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ABSTRACT

The proliferation of genome-wide association stud-
ies (GWAS) has prompted the use of two-sample
Mendelian randomization (MR) with genetic variants
as instrumental variables (IVs) for drawing reliable
causal relationships between health risk factors and
disease outcomes. However, the unique features of
GWAS demand that MR methods account for both
linkage disequilibrium (LD) and ubiquitously existing
horizontal pleiotropy among complex traits, which is
the phenomenon wherein a variant affects the out-
come through mechanisms other than exclusively
through the exposure. Therefore, statistical methods
that fail to consider LD and horizontal pleiotropy can
lead to biased estimates and false-positive causal re-
lationships. To overcome these limitations, we pro-
posed a probabilistic model for MR analysis in identi-
fying the causal effects between risk factors and dis-
ease outcomes using GWAS summary statistics in
the presence of LD and to properly account for hori-
zontal pleiotropy among genetic variants (MR-LDP)
and develop a computationally efficient algorithm
to make the causal inference. We then conducted
comprehensive simulation studies to demonstrate
the advantages of MR-LDP over the existing meth-
ods. Moreover, we used two real exposure–outcome
pairs to validate the results from MR-LDP compared
with alternative methods, showing that our method
is more efficient in using all-instrumental variants in
LD. By further applying MR-LDP to lipid traits and
body mass index (BMI) as risk factors for complex
diseases, we identified multiple pairs of significant
causal relationships, including a protective effect

of high-density lipoprotein cholesterol on peripheral
vascular disease and a positive causal effect of BMI
on hemorrhoids.

INTRODUCTION

Epidemiological studies have contributed tremendously to
improving our understanding of the primary causes of
complex diseases. However, numerous cases of significant
associations from observational studies have been subse-
quently contradicted by large clinical trials (1,2). Draw-
ing causal inferences from observational studies is par-
ticularly challenging because of unmeasured confounding,
reverse causation and selection bias (3,4). Although the
randomized controlled trial (RCT) is considered a gold
standard for evaluating causality in an exposure–outcome
pair, RCTs have certain limitations, including impractical-
ity (no intervention may exist), high expense and ethical is-
sues (5). Fortunately, as germline genetic variants (single-
nucleotide polymorphisms, SNPs) are fixed after random
mating and cannot be modified by subsequent factors, e.g.
environment factors and living styles, Mendelian random-
ization (MR) uses genetic variants as instruments to exam-
ine the causal effects between health risk factors and dis-
ease outcomes, largely excluding the influence from unob-
served confounding factors (3). In the past decade, a large
number of genome-wide association studies (GWAS) have
been successfully used to identify genetic variants associ-
ated with complex traits at the genome-wide significance
level, including both health factors and diseases, e.g. lipids,
body mass index (BMI) and type 2 diabetes (T2D), and
most of completed GWAS are only observational studies
instead of RCTs. The results from completed GWAS are
mostly publicly accessible; e.g. GWAS Catalog outlines a list
of sources for summary statistics (https://www.ebi.ac.uk/
gwas/downloads/summary-statistics). This large amount of
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publicly available GWAS summary statistics has prompted
the widespread use of two-sample MR as an efficient and
cost-effective method to interrogate the causal relationships
among health risk factors and disease outcomes.

MR is closely related to the instrumental variable (IV)
methods, which have a long history of use in economet-
rics (6). Classically, an inverse-variance weighted (IVW) and
a likelihood-based approach have been used for two-sample
MR analysis with summary-level data (7). Despite their
successes, they have several limitations. First, they must
obey the assumption that IVs affect the outcome exclusively
through the risk exposures, which is also referred to as ex-
clusion restriction assumption or no horizontal pleiotropy.
The violation of this assumption can distort the statisti-
cal inference for MR analysis, leading to biased estimates
and false-positive causal relationships. Recent comprehen-
sive surveys reported pervasive pleiotropy among complex
traits (8,9), such as autoimmune diseases (10) and psychi-
atric disorders (11). Consequently, methods that do not ac-
count for pleiotropy can substantially reduce the power and
inflate the false-positive discoveries. To address this issue,
sisVIVE was proposed in the presence of individual-level
data (12). To further relax this assumption for two-sample
MR analysis using summary-level data, various statistical
methods have been proposed, and we divide them into two
categories. The first group consists of stepwise methods to
correct the impact of horizontal pleiotropy. These methods
first detect and remove SNPs with horizontal pleiotropy,
and MR analysis is performed in the subsequent step, in-
cluding Q test (13), Cook’s distance (14), studentized resid-
uals (14), GSMR (15) and MR-PRESSO (16). The draw-
back of these methods is that the number of SNPs after
removal is limited, given that abundant pleiotropy exists
among complex traits, which can substantially reduce the
statistical power to detect causal relationships. In contrast,
the second group of methods jointly estimate causal effects
by taking into account the horizontal pleiotropy, e.g. MR-
Egger (17), MRMix (18) and RAPS (19). RAPS addresses
measurement error issues, while MR-Egger and other ex-
isting methods applicable to GWAS summary statistics as-
sume that sampling error from SNP exposure is negligi-
ble (20).

On the other hand, the classical MR methods (e.g. IVW,
MR-Egger) only work for independent IVs and further as-
sume no measurement errors. Among the methods men-
tioned earlier, only GSMR is capable of accounting weak or
moderate linkage disequilibrium (LD) among SNPs, while
others demand all-instrumental SNPs to be independent,
which is typically achieved by SNP pruning and thus re-
ducing the number of instrumental variants for follow-up
MR analysis. As SNPs in close proximity tend to be highly
correlated, MR methods that do not account for LD struc-
ture may substantially lose statistical power due to the prun-
ing process. Moreover, GSMR is a stepwise method that
removes instrumental variants with horizontal pleiotropy,
making it less powerful due to the removal of invalid vari-
ants.

In this paper, we propose a statistically unified and ef-
ficient two-sample MR method to utilize all weak instru-
ments within LD (MR-LD), and further consider an MR-
LD accounting for horizontal pleiotropy (MR-LDP). Sim-

ilar to RAPS, MR-LDP does not require any measurement
error assumption. The key idea is to build a joint prob-
abilistic model for GWAS summary statistics from both
exposure and outcome using a reference panel to recon-
struct LD among instrumental variants and to conduct a
formal hypothesis test to make inferences about the causal
effect that links the exposure and the outcome through a
linear relationship. We also develop an efficient variational
Bayesian expectation-maximization (EM) algorithm accel-
erated by using the parameter expansion (PX-VBEM) to es-
timate the causal effect for MR-LD and MR-LDP. More-
over, we calibrate the evidence lower bound (ELBO) to con-
struct the likelihood ratio test for the evaluation of the sta-
tistical significance of the estimated effect. Simulation stud-
ies show that MR-LDP outperforms competing methods
in terms of type I error control and point estimates for
making the causal inference. Additionally, we used two real
exposure–outcome pairs to validate results from MR-LD
and MR-LDP compared with alternative methods, partic-
ularly showing our methods more efficiently use all SNPs
in LD. By further applying MR-LDP to summary statis-
tics from GWAS, we identified multiple pairs of significant
causal relationships, including a protective effect of high-
density lipoprotein cholesterol (HDL-C) on the peripheral
vascular disease (PVD) and a positive causal effect of BMI
on hemorrhoids.

