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Abstract: Historically, evolution of behaviors often took place in environments that changed little
over millennia. By contrast, today, rapid changes to behaviors and environments come from the intro-
duction of artificial intelligence (AI) and the infrastructures that facilitate its application. Behavioral
ethics is concerned with how interactions between individuals and their environments can lead peo-
ple to questionable decisions and dubious actions. For example, interactions between an individual’s
self-regulatory resource depletion and organizational pressure to take non-ethical actions. In this
paper, four fundamental questions of behavioral ecology are applied to analyze human behavioral
ethics in human–AI systems. These four questions are concerned with assessing the function of behav-
ioral traits, how behavioral traits evolve in populations, what are the mechanisms of behavioral traits,
and how they can differ among different individuals. These four fundamental behavioral ecology
questions are applied in analysis of human behavioral ethics in human–AI systems. This is achieved
through reference to vehicle navigation systems and healthcare diagnostic systems, which are enabled
by AI. Overall, the paper provides two main contributions. First, behavioral ecology analysis of
behavioral ethics. Second, application of behavioral ecology questions to identify opportunities and
challenges for ethical human–AI systems.

Keywords: artificial intelligence (AI); behavioral ecology; behavioral ethics; diagnostic systems;
function; gait analysis; human–AI systems; mechanism; ontogeny; phylogeny; situated entropy;
vehicle navigation

1. Introduction

Behavioral ethics is concerned with what is done, rather than the normative ethics of
what should be done. Behavioral ethics addresses the potential for good people to make
questionable decisions and take dubious actions [1–3]. Behavioral ethics considers interac-
tions between moral motivation and ethical temptation, which depend on combinations of
variables that can come together differently in different situations [4–6]. These include, for
example, an individual’s self-regulatory resource depletion and organizational pressure to
take non-ethical actions [7,8]. Having the moral motivation to resist ethical temptation can
be a struggle [9], in which non-ethical impulses can override moral reflection [10], some-
times with disastrous consequences for individuals and organizations [3]. Organizational
pressure can arise from conflicts between organizational practices, such as performance
reporting and performance rewarding [11]. Individuals who identify strongly with an
organization can go along with organizational pressure to take non-ethical action [12,13],
especially if their self-regulatory resources are depleted [14], for example from overwork
for the organization [15] and/or time pressures [16,17]. Fundamentally, behavioral ethics is
concerned with how interactions between individuals and their environments can lead to
questionable decisions and dubious actions.

All aspects of human–environment interactions are encompassed within the field of hu-
man ecology [18]. With more specificity, cultural ecology encompasses human adaptations
to social and physical environments [19]. With further specificity, human behavioral ecol-
ogy addresses the same questions as behavioral ecologists when studying other species [20].
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Four fundamental questions in behavioral ecology are those raised by Niko Tinbergen. Two
of the questions are evolutionary as follows: what are the ecological fitness functions of
behavioral traits (function)? and what is the behavioral trait’s evolutionary history in a
population (phylogeny)? Two of the questions are proximate as follows: what is the struc-
ture of a behavioral trait (mechanism)? and how has the behavioral trait developed in an
individual (ontogeny) [21]? Hitherto, the relevance of behavioral ecology to human ethical
behavior has been recognized [22], but there has not been a behavioral ecology analysis
of ethical human-artificial intelligence systems. This is despite fundamental questions in
behavioral ecology being applicable to nonliving as well as living systems [23].

This gap in the literature is addressed in the remaining sections. Next, in Section 2,
human–AI systems’ behavioral traits are analyzed in terms of function. In Section 3, they
are analyzed in terms of phylogeny. In Section 4, they are analyzed in terms of mechanism.
In Section 5, they are analyzed in terms of ontogeny. In Section 6, the four behavioral
ecology questions are applied together to structure behavioral ethics analysis of a human–
AI system. This is achieved with the examples of vehicle navigation systems and healthcare
diagnostic systems. In conclusion, principal contributions are stated and directions for
future research are proposed in Section 7. Overall, the behavioral ecology analysis identifies
opportunities and challenges for ethical human–AI systems. These include the dependence
of human–AI systems on ideal environmental conditions to reduce ethical stress, and the
need for policy-making to encompass the multitude of environmental factors that can affect
human–AI systems.

