculation of atomic and molecular SASA values can be benchmark

data set for the training of the parameters in pwSASA approach for RNAs in the future,

which will combine the advantage of its speed on GPUs and the accurate calculation from

dSASA. The surface tension was assumed to be identical for all atoms in the implementation.

As the SASA value is exact for every atom in dSASA, we can attempt to assign different

surface tension values to atoms according to the atomic environment which is believed to

be able to achieve more accurate solvation free energies. Furthermore, the calculation of

SASA is based on the diagram of Laguerre intersection cells, so it can be easily extended

to the computation of molecular volumes along with the corresponding atomic derivatives.

Inclusion of the volume term will provide a more complete description for the nonpolar

solvation term. With the volume derivatives, we can further examine the impact of the term

on the stability of molecules in the MD simulations. Moreover, the current algorithm being

used for weighted Delaunay Tetrahedrization, gReg3D, is designed to work on a set of random

points and the size of the workspace depends on the distribution of points in the workspace.

As it consumes nearly 70% of wallclock time of our surface area calculation, improvement on

this algorithm will further speed up the simulations. The spatial information of the atoms

and the molecular properties in Amber were not fully utilized, then the influence of including

such information among atoms could be further explored. The program of dSASA written

in CUDA will be freely available from the authors.
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Energy conservation in MD

To examine the conservation of the energy and force stability, we carried out ∼3.5 ns of

constant energy MD simulations using the protein HP36 (which has 36 residues) at 300K

starting from the equilibrated NMR structure. The time step was 0.5 fs and SHAKE con-

straints were removed. Mixed precision GPU version (pmemd.cuda SPFP) of Amber 20 and

our program were used for GB and dSASA GB/SA simulations, respectively. For GB/SA

simulations, surface tensions varied from 5, 10 and 20 cal/(mol· Å2). The energy terms were
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printed out every 100 steps. The total energy deviations from the respective starting point

were recorded to evaluate the energy conservation and force stability of the GPU code with

and without the SASA term. As shown in Figure 13 and Table 1, the inclusion of dSASA

produces comparable energy drift and standard deviation (SD) in the total energy. We can

conclude that inclusion of the nonpolar term does not result in additional significant force

instability.
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Figure 13: Energy deviation in constant energy simulations for HP36 from initial energy for
GB and dSASA GB/SA with different surface tension parameters.

Table 1: The averages, the average deviations and standard deviations of the total energies
in constant energy simulations for HP36 with GB and dSASA GB/SA.

Surface tension Etot Mean E(t)-E(0) Mean SD

cal/(mol· Å2) (kcal/mol) (kcal/mol) (kcal/mol)

0 -397.46215 0.0404465 0.05769035

5 -380.55516 -0.0185640 0.07033996

10 -363.58555 -0.0903457 0.06883961

20 -329.35631 -0.0302929 0.07151965
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Trajectories of proteins in REMD

In the main text, we showed the computed thermal stability profiles for Trp-cage and the

fraction of folded for homeodomain from REMD, here we provide the detailed trajectories

for Trp-cage Fig. 14, Fig. 15 and for homeodomain Fig. 16, Fig. 17 at various temperatures.

Figure 14: Trajectories at selected temperatures starting from extended state of Trp-cage
with surface tension 5 cal/(mol· Å2) in GB and GBSA simulations.

Fraction of folded for the second test of homeodomain
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Figure 15: Trajectories at selected temperatures starting from native state of Trp-cage with
surface tension 5 cal/(mol· Å2) in GB and GBSA simulations.

Figure 16: Trajectories at selected temperatures starting from unfolded state of home-
odomain with surface tension 7 cal/(mol· Å2) in GB and GBSA simulations.
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Figure 17: Trajectories at selected temperatures starting from native state of homeodomain
with surface tension 7 cal/(mol· Å2) in GB and GBSA simulations.
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Figure 18: Fraction of native-like for homeodomain starting from native (solid lines) and
extended (dashed lines) at 5 selected temperatures. Left: dSASA. Right: LCPO.
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