MATERIALS AND METHODS

Reference panel data

As MR-LD and MR-LDP use the marginal effect sizes and
their standard errors from GWAS summary statistics to
build a probabilistic model for making a causal inference,
information regarding correlations among SNPs is missing;
i.e. LD denoted as R is missing. Thus, we need to use a refer-
ence panel dataset to assist with reconstructing LD. In this
study, given that we primarily focus on European popula-
tions, we choose to use samples from the following resource
as the external reference panel: UK10K Project (Avon Lon-
gitudinal Study of Parents and Children, ALSPAC; Twin-
sUK) merged with 1000 Genome Project Phase 3 (N =
4284), which is denoted UK10K thereafter. As SNPs from
HapMap Project Phase 3 (HapMap3) are more reliable, we
choose to limit our analysis using SNPs from HapMap3 (P
= 1 189 556).

As samples from ALSPAC and TwinsUK include popu-
lations other than Europeans, we conducted strict quality
control for UK10K data using PLINK (21). First, SNPs
were excluded from the analysis if their calling rates were
<95%, minor allele frequencies were <0.01 or P-values were
<1 × 10−6 in the Hardy–Weinberg equilibrium test. We then
removed the individuals with genotype missing rates >5%.
To further remove individuals with high relatedness in all
samples, we used GCTA (22) to first identify those individ-
ual pairs with estimated genetic relatedness >0.05 and then
randomly remove one from each pair. Additionally, we car-
ried out the principal component analysis on the individuals
to identify the population stratification (23). In this way, we
extracted the clustering subgroup representing the primary
European ancestry using hierarchical clustering on princi-
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pal component approach (24). After data pre-processing,
there were 3764 individuals remaining with 989 932 SNPs.

Choice of LD matrix

Since the LD between two SNPs decays exponentially con-
cerning their distance, we use LDetect (25) to partition the
whole genome into L blocks first and then calculate the es-
timated correlation matrix in each block. For each block,
we adopt a shrinkage method to guarantee the sparsity
and positive definiteness of the estimated correlation ma-
trix (26). In particular, the correlation matrix estimator R̂(l)

in each block is obtained by optimizing as follows:

R̂(l) = arg min
R(l)�0

(‖R(l) − R̂(l)
emp‖2

F/2 − τ log |R(l)|

+λ‖R(l)−‖1), (1)

where R̂(l)
emp is the empirical correlation matrix in the lth

block, λ ≥ 0 is the shrinkage tuning parameter and the
lasso-type penalty ensures a sparse solution. In addition,
τ > 0 is fixed at a small value, and the logarithmic barrier
term is used to enforce a positive-definite solution. More
details can be found in (26). A corresponding R package
named PDSCE is available to complete the estimation pro-
cess. In addition, we fixed the shrinkage parameter λ to be
0.055 in simulation studies and vary λ ∈ {0.1, 0.15} in real
data analysis.

Likelihood for summary statistics

Before elaborating on our method, we first review the fol-
lowing multiple linear regression model that links a trait to
genotype data:

y = Gγ + ε,

where y is an n × 1 vector for trait among n individuals, G
is an n × p matrix for genotypes, γ is a p × 1 vector for
effect sizes and ε is the vector for random noises. Suppose
that the individual-level data {G, y} are not accessible, but
the summary statistics {γ̂ k, ŝ2

k}k=1,...,p from univariate linear
regression are available:

γ̂ k = (gT
k gk)−1gT

k y, ŝ2
k = (ngT

k gk)−1(y − gkγ̂ k)T(y − gkγ̂ k),

where gk is the kth column of G, and γ̂ k and ŝ2
k are the esti-

mated effect sizes and their variance for SNP k, respectively.
R̂ denotes the correlation among all genotyped SNPs and
Ŝ = diag([̂s1, . . . , ŝp]) is a diagonal matrix for correspond-
ing standard errors. Provided that sample size n is large
enough and the trait is highly polygenic (i.e. the squared cor-
relation coefficient between the trait and each genetic vari-
ant is close to zero), we can use the following formula to
approximate the distribution of γ based on the summary
statistics in a similar fashion as (27–30):

γ̂ |γ , R̂, Ŝ ∼ N (̂SR̂Ŝ−1γ , ŜR̂Ŝ), (2)

where γ̂ = [γ̂1, . . . , γ̂p]T. Analogously, we apply this distri-
bution to the two-sample MR analysis. The summary statis-
tics for SNP exposure and SNP outcome are denoted by
{γ̂k, ŝ2

γk
}k=1,...,p and {�̂k, ŝ2

�k
}k=1,...,p, respectively. Therefore,

the likelihood for two-sample summary statistics can be
written as

γ̂ |γ , R̂, Ŝγ ∼ N (̂Sγ R̂Ŝ−1
γ γ , Ŝγ R̂Ŝγ ),

�̂|�, R̂, Ŝ� ∼ N (̂S�R̂Ŝ−1
� �, Ŝ�R̂Ŝ�), (3)

where Ŝγ = diag([̂sγ1 , . . . , ŝγp ]) and Ŝ� =
diag([̂s�1 , . . . , ŝ�p ]) are both diagonal matrices, and
�̂ = [�̂1, . . . , �̂p]T. In this formulation, the correlations
among all p SNPs, R̂, are not estimable from summary
statistics itself. Zhu and Stephens (29) showed that R̂ could
be replaced with R̂ref that is estimated from independent
samples, where the difference in log-likelihood between
individual-level data and summary statistics is a constant
that does not depend on the effect size assuming that
polygenicity holds and the sample size of individual-level
data is large. Thus, the distributions for summary statis-
tics [Equation (3)] will produce approximately the same
inferential results as its counterpart for individual-level
data. Hereafter, we use R̂ implicitly for R̂ref and details on
estimating R̂ can be found in the ‘Choice of LD matrix’
section.