2. Function

The function of behavioral traits in enabling survival can be considered in terms of
ecological fitness. The closer the fit between a human behavioral trait and the current
environment in which the person intends to survive, the less information the person will be
lacking about how to survive, the less physical disorder there will be in the person’s actions
to survive in the environment, and the less energy the person will consume unproductively
in actions to survive. Hence, when there is a good fit between a person’s behavioral traits
and the environment, the person can survive with least action and have energy free for
other actions [24–26]. In such situations, a person can maintain internal stability by internal
regulation through homeostasis [27].

Consider, for example, the demanding working lives of truck drivers. Typically, truck
drivers are under time pressure, but this could be reduced to some extent if a truck driver
has the behavioral trait of excellent navigation skills. In particular, a truck driver who has
the behavioral trait of excellent navigation skills can experience low situated entropy [24,25].
This is because such a truck driver does not experience information theoretic entropy
from route information uncertainty. Consequently, the truck driver travels to delivery
destinations directly, and so does not experience the statistical mechanics entropy of the
physical disorganization involved in driving incorrect routes. As the truck driver does
not drive incorrect routes, the truck driver is not under additional time pressure and may
have time to take at least some rest breaks that include eating properly. Moreover, the
truck driver does not experience thermodynamic entropy, which would be entailed in
the physical disorganization of driving incorrect routes due to lack of route information.
Rather, the truck driver survives with least action and can have some energy free for other
actions, such as recreational activities that can facilitate sleeping well, which together with
workday rest breaks, can contribute to maintaining balance between energy demands and
energy supply.

By contrast, the worse the fit between a behavioral trait and the environment in which
the person intends to survive, the more information a person will be lacking about how to
survive. This can increase physical disorder in the person’s actions taken to try to survive in
the environment, and increase the energy the person will expend unproductively in actions
taken to try to survive. Hence, when there is a bad fit between a person’ behavioral trait and
the environment, the person cannot survive with least action and cannot have much energy
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free for other actions. In such situations, a person may not be able to maintain internal
stability by internal regulation through homeostasis. Rather, the person can experience
allostatic overload. This can happen when internal regulatory work increases to the point
where energy demand exceeds energy supply and a person is depleted of resources needed
to function well. This can lead to altered activity in brain areas involved in law-abiding
and moral behavior. Specifically, severe stress decreases activity within brain areas that
support some of the highest forms of contextual integration, leads to top-down collapse of
higher goals, and the favoring of short-term aims [28,29].

Consider, for example, a truck driver who does not have good navigation skills and
so experiences high situated entropy [24,25]. Such a truck driver is lacking in correct
route information and so does experience information-theoretic entropy from information
uncertainty. Consequently, the truck driver does not travel to delivery destinations directly,
and so does experience the statistical mechanics entropy of the physical disorder entailed
in driving incorrect routes. As the truck driver is often driving incorrect routes, the truck
driver is under additional time pressure and does not have any time to take rest breaks
that include eating properly. Furthermore, as time pressure increases, the truck driver can
experience increasing ethical temptation to drive through traffic lights as they are turning
from orange to red. Every time the truck driver resists the temptation to drive through such
traffic lights, the truck driver has to exert self-regulatory control that can become depleted.

In addition, the truck driver experiences thermodynamic entropy. Before getting into
the truck, depending on previous food intake, the driver can have thermodynamic free
energy available for doing useful work. However, once allocated to truck driving without
correct route information, the truck driver’s energy changes from being potentially useful
to being practically useless. This is because the truck driver’s energy is allocated to being
lost amidst thermodynamic entropy entailed in the physical disorganization of driving
incorrect routes due to lack of correct route information. Hence, the truck driver does not
have energy free for other actions, such as recreational activities that can facilitate sleeping
well. Thus, the truck driver who does not have good navigation skills may be less likely to
maintain balance between energy supply and energy demands than a truck driver who
does have good navigation skills.