MR-LDP model overview

The fundamental assumptions for two-sample MR analysis
include the independence among IVs, and three IV assump-
tions for a genetic instrument: (i) associated with health risk
factors (γ �= 0); (ii) independent of unobserved confounding
factors between the risk factors and the disease outcomes;
and (iii) independent of the outcome given risk factors and
confounders. Given the strong LD structure among SNPs
and abundant horizontal pleiotropy in GWAS, these unique
features invalidate the independence assumption for genetic
variants and IV assumption (iii). Our proposed MR-LDP
aims to make the causal inference of the risk factors on a
disease outcome using a probabilistic model by account-
ing for both the LD structure and the influence of horizon-
tal pleiotropy, as depicted in Figure 1. We first utilize an
approximated likelihood to depict the distribution of cor-
related SNPs from GWAS summary statistics for the risk
exposure and the disease outcome, respectively, as shown
in Equation (3). Given p instrumental variants, the inputs
for MR-LDP are GWAS summary statistics for SNP expo-
sure and SNP outcome, respectively, and a genotype refer-
ence panel (Figure 1A). By introducing an additional ran-
dom effect of α, we would further eliminate the variance in
the disease outcome due to pervasive horizontal pleiotropy.
Since MR-LDP uses an approximated likelihood to jointly
delineate the distribution for summary statistics (i.e. esti-
mated effect sizes and their standard errors) from GWAS,
it is free of the assumption for no measurement errors, re-
quiring that sample sizes used to generate GWAS summary
statistics are large (20,31). Figure 1B depicts MR-LDP as a
probabilistic graphical model, where the observed variables
of our model include GWAS summary statistics from both
the SNP exposure and the SNP outcome, and an external
reference panel for genotype data. We assume that αk and
γ k follow two independent Gaussian distributions. The la-
tent variable γ k and parameter β0 jointly assist with formu-
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Figure 1. MR-LDP model overview. (A) Inputs for MR-LDP include GWAS summary statistics from both the risk factor (blue) and the disease outcome
(yellow), and an external reference panel data (red). (B) A probabilistic graphical model representation of MR-LDP. The box is the ‘plate’ representing
SNPs, k = 1, . . . , p. The circles are either variables or parameters. The circle outside the block is the primary parameter of interest. The variables in
shaded circles are observed (i.e. GWAS summary statistics {γ̂k, ŝγk}k=1,...,p and {�̂k, ŝ�k}k=1,...,p , and the estimated R̂ for these p SNPs from a reference
panel) and variables in unshaded circles are latent variables (i.e. γ k and αk, k = 1, . . . , p). The primary goal is to conduct a formal hypothesis testing for
H0 : β0 = 0 versus H1 : β0 �= 0. (C) Scatter plots of effect sizes with their standard errors for two exposure–outcome pairs: BMI-T2D and BMI-VV; T2D
for type 2 diabetes and VV for varicose veins. Dots represent the effect sizes from SNP exposure against these from SNP outcome, and horizontal and
vertical bars represent the standard errors from SNP exposure and SNP outcome, respectively. The estimated β0 and their P-values from MR-LDP are
shown in each part.

lating the distribution for SNP outcome. Then, we can for-
malize the hypothesis testing for β0, as shown in Figure 1B.
The scatter plots of estimated effect sizes for SNP exposure
against SNP outcome, together with the MR-LDP analysis
results (β̂0 and P-value), are shown in Figure 1C. In both
BMI-T2D and BMI-VV, there is a dominant proportion of
instrumental variants in the center that is mainly due to LD,
and methods that do not account for LD tend to inflate find-
ings.

Details of MR-LDP

Parameterization for causal relationship. The relationship
between γ and � can be constructed using linear structural
models as follows:

� j = β0γ j or � j = α j + β0γ j , (4)

where j = 1, . . . , p, considering without/with horizontal
pleiotropy, respectively (12,32). Note that β0 is the effect
size of the exposure on the outcome and α = [α1, . . . , αp]T is
the vector of effects of genetic variants on the outcome due
to horizontal pleiotropy. Importantly, β0 can be interpreted
as the causal effect between exposure and outcome in the
study (32). More details regarding linear structural models
incorporating the relationship provided in Equation (4) are

available in the Supplementary Data. As MR-LD can be
taken as a special case of MR-LDP by taking all α to be
zero, we focus on deriving MR-LDP in the main text and
provide the Supplementary Data for details on MR-LD.

Empirical Bayes model. By assuming that γ and α are two
latent variables coming from two independent Gaussian dis-
tributions, the complete-data likelihood can be written as
follows:

Pr(�̂, γ̂ , γ ,α|̂Sγ , Ŝ�, R̂; θ )

= Pr(�̂|γ ,α, R̂, Ŝ�; β0)Pr(γ̂ |γ , R̂, Ŝγ )Pr(α|σ 2
α )Pr(γ |σ 2

γ ),

(5)

where θ
def= {β0, σ

2
γ , σ 2

α } denotes the collection of model pa-
rameters. Integrating out the latent variables γ and α, the
marginal likelihood can be written as

Pr(�̂, γ̂ |̂Sγ , Ŝ�, R̂; θ) =
∫∫

Pr(�̂, γ̂ ,α, γ |̂Sγ , Ŝ�, R̂; θ)dγ dα.

Algorithm. The standard EM algorithm is a common
choice to find the maximum likelihood for probabilistic
models in the presence of latent variables (33). The conven-
tional EM algorithm involves the inverse of large matrix R̂
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that is at order O(p3) computationally, making it computa-
tional infeasible when a large number of instrumental vari-
ants are used. To address this issue, we develop an acceler-
ated variational Bayes (VB) EM algorithm in light of (34),
namely, PX-VBEM. Starting with the algorithm, we expand
the original MR-LD/MR-LDP model [Equation (5)] as fol-
lows:

γ̂ |γ , R̂, Ŝγ ∼ N (ξ Ŝγ R̂Ŝ−1
γ γ , Ŝγ R̂Ŝγ ). (6)

Next, we sketch the VBEM algorithm using the parame-
ter expanded in Equation (6) for MR-LDP and algorith-
mic details for MR-LD can be found in the Supplemen-
tary Data. The model parameters for MR-LDP after pa-
rameter expansion become θ = {β0, σ

2
γ , σ 2

α , ξ}. Given vari-
ational posterior distribution q(γ ,α), it is straightforward
to evaluate the marginal log-likelihood by decomposing it
into two parts, the ELBO and the Kullback–Leibler (KL)
divergence, which is denoted as follows:

log Pr(γ̂ , �̂|̂Sγ , Ŝ�, R̂; θ ) = L(q) + KL(q‖p), (7)

where

L(q) =
∫∫
γ ,α

q(γ ,α) log
Pr(γ̂ , �̂, γ , α|̂Sγ , Ŝ�, R̂; θ )

q(γ , α)
dγ dα,

KL(q‖p) =
∫∫
γ ,α

q(γ ,α) log
q(γ , α)

p(γ ,α|γ̂ , �̂, Ŝγ , Ŝ�, R̂; θ)
dγ dα, (8)

where L(q) is the ELBO of the marginal log-likelihood and
KL(q‖p) is the KL divergence between two distributions.
Moreover, KL(q‖p) ≥ 0 with equality holding if and only
if the variational posterior distribution (q) is equal to the
true posterior distribution (p). As a consequence, minimiz-
ing the KL divergence is equivalent to maximizing ELBO.
Compared with the standard EM algorithm, the crux of
VBEM is to optimize q within a factorizable family of distri-
butions by the mean-field assumption (35), which assumes
that q(γ ,α) can be factorized as

q(γ ,α) =
p∏

j=1

qγ j (γ j )
p∏

k=1

qαk(αk). (9)

This only assumption in variational inference promotes
computational efficiency and scalability in large-scale com-
putational problems given that a coordinate descent algo-
rithm is commonly used to identify the optimal distribu-
tion q*. To briefly show this, we first note that this factor-
ization [Equation (9)] is used as an approximation for the
posterior distribution p(γ ,α|γ̂ , �̂, Ŝγ , Ŝ�, R̂; θ ). In the VB
E-step, given the latent variables γ −k and α, the terms with
γ k have a quadratic form, where γ −k is the γ vector remov-
ing the kth element. Similarly, when all other latent vari-
ables are fixed, we can show that the terms with αk also
take a quadratic form. Thus, the variational posterior dis-
tributions for γ k and αk are both from Gaussian distribu-
tions, N (μγk, σ

2
γk

) and N (μαk, σ
2
αk

), respectively, where we
call {μγk, σ

2
γk

, μαk, σ
2
αk

}k=1,...,p variational parameters. The
details of derivations for updating these variational param-
eters and the ELBO L(q) in the marginal log-likelihood
[Equation (7)] at the old parameter θold can be found in the

Supplementary Data. After updating variational parame-
ters in the VB E-step, model parameters (θ ) can be up-
dated by setting the derivative of the ELBO to zero. Deriva-
tion details can be found in the Supplementary Data, where
we summarize the PX-VBEM algorithms for MR-LD and
MR-LDP in Algorithms 1 and 2, respectively.

Inference for causality. We can easily formulate the prob-
lem provided in Equation (5) as a statistical test for the null
hypothesis that the health risk factor is not associated with
the disease of interest, or H0 : β0 = 0. Testing this hypoth-
esis requires evaluating the marginal log-likelihood of ob-
served data in MR-LD or MR-LDP, similar to what has
been done previously in (36,37); details are given in the Sup-
plementary Data. As VB searches within a factorizable fam-
ily for the posterior distribution, one can only obtain an
approximation for the posterior distribution of latent vari-
ables. Earlier works showed that VBEM provides useful and
accurate posterior mean estimates (38). Despite its compu-
tational efficiency and accuracy for estimating the poste-
rior mean, VB suffers from underestimating the variance
of the target distribution (25,39–40). Thus, the ELBO from
the VB-type algorithm cannot be directly used to conduct
a likelihood-based test. In this paper, we follow Yang et
al. (37) and adopt the similar strategy to calibrate ELBO
as well as mitigate the bias of variance. Details for the
PX-VBEM algorithm and the calibration of ELBO can be
found in the Supplementary Data.

Relationship between MR-LD and TWAS. Using tran-
scriptome data as risk factors, MR-LD can be viewed as
a TWAS-type analysis using summary-level data from both
expression quantitative trait loci (eQTL) and GWAS, where
eQTL and GWAS summary statistics are used as SNP ex-
posure and SNP outcome in the analysis, respectively. Since
TWAS-type analysis only seeks genes that are significantly
associated with the outcome of interest at the genome-wide
level, one cannot infer causality without excluding other
potential associations, e.g. horizontal pleiotropy. We note
that PMR-Egger (41) was recently proposed to calibrate
the type I error control by using a burden test assump-
tion to infer causal relationship. However, this assumption
depends heavily on the fact that all effect sizes from hor-
izontal pleiotropy are the same. Therefore, MR-LDP can
also be viewed as a relaxation of the burden assumption,
which makes it more powerful in accounting for horizontal
pleiotropy with more general patterns.

RESULTS

Simulations

Methods for comparison. We compared the performance
of five methods in the main text: (i) our MR-LD and MR-
LDP implemented in the R package MR.LDP; (ii) GSMR
implemented in the R package gsmr; (iii) RAPS imple-
mented in the R package mr.raps; (iv) IVW implemented
in the R package MendelianRandomization; and (v) MR-
Egger implemented in the R package MendelianRandom-
ization. All methods were used with default settings. Note
that we performed GSMR analysis with removing out-
liers first when there exists horizontal pleiotropy (h2

α �= 0).
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We conducted comprehensive simulation studies to better
gauge the performance of each method in simulation stud-
ies in terms of type I error control and point estimates.

In simulation studies, we considered genetic instruments
both without and with horizontal pleiotropy. In the sce-
nario that genetic instruments have horizontal pleiotropy,
we further considered two cases: the sparse and dense hor-
izontal pleiotropy. The sparse horizontal pleiotropy indi-
cates that only a proportion of genetic instruments have di-
rect effects (α is sparse) on the outcome, while the dense hor-
izontal pleiotropy indicates that all genetic instruments have
direct effects (α is dense). As GSMR is a stepwise method
that first removes invalid instruments, the dense horizontal
pleiotropy theoretically implies that all genetic instruments
are invalid. To make fair comparisons, we considered the
sparse horizontal pleiotropy with sparsity at 0.2 or 0.4. In
addition, as RAPS, IVW and MR-Egger tend to inflate type
I error in the presence of LD, we conducted SNP pruning
for a fair comparison of point estimates.