As summarized in Table 1 below, as well as being under time pressure and being
depleted, the truck driver may feel extreme survival pressure if a long track record of
poor delivery performance has placed the truck driver under threat of dismissal from the
last haulage company that will provide employment. In such a situation, the truck driver
may suffer from chronic stress because of loss of resources [30] due to erratic employment
in the past, and from chronic anxiety about how to survive in the future [31]. In such a
situation, there can be increased potential for questionable decisions and dubious actions.
For example, for the truck driver to continue to drive while feeling sleepy [32].

From the perspective of behavioral ethics, when the same truck driver is not under so
much time pressure, is not depleted, and is not under imminent survival threat, the same
truck driver would stop as traffic lights turn from green to orange and would not continue
to drive when starting to feel sleepy. This could happen if, amidst a severe shortage of
truck drivers [33], haulage companies could install new AI-support navigation systems into
trucks that could improve the delivery performance of truck drivers [34]. Thus, although
the human truck driver alone may have the behavioral trait of not having navigation skills,
the same human in a human–AI system could have the behavioral trait of having navigation
skills. This could lead to reduced situated entropy, i.e., reduced thermodynamic entropy
because of reduced statistical mechanics entropy due to reduced information-theoretic
entropy. Hence, the ecological fitness function of a behavioral trait is high when situated
entropy arising from that trait in an environment is low.
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Table 1. Function: Interrelationships between function fitness, situated entropy, and ethical stress.

Construct High Fitness Low Fitness

Situated
entropy

Information
uncertainty

Low High e.g., due to truck driver having inadequate route information

Physical
disorder

Low High e.g., due driving incorrect routes

Unproductive
energy use

Low High e.g., due to driving incorrect routes

Daily
stress

Time
pressure

Low High e.g., no time for work rest breaks that include eating properly

Self-
regulatory
depletion

Low High e.g., from stopping truck at orange traffic lights when late

Chronic
stress

Resource loss Low High e.g., due to loss of resources because of erratic employment

Survival
anxiety

Low High e.g., due to employment uncertainty that prevents sleeping well

Energy
imbalance

Low High, e.g. poor diet and lack of sleep causes allostatic overload

Potential for increased
ethical stress

Low High due to interaction with environment leading to daily stress from high time
pressure and high self-regulatory depletion; leading to chronic stress from
resource loss, survival anxiety, energy imbalance

3. Phylogeny

Hitherto, the evolution of behavioral traits in populations may have taken place
over many generations within natural environments that changed little over millennia.
For example, humans developed navigation skills, which are useful today, when we
were finding our way as hunter-gathers [35–37]. Although human capabilities evolved
through many millennia [38,39], we are now trying to survive in environments that can
change rapidly at least partially because of human ecosystem engineering [40–43] and
bring an increasing variety of survival threats such as unemployment [44,45] and health
challenges [46,47]. Moreover, human ecosystem engineering can reduce quickly human
capabilities that evolved over millennia. For example, Internet-enabled navigation systems
can reduce human navigation skills [48].

The development of vehicle–infrastructure integration for human–AI systems is an
example of rapid widespread ecosystem engineering. This involves the re-engineering of
public roads into so called smart roads that can provide “cooperative infrastructure” for
vehicles that have autonomous functionality. This involves a range of costly engineering
activities, such as the installation of V2X (vehicle-to-everything) WiFi. In addition, sensors
are being developed to be integrated into road surfaces that can be used to inform com-
munication to autonomous vehicles by new types of smart road signage. The economic
viability of engineering work settings depends on the number of operations over which the
high financial costs can be spread. Such financial costs may perhaps be economically viable
over main roads with a high frequency of vehicles, but are prohibitively expensive for
low-frequency roads and for off-road locations [49–52]. Accordingly, the extent of vehicle
functioning that is technically feasible can change as a truck is driven on different types of
roads with different levels of cooperative infrastructure.