Simulation settings. To make our simulations as realistic
as possible, we started by generating the individual-level
two-sample data as follows:

x = G1γ + Uxηx + e1, y = β0x + G2α + Uyηy + e2,

where G1 ∈ R
n1×p and G2 ∈ R

n2×p were both genotype ma-
trices, Ux ∈ R

n1×q and Uy ∈ R
n2×q were matrices for con-

founding variables, n1 and n2 were the corresponding sam-
ple sizes, p was the number of genetic variants, x ∈ R

n1×1

was the exposure vector, y ∈ R
n2×1 was the outcome vec-

tor and the error terms e1 and e2 were obtained from
N (0, σ 2

e1
In1 ) and N (0, σ 2

e2
In2 ), respectively. In this genera-

tive model, β0 was the true causal effect, while α exhibited
the direct effects on the disease. We considered two cases:
dense and sparse horizontal pleiotropy. For the dense case,
we assumed that αk was independent and identically dis-
tributed as N (0, σ 2

α ). However, for the sparse case, we as-
sumed that only a fraction of αk was from a Gaussian dis-
tribution and remaining were zero. In simulations, we con-
sidered sparsity at both 0.2 and 0.4. Note that σ 2

α was set
by controlling the heritability due to horizontal pleiotropy.
Moreover, to mimic the real applications where an exter-
nal reference panel was applied to estimate the correla-
tion among SNPs, another genotype matrix G3 ∈ R

n3×p was
generated as the reference panel data to estimate the cor-
relation matrix, where n3 was the sample size in the ref-
erence panel. We fixed n1 = n2 = 20 000 but varied n3 ∈
{500, 2500, 4000}. In detail, we first generated a data matrix
from multivariate normal distribution N (0,�(ρ)), where
�(ρ) is a block autoregressive with ρ = 0, 0.4 or 0.8 rep-
resenting weak, moderate or strong LD, respectively. We
then generated minor allele frequencies from a uniform dis-
tribution U(0.05, 0.5) and categorized the data matrix into
dosage values {0, 1, 2} according to the Hardy–Weinberg
equilibrium under the generated minor allele frequencies.
The number of blocks was M = 10 or 20 and the number of
SNPs within each block was 50. Correspondingly, P = 500
or 1000. For confounding variables, we sampled each col-
umn of Ux and Uy from a standard normal distribution with
fixed q = 50, while ηx ∈ R

q×1 and ηy ∈ R
q×1 were the cor-

responding coefficients of confounding factors. Each row

of (ηx, ηy) was generated from a multivariate normal distri-
bution N (0,�η), where �η is a 2× 2 matrix with diagonal
elements set as 1 and off-diagonal elements set as 0.8.

We then conducted single-variant analysis to obtain
the summary statistics for SNP exposure and SNP out-
come, {γ̂k, ŝ2

γ k}k=1,...,p and {�̂k, ŝ2
�k}k=1,...,p, respectively. In

simulations, we controlled the signal magnitude for both
γ and α using their corresponding heritability, h2

γ =
var(β0G1γ )/var(y) and h2

α = var(G2α)/var(y), respectively.
Thus, we could control h2

α and h2
γ at any value by controlling

confounding variables and the error terms, σ 2
e1

and σ 2
e2

. In all
settings, we fixed h2

γ = 0.1 and varied h2
α ∈ {0, 0.05, 0.1}.

Simulation results: type I error control and point estimates.
We conducted various simulation studies to make com-
parisons of MR-LD and MR-LDP with other four com-
monly used alternative methods: (i) IVW; (ii) MR-Egger;
(iii) GSMR; and (iv) RAPS. We first compared the type I
error rate for MR-LD and MR-LDP together with other
alternative methods based on 1000 replications. The sim-
ulation results for dense pleiotropy and sparse pleiotropy
with sparsity at 0.2 and 0.4 are shown in Figure 2 and Sup-
plementary Figures S2–S8, respectively, with n3 = 500, 2500
and 4000, respectively. Note that when h2

α = 0, there was no
difference between dense and sparse pleiotropy. As shown
in the left column of Figure 2A, in the case of no horizon-
tal pleiotropy (h2

α = 0), all methods could control type I
error at the nominal level of 0.05, generally well when ge-
netic variants were independent (ρ = 0). However, as LD
becomes stronger (ρ = 0.4 or 0.8), the alternative methods
failed to control type I error without SNP pruning. In this
setting (h2

α = 0), MR-LD and MR-LDP performed equally
well in type I error control. In the presence of horizontal
pleiotropy (h2

α = 0.05 or 0.1), as shown in the middle and
right columns of Figure 2A, MR-LD failed to control type
I error for all ρ values, while type I error rates of alternative
methods without SNP pruning were not controlled in the
case of moderate or strong LD. However, MR-LDP could
still control type I error at its nominal level. The similar pat-
terns could be observed for settings under sparse horizontal
pleiotropy with sparsity at 0.2 and 0.4 as shown in Figure 2C
and Supplementary Figures S4–S8, where the settings was
not in favor of MR-LDP. Note that after SNP pruning, ge-
netic variants that remained could be taken as independent.
Thus, alternative methods after SNP pruning could control
type I error in all settings. However, this is achieved at the
expense of losing weak instruments in LD.

Next, we made comparisons of point estimates for MR-
LD and MR-LDP together with alternative methods, where
SNP pruning was performed for analysis using alternative
methods. In this simulation, β0 = 0.1 and results were based
on 100 replications. Clearly, the proposed methods, MR-
LD and MR-LDP, had smaller standard errors than alter-
native methods when LD was moderate or strong (ρ = 0.4
or 0.8) (Figure 2B), as SNP pruning causes the alternative
methods to use fewer valid instruments. MR-LD and MR-
LDP performed equally well in the case of no horizontal
pleiotropy, while MR-LD was biased in the presence of hor-
izontal pleiotropy. Similar patterns could be observed for
dense and sparse pleiotropy both at sparsity equaling 0.2
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Figure 2. Simulation of type I error control and point estimates under the dense horizontal pleiotropy (A, B) and the sparse (0.2) horizontal pleiotropy (C,
D). n1 = n2 = 20 000; n3 = 500.

and 0.4, as shown in Figure 2D and Supplementary Figures
S4–S8.

More simulation settings and their corresponding results
can be found in the Supplementary Data, including simula-
tions for robustness and power analysis, simulations using
a screening dataset and simulations for binary outcome.

CAD–CAD and height–height studies

In addition, we used real datasets, i.e. CAD–CAD and
height–height pairs, to compare the estimates from MR-
LD and MR-LDP with those from the other four alterna-
tive methods, where the causal effect β0 can be taken as
known, i.e. β0 = 1. In these two examples, we used GWAS
summary statistics for the same traits (i.e. CAD and BMI,
respectively) from three datasets––screening, exposure and
outcome (42). The first two datasets are non-overlapping
GWAS for the same trait. The exposure dataset and out-
come dataset are non-overlapping individuals from Euro-
pean ancestry. Since IVW, MR-Egger and RAPS are de-
signed for independent or weak LD SNPs, and GSMR
only works for SNPs with moderate LD, we conducted the
LD-based clumping to obtain the near-independent SNPs
based on PLINK (43). Individual-level genotype data from
UK10K projects served as the reference panel in this study.

We used high-performance computing from National Su-
perComputing Centre, Singapore (https://www.nscc.sg) to
accomplish our computational work. For example, if the
threshold of 0.1 for P-values was applied in the height–
height study, there remained 40 521 SNPs and it took ∼2
and ∼8 min, respectively, for MR-LD and MR-LDP to
complete the analysis on a Linux platform with a 2.60 GHz
Intel Xeon CPU E5-2690 v3 with 30720 KB cache and
96 GB RAM (only 30 GB RAM used). The demo for using
MR.LDP package can be found both in the Supplementary
Data and at GitHub website. In addition, all codes for simu-
lation studies and real data analysis can be found at GitHub
website.

For CAD–CAD analysis, the screening dataset is my-
ocardial infarction (MI) data from UK Biobank (UKB),
the exposure data are obtained from the C4D Genetics
Consortium (44) and the outcome data are obtained from
the transatlantic Coronary ARtery DIsease Genome-wide
Replication and Meta-analysis (CARDIoGRAM) (45). We
first selected instrumental variants using MI from UKB un-
der different P-value thresholds and then conducted MR
analysis between the exposure and the outcome using MR-
LD, MR-LDP, least squares (LS), IVW, MR-Egger, RAPS
and GSMR. First, the scatter plots of γ̂ (C4D) against �̂
(CAD1) are shown in Supplementary Figure S13, where we

https://www.nscc.sg
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Figure 3. The result of estimates and confidence intervals for CAD–CAD using UK10K as the reference panel with the shrinkage parameter λ = 0.1 under
different P-value thresholds to choose genetic variants in the screening dataset, e.g. P-value = 5e−6 and 1e−05. MR-LD, MR-LDP and LS methods use
all SNPs selected by the screening dataset (denoted as PAll), but IVW, MR-Egger, RAPS and GSMR use pruned SNPs, where the default value of r2 is
used for GSMR (the number of SNP used: PGSMR) and r2 = 0.001 is used for VW, MR-Egger and RAPS (the number of SNP used: PInd).

found that when a larger thresholding value, e.g. P-value =
0.001, is applied in the screening dataset (in other words,
more genetic variants would be selected for MR analy-
sis), the points crowded in the center make the inference
for causality difficult as shown in Supplementary Figure
S13. We reported the point estimates with its 95% corre-
sponding confidence intervals for all methods in Figure 3
and Supplementary Figure S14 for λ = 0.1 and 0.15, re-
spectively. Clearly, MR-LD and MR-LDP were superior to
other methods in terms of smaller bias and shorter confi-
dence intervals when the number of instrumental variants is
large. Moreover, the estimates from MR-LD and MR-LDP
also exhibited statistical significance consistently, while the
coverage of β0 = 1 from other methods was incorrect under
small thresholds except for RAPS with larger standard er-
rors due to the SNP pruning. Additionally, estimates from
GSMR, IVW and MR-Egger were always biased when the
threshold was small.

Next, we investigated the case that both the exposure and
outcome were from human height. In particular, we treated
the height in UKB (46) as the screening dataset. The ex-
posure data are from the height for males in a European
population-based study, and the outcome data are from the

height for females in a European population (47). First, the
scatter plot of γ̂ (height for males) against �̂ (height for fe-
males) is shown in Supplementary Figure S15. Since height
is highly polygenic and the sample size is very large in (47)
(around 270 000 individuals), the points are crowded in the
middle even with a very small threshold (P-value = 5 ×
10−6). The results of point estimates with their 95% con-
fidence intervals were illustrated in Supplementary Figures
S16 and S17 for λ = 0.1 and 0.15, respectively. Similar pat-
terns were observed in all cases. In particular, RAPS only of-
fered better performance with larger instrumental variants
but did not work for some small thresholds, GSMR failed
to estimate the causal effect for this validation study and
other methods underestimated the causal effect with rela-
tively large standard errors. MR-LD and MR-LDP used
all SNPs passing a certain thresholding value and thus pro-
vided more accurate estimates of β0 = 1.

The causal effects of lipids and BMI on common human dis-
eases

We further applied our method, MR-LDP, to estimate the
causal effects of lipids and BMI on complex diseases, in-
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Table 1. Causal associations of lipids with common diseases using UK10K as the reference panel with the shrinkage parameter λ = 0.1

Lipids Outcome PAll MR-LDP PGSMR GSMR (prune) PInd RAPS IVW MR-Egger

HDL-C CAD1 2104 − 0.09 (0.027) 269 − 0.26 (0.038) 203 − 0.38 (0.07) − 0.36 (0.07) − 0.28 (0.157)
CAD2 2071 − 0.08 (0.02) 277 − 0.07 (0.03) 206 − 0.15 (0.047) − 0.15 (0.047) − 0.08 (0.098)
T2D 2071 − 0.09 (0.031) 272 − 0.16 (0.044) 206 − 0.33 (0.081) − 0.35 (0.082) 0.03 (0.17)
Dyslid 2071 − 0.14 (0.023) 255 − 0.1 (0.03) 206 − 0.23 (0.08) − 0.26 (0.076) − 0.17 (0.158)
Hyper 2071 − 0.05 (0.017) 270 − 0.14 (0.022) 206 − 0.2 (0.037) − 0.21 (0.038) − 0.09 (0.079)
PVD 2071 − 0.11 (0.048) 277 − 0.12 (0.077) 206 − 0.19 (0.109) − 0.19 (0.105) 0.12 (0.222)
DC 2071 − 0.04 (0.01) 270 − 0.08 (0.013) 206 − 0.09 (0.025) − 0.1 (0.025) − 0.03 (0.052)

LDL-C CAD1 1867 0.27 (0.029) 257 0.42 (0.037) 193 0.34 (0.065) 0.32 (0.062) 0.33 (0.133)
CAD2 1820 0.11 (0.021) 266 0.16 (0.027) 199 0.15 (0.043) 0.14 (0.043) 0.26 (0.085)
Dyslid 1820 0.56 (0.03) 258 0.94 (0.027) 199 0.9 (0.053) 0.86 (0.051) 0.93 (0.1)
DC 1820 0.08 (0.01) 267 0.13 (0.012) 199 0.13 (0.019) 0.13 (0.019) 0.17 (0.037)

TC CAD1 2546 0.24 (0.028) 309 0.46 (0.036) 215 0.41 (0.061) 0.39 (0.062) 0.35 (0.146)
CAD2 2484 0.08 (0.02) 314 0.16 (0.029) 218 0.15 (0.043) 0.14 (0.043) 0.22 (0.094)
Dyslid 2484 0.54 (0.03) 303 1.08 (0.029) 218 0.93 (0.055) 0.9 (0.051) 0.97 (0.111)
DC 2484 0.06 (0.01) 314 0.13 (0.012) 218 0.12 (0.019) 0.12 (0.019) 0.14 (0.041)

MR-LDP uses all SNPs selected by the screening dataset (denoted as PAll), but IVW, MR-Egger, RAPS and GSMR use pruned SNPs, where the default
value of r2 is used for GSMR (the number of SNP used: PGSMR) and r2 = 0.001 is used for VW, MR-Egger and RAPS (the number of SNP used: PInd).
Statistically significant results are indicated in bold.

cluding coronary artery disease (CAD1 and CAD2 from
CARDIoGRAM and UKB, respectively), asthma, aller-
gic rhinitis, cancer, major depression disorder, T2D, dys-
lipidemia (Dyslid), hypertensive disease (Hyper), hemor-
rhoids, hernia abdominopelvic cavity, insomnia, iron defi-
ciency anemias, irritable bowel syndrome, macular degener-
ation, osteoarthritis, osteoporosis, PVD, peptic ulcer, psy-
chiatric disorder, acute reaction to stress, VV and disease
count (DC). The summary statistics for risk factors include
HDL-C, low-density lipoprotein cholesterol (LDL-C), total
cholesterol (TC) and BMI. Supplementary Tables S3 and S4
summarize the total number of SNPs and sample sizes for
each trait in each health risk factor or disease outcome and
the details for the sources of these GWAS summary statis-
tics.