As summarized in Table 2 below, this example illustrates that the series of evolutionary
steps in a population (i.e., phylogeny) for behavioral traits of human–AI systems can involve
natural evolution over millennia combined with increasing rapid technological evolution
over centuries, decades, and years. For example, human navigation capabilities have
evolved over millennia, road networks have evolved over centuries, trucks have evolved
over decades, and cooperative infrastructures have evolved over years.
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Table 2. Phylogeny: Interrelationships between trait components and trait robustness.

Behavioral Trait Component Evolution Span Current Distribution Trait Robustness

Human navigation skill Millennia Widespread but reducing Vulnerable to lack of use

Road networks Centuries Widespread and increasing Vulnerable to extreme weather

Trucks Decades Widespread and increasing Vulnerable to extreme weather

Cooperative infrastructure Years Very limited but can increase Vulnerable to extreme weather

However, the extent of each trait component can be dependent on situation-specific
variables, not least environmental conditions that can limit the use of technological compo-
nents. For example, erratic Internet coverage can make some AI operations erratic [53]. In
addition, unfavorable weather can limit the use of technological components. For example,
all technological components may function in a fully cooperative road infrastructure in
favorable weather conditions, but extreme weather events can flood roads, stop trucks,
and prevent cooperative infrastructure from functioning. Occurrences of such unfavorable
weather conditions are increasing [54,55]. Accordingly, the function of human–AI navi-
gation systems is not robust from an evolutionary perspective. That is, the function of
human–AI navigation systems is not persistent under environmental perturbations [56,57].
Rather, the function of human–AI navigation systems is only fully operational in ideal
conditions. Consequently, it can only be relied upon in ideal environmental conditions
to reduce information uncertainty that could otherwise arise from poor route informa-
tion that would lead to the physical disorder of driving incorrect routes with consequent
unproductive energy expenditure. In summary, situated entropy in human–AI systems
is dynamic as truck drivers and their vehicles pass through different environmental con-
ditions. Thus, human–AI systems can only be relied upon in ideal conditions to reduce
situated entropy, which would reduce the human truck driver’s time pressures and deple-
tion. Hence, human–AI systems can only be relied upon in ideal conditions to reduce the
potential for questionable decisions and dubious actions, such as continuing to drive while
feeling sleepy.

4. Mechanism

Human navigational skills are founded on wayfinding involving memory, perception,
and attention [58]. Whereas navigating involves following a preset route, wayfinding
involves the ability to create a novel route that is based on understanding a wider frame of
reference than a preset route [59,60]. Wayfinding involves creating novel routes through
changing situations by making non-conscious reference to cognitive maps and conscious
reference to waypoints [35,36]. Here, cognitive maps are mental representations of spatial
relations [61]. Waypoints can be physical and natural, such as desert oases and rocky
outcrops. Waypoints can be physical and human-made, such as beacons and buoys.
Waypoints can be digital and human-made, such as landmarks in digital maps [62].

Human wayfinding skills evolved when we were hunter gatherers [63,64]. Human
wayfinding can require dynamic cognitive activity [65]. In particular, dynamic embodied
cognition [66]. That is, cognition that depends on sensory inputs brought by and pro-
cessed by the physical body that shapes prior beliefs and action outputs [67]. Different
memory capacities can affect different individuals’ formulation of cognitive maps [68],
which can be held within different individuals’ different embodied cognitive architec-
tures [69,70]. Human skills that have been evolved over millennia of wayfinding can be
quickly reduced by current human ecosystem engineering, such as global Internet-enabled
navigation systems [48]. This can be due to such systems reducing the use of memory,
perception, attention, and cognitive diligence that have hitherto been essential to human
wayfinding [64,71]. Thus, different people can have different navigation skills, and their
navigation skills can change over time.