First, we applied MR-LDP together with alternative
methods to analyze the exposure–outcome pairs using
lipids as the exposure, i.e. HDL-C, LDL-C and TC. Specif-
ically, the screening and exposure datasets were obtained
from (48,49), respectively, where the threshold for selecting
instrumental variants in the screening dataset is set to 1 ×
10−4. The association results from the analysis are summa-
rized in Table 1. Note that we did SNP pruning for RAPS,
IVW and MR-Egger and used the default settings in all al-
ternative methods. As GSMR removes SNPs by providing
an LD threshold, we chose to use r2 = 0.05, as suggested by
its paper (15).

In practice, HDL-C and LDL-C are often referred to
as ‘good’ and ‘bad’ cholesterol, respectively. HDL-C is
known to be inversely correlated with heart and vascular
diseases. We found several significant protective effects of
HDL-C against CAD1 (β̂ = −0.09), CAD2 (β̂ = −0.08),
T2D (β̂ = −0.09), Dyslid (β̂ = −0.14), Hyper (β̂ = −0.05),
PVD (β̂ = −0.11) and DC (β̂ = −0.04), which is consistent
with known epidemiological associations in the same di-
rection (50–52). Moreover, MR-LDP identified the signifi-
cant negative causality between HDL-C and PVD, which
is consistent with previous studies (53,54). On the other
hand, MR-LDP identified the significant positive causality
between LDL-C and CAD, which is consistent with the fact
that LDL-C narrows the arteries and increases the chance

Figure 4. Causal associations of HDL-C on CAD1 under different P-value
thresholds in the screening dataset, where UK10K was used as the refer-
ence panel and the shrinkage parameter λ = 0.1.

of developing heart diseases. Regarding TC, MR-LDP iden-
tified the significant risk effects for cardiovascular disease,
as confirmed by RCTs.

To better understand the impact of different thresholds,
we repeated the analysis for HDL-C on CAD1, CAD2 and
PVD, separately, using a sequence of thresholds as shown
in Figure 4 and Supplementary Figures S18–S22. Several
patterns can be observed: (i) methods taking into account
LD have small standard errors; (ii) by using more SNPs un-
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Table 2. Causal associations of BMI with common diseases using UK10K as the reference panel with the shrinkage parameter λ = 0.1

Outcome PAll MR-LDP PGSMR GSMR (prune) PInd RAPS IVW MR-Egger

CAD1 4405 0.2 (0.084) 701 0.33 (0.07) 563 0.2 (0.121) 0.17 (0.091) 0.2 (0.129)
Asthma 4428 0.28 (0.073) 707 0.23 (0.061) 563 0.24 (0.107) 0.19 (0.08) 0.18 (0.115)
CAD2 4428 0.23 (0.066) 708 0.21 (0.062) 563 0.26 (0.105) 0.2 (0.079) 0.22 (0.113)
T2D 4428 0.85 (0.141) 708 0.84 (0.091) 563 1.22 (0.16) 0.93 (0.124) 1.46 (0.175)
Dyslid 4428 0.22 (0.076) 704 0.29 (0.059) 563 0.18 (0.133) 0.16 (0.086) 0.29 (0.124)
Hemorrhoids 4428 0.3 (0.135) 709 0.2 (0.111) 563 0.15 (0.17) 0.11 (0.129) − 0.1 (0.184)
Hyper 4428 0.47 (0.066) 703 0.5 (0.047) 563 0.58 (0.095) 0.46 (0.067) 0.54 (0.097)
Insomnia 4428 0.77 (0.235) 708 0.85 (0.215) 563 1.24 (0.325) 0.96 (0.246) 0.6 (0.353)
Osteoarthritis 4428 0.27 (0.078) 709 0.27 (0.068) 563 0.26 (0.114) 0.2 (0.084) 0.39 (0.119)
Osteoporosis 4428 − 0.44 (0.178) 709 − 0.36 (0.15) 563 − 0.62 (0.238) − 0.48 (0.178) − 0.73 (0.254)
PVD 4428 0.35 (0.167) 709 0.41 (0.159) 563 0.32 (0.242) 0.24 (0.183) 0.41 (0.263)
DC 4428 0.27 (0.035) 700 0.3 (0.027) 563 0.3 (0.051) 0.23 (0.037) 0.26 (0.053)

MR-LDP uses all SNPs selected by the screening dataset (denoted as PAll), but IVW, MR-Egger, RAPS and GSMR use pruned SNPs, where the default
value of r2 is used for GSMR (the number of SNP used: PGSMR) and r2 = 0.001 is used for VW, MR-Egger and RAPS (the number of SNP used: PInd).
Statistically significant results are indicated in bold.

der larger thresholds, the standard errors become smaller;
and (iii) as thresholds become relatively large, e.g. 0.005,
the point estimates tend to be biased. The first two patterns
are expected. Generally, MR-LDP is robust under differ-
ent thresholds but shows biasedness when the threshold is
too liberal, which is primarily due to the inclusion of invalid
variants. As the threshold is relatively large, more genetic
variants with no associations to the exposure are included
in the analysis, which induces biasedness either upward or
downward depending on the directions of effects for invalid
instrumental variants.

Second, we examine the associations between BMI and
common diseases, where the exposure and the screening
datasets were obtained from GIANT (55,56), respectively.
We chose the threshold to be 1 × 10−4 for selecting the in-
strumental variants from the screening dataset. The associ-
ation results from the analysis are summarized in Table 2.
Overall, our MR-LDP detected a relatively more significant
causality between BMI and complex diseases in this study.
Our findings are consistent with RCTs, which indicate that
obesity increases the risk of diseases such as heart disease,
T2D and hypertensive disease (57).

We also estimated some causal effects that are rarely in-
volved in the previous MR analysis but reported in the epi-
demiological studies. For instance, BMI is a significant risk
factor for hemorrhoids (58).