Accordingly, if the AI components of a human-AI systems for truck navigation are not
available, for example due to lack of Internet access or extreme weather, some truck drivers
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will sometimes get lost rather than getting straight to delivery destinations. This may be
because truck drivers are not able to minimize disparities between route assumptions based
on prior beliefs, individual waypoints, and overall spatial structures. There can be many
opportunities for getting lost when human wayfinding skills are poor and AI-enabled
navigation support is not available. For example, getting lost may be more likely when
spatial structures cannot be seen as a whole. Moreover, getting lost may be more likely
when an individual’s perception of the spatial structure based on prior beliefs does not
correspond to the actual structure. In addition, individuals can get lost if they try to
recall and to apply a specific route instead of developing a mental spatial representation
by inferring location on the move. This can happen even in structured environments
such as inside buildings [72], where the final phase of a delivery may need to be made.
Accordingly, the human mechanism and the AI mechanism within a human–AI system
may be complementary in some situations, but have negative unintended interactions in
the longer term.

Thus, it cannot be assumed that a human–AI truck navigation system will eliminate
information uncertainty, physical disorder, and unproductive energy expenditure involved
in getting lost. Rather, situated entropy in human-AI systems is dynamic. Hence, as
summarized in Table 3 below, it cannot be assumed that a human-AI truck navigation
system will always prevent human truck drivers coming under time pressure and becoming
sufficiently depleted to make questionable decisions and take dubious actions. Rather,
there can be many scenarios where ethical behavior is at risk. Accordingly, the mechanism
of a human-AI truck navigation system should include additional components to support
behavioral ethics. For example, automated messages could be provided for encouraging
ethical actions and reminding about ethical actions. These can be considered as cues
to support moral motivation [7,73]. Such messages do not have to be dependent on
Internet access because they can be communicated via text messages [74,75]. Messages
can encourage ethical actions indirectly, for example, by encouraging taking the necessary
number and duration of rest breaks in order to reduce the potential for truck drivers
becoming depleted. Messages can encourage ethical actions directly if they are related
to a performance appraisal methodology that rewards ethical behavior [73]. Messages
reminding about ethical actions can be related to reminding truck drivers not to drive while
feeling sleepy, because truck driver sleepiness is a major cause of road accidents [76]. All
messages should be in accordance with a policy that addresses the potential for productivity
incentives to lead unintentionally to unethical actions [8,77].

Thus, while the natural mechanism for human navigation has evolved over millennia,
the mechanism of ethical human-AI systems for vehicle navigation also needs to encompass
rapidly evolving AI for vehicle navigation. In addition, it needs to include rapidly evolving
AI to provide encouragement and reminders for ethical behavior, and a management policy
that is carefully formulated by and overseen by humans to facilitate intended positive
ethical outcomes and prevent negative unintended ethical consequences. The management
policy should involve humans having the capability to oversee the overall activity of the
system in terms of its relation to laws, regulations, and standards [78]. Moreover, it should
include human intervention during the monitoring of the system’s operation, and have
capacity for human intervention in every decision cycle of the system. Such management
policies should be documented for impartial external audit [79].
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Table 3. Mechanism: Variables between navigational skill and behavioral ethics.