In addition, MR-Egger is too conservative in identifying
the causal relationship between BMI and common diseases,
and the same conclusion can be found in (18). Similar to
lipid studies, we repeated the analysis for BMI on hemor-
rhoids and PVD, respectively, using a sequence of thresh-
olds, as shown in Supplementary Figures S23–S26. The pat-
terns are similar to those in Figure 4 and Supplementary
Figures S18–S22.

DISCUSSION

Here, we proposed a statistically rigorous and efficient ap-
proach to perform a two-sample MR analysis that ac-
counts for both LD structure and horizontal pleiotropy
using GWAS summary statistics and a genotype refer-
ence panel. We implemented our method in the R package

MR.LDP, which is available for download at GitHub. MR-
LDP jointly estimates the causal effect through an approx-
imated likelihood of two sets of GWAS summary statistics
for both the risk factor and disease outcome using an addi-
tional variance component to eliminate the impact of hor-
izontal pleiotropy. Thus, the type I error can be well con-
trolled even if horizontal pleiotropy and LD structure ex-
ist among instrumental variants. MR-LDP is indeed sta-
tistically more powerful than other methods in identifying
causal effects as illustrated in our simulations (see the ‘Sim-
ulations’ section).

Unlike other MR methods, MR-LDP is particularly suit-
able to analyze complex traits that have multiple instru-
mental variants within LD. This is primarily accomplished
by jointly modeling the distributions for summary statistics
and the causal relationship between the risk factor and dis-
ease outcome. These summary statistics distributions rely
on the polygenicity in complex traits. Moreover, we model
the causality by Equation (4) as the average of ‘local’ causal
effect, which can be treated similarly as linear structural
model in the Supplementary Data. Similar to RAPS, MR-
LDP further eliminates the impact of horizontal pleiotropy
using a random component. Consequently, MR-LDP is in-
variant to the orientation of genetic variants, while the re-
sults from MR-Egger depend on this orientation as MR-
Egger uses a fixed intercept. We notice that a Gaussian dis-
tribution with a mean of zero is generally robust even in the
case that the underlying horizontal pleiotropy is sparse. In
the framework of EM algorithm, the complete-data likeli-
hood for MR-LDP can be written as Equation (5). To fur-
ther speed up the computation, we developed a PX-VBEM
algorithm by expanding parameters and using VB. We fur-
ther accelerated MR-LDP by parallel computing imple-
mented in the package MR.LDP. To further conduct hy-
pothesis testing for causal effects, we calibrated the EBLO
from the PX-VBEM algorithm. In our numerical studies,
we observe that only GSMR can handle genetic variants
with weak LD but is not applicable to analyze genetic vari-
ants with high LD. We further demonstrate that unlike
other methods, MR-LDP is more effective in controlling
type I error in the presence of LD and either sparse or
dense horizontal pleiotropy. These merits enable us to ap-
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ply MR-LDP on GWAS summary statistics, likely discover-
ing more fruitful and meaningful causal relationships in the
future.

We used two pairs (CAD–CAD and height–height) of
real data to validate the proposed method partially. As the
risk factor and the outcome are the same, we can take the
true causal effect as known (β0 = 1). By applying MR-LD
and MR-LDP with alternative methods, we found that esti-
mates from the proposed methods can effectively cover the
true β0 at the 95% confidence level, for instrument variants
chosen under a wide range of thresholds. When more in-
strumental variants come into the model under a less strin-
gent threshold, the estimates for the causality have nar-
rower confidence intervals or smaller standard errors. We
also note that MR-LDP has a wider confidence interval
than MR-LD. This wider confidence interval is because
MR-LDP makes additional efforts to model the horizontal
pleiotropy.

In this article, we primarily focus on modeling the lipids
and BMI as the exposures and complex diseases as the
outcomes. Using a threshold of 1 × 10−4 in the screening
dataset, we identified multiple pairs of significant causal re-
lationships. For example, the well-known protective effect
of HDL-C on the PVD (59) was identified by our model.
We also identified significant causal relationships between
HDL-C and CAD in two parallel experiments. In partic-
ular, although HDL-C was found to be associated with
CAD in multiple observational studies (60–62), the role of
HDL-C in CAD was overturned by later studies (63,64).
Recently, Zhao et al. (42) showed that the effect of HDL-
C in CAD is heterogeneous using different instruments.
For BMI, we identified its positive association with knee
osteoarthritis and sleep duration, which is consistent with
what have been reported in (65,66), respectively. We also
confirmed a protective effect of BMI on osteoporosis as
suggested previously by (67,68). Moreover, increased BMI
is also considered to be one of the contributing factors for
PVD in both our study and other related work (69). We fur-
ther demonstrated the robustness of MR-LDP using a se-
quence of threshold values to select instrumental variants.
As illustrated in Figure 4, the point estimates for P-value
threshold ≤10−4 are almost stable; hence, we want to sug-
gest 10−4 as the starting P-value cutoff for users to work
with.

Even though MR-LDP accounts two important issues, it
has several limitations. First, MR-LDP cannot be utilized
if there are overlapping samples between SNP exposure and
SNP outcome. Nowadays, GWAS consortia usually gener-
ate summary statistics using the meta-analysis from many
completed studies, which makes samples inevitably over-
lapped. Moreover, different analyses involving UKB (70)
samples are largely overlapped with each other. Second,
similar to RAPS and other methods, MR-LDP requires an
additional independent SNP exposure dataset to select in-
strumental variants, otherwise existing selection bias would
invalidate the inference. Third, similar to many existing
methods including RAPS, MR-LDP relies on the ‘Instru-
ment Strength Independent of Direct Effect’ assumption to
account for horizontal pleiotropy. Therefore, methods ca-
pable of accounting for correlated pleiotropy are highly an-
ticipated.

WEB RESOURCES

MR.LDP is available at GitHub (https://github.com/
QingCheng0218/MR.LDP).

BMI-JAP (screen) dataset: ftp://ftp.ebi.
ac.uk/pub/databases/gwas/summary statistics/
AkiyamaM 28892062 GCST004904.

Height and BMI (exposure) datasets: https:
//portals.broadinstitute.org/collaboration/giant/index.php/
GIANT consortium data files#2018 GIANT and UK
BioBank Meta Analysis for Public Release

Lipid (screen) datasets: http://csg.sph.umich.edu/willer/
public/lipids2010/.

Lipid (exposure) datasets: http://csg.sph.umich.edu/
willer/public/lipids2013/.

CAD1 dataset: http://www.cardiogramplusc4d.org/data-
downloads/

Common human disease datasets: http://cnsgenomics.
com/data.html.

UK10K datasets: https://www.uk10k.org/data access.
html.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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