Mechanism Behavioral Ethics

Navigation Skill Infrastructure Internet Management Policy Weather

High Cooperative Reliable Ethical incentives Favorable Low risk

High Cooperative Reliable Ethical incentives Unfavorable Low risk

High Cooperative Reliable Productivity incentives Unfavorable Medium risk

High Cooperative Unreliable Productivity incentives Unfavorable Medium risk

High Traditional Unreliable Productivity incentives Unfavorable Medium risk

Low Cooperative Reliable Ethical incentives Favorable Low risk

Low Cooperative Reliable Ethical incentives Unfavorable Medium risk

Low Cooperative Reliable Productivity incentives Unfavorable Medium risk

Low Cooperative Unreliable Productivity incentives Unfavorable High risk

Low Traditional Unreliable Productivity incentives Unfavorable High risk

5. Ontogeny

How a behavioral trait develops in an individual can be affected by experience and
personality. Consider, for example, the different truck drivers as summarized in Table 4.
Two of them have many years of experience of navigating successfully on traditional
road infrastructure. Neither has used digital navigation systems. One has not used them
only because of not having needed to do so. The other has not used them because of
suspicion of AI. For example, people can have concerns about AI and robotics taking
jobs [80]. This could be based on the truck driver believing the use of AI would include
AI learning to enable full truck automation and full truck driver unemployment in the
near future [81]. At the same time, some truck drivers could have wider concerns such
as AI and robotics developing dangerous superintelligence, harboring malicious intrinsic
motivations, and enacting unfavorable intentions [82–85]. Hence, some people can be
reluctant to participate in human-AI systems [86]. The second truck driver is prone to
anxiety. The other two truck drivers are digital natives [87]. Neither of them has experience
of navigating successfully without digital navigation support. One of them has not tried
navigating without digital support because of not having needed to do so. The other has
not tried because of suspicion of traditional methods of navigation. The fourth truck driver
is prone to anxiety. Personality types with a propensity for anxiety have been associated
with reluctance to use new technology [88] and with truck driver accidents [89].

Human choices are often not based on objective evaluation of utility. Rather, choices
can be influenced by numerous biases and include over-emphasizing potential outcomes
that are extreme but unlikely [31,90]. As summarized in Table 4 below, different experience
and personality can lead to some people wanting to use new technology and other people
not wanting to use the same new technology. These behaviors can be described in terms of
approaching and avoiding [91,92]. In particular, environments can be perceived to carry
varying degrees of danger. Passive avoidance can arise in environments where the extent
of danger is uncertain. Especially for people who have a general propensity for anxiety,
avoidance can be accompanied by chronically high levels of anxiety [93–95]. Chronic
anxiety can lead to chronic stress [96–98]. This has serious implications for ethical behavior
as severe stress can decrease activity within brain areas involved in law-abiding and moral
behavior [28,29].
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Table 4. Ontogeny: Effects of background on stress when interacting with AI.

Truck Driver Background Ontogeny

Traditional
Navigation
Experience

Suspicion of
Traditional
Navigation

AI-Aided
Navigation
Experience

Suspicion
of AI-Aided
Navigation

Propensity for
Anxiety

1 High None None Low Low Approaches
AI-aided
navigation
without anxiety

2 High None None High High Avoids
AI-aided
navigation with
potential for
chronic anxiety

3 Low Low High None Low Approaches
traditional
navigation
without anxiety

4 Low High High None High Avoids
traditional
navigation with
potential for
chronic anxiety

6. Behavioral Ecology Analysis of Ethical Stress in Human-AI Systems
6.1. Overview

An overview is provided in Figure 1 of the behavioral ecology analysis of ethical
stress in human-AI systems. It is appropriate to place situated entropy at the center of
analysis and development of ethical human-AI systems because as well as entropy having
a determining influence over human stress [28,31,96], entropy is a fundamental concept
in computer science and its applications [99–102]. In Figure 1, phylogeny (1) refers to
the evolution of mechanism (2) of a human-AI system before its introduction. Function
(3) refers to function at introduction, which may lead to reduced situated entropy and
related ethical stress in some situations, but increased situated entropy and related ethical
stress in other situations. Phylogeny (1v2) refers to evolution after initial introduction
that leads to an adapted mechanism (2v2), which provides adapted function (3v2) with
increased potential to reduce situated entropy. Ontogeny (4.1) refers to the ontogeny of one
person who experiences reduced situated entropy and related ethical stress. Ontogeny (4.2)
refers to the ontogeny of another person who experiences increased situated entropy and
related ethical stress. Ontogeny (4.2v2) refers to the same person after individual adaptation
of the human-AI system leads to the person experiencing reduced situated entropy and
related ethical stress. Feedback refers to the potential for individual adaptations informing
further phylogeny.

6.2. AI Navigation Support for Human Truck Drivers

AI-enabled fully automated trucks are a goal for some road freight companies. How-
ever, this corporate goal is hindered by the need for human truck drivers to take care of the
so-called first mile and last mile of deliveries where there is too much task variation for AI
to deal with [103,104]. Despite the continued importance of human truck drivers, current
approaches to AI implementation have led to the working lives of truck drivers becoming
what has been described as a dystopian nightmare. This involves surveillance of truck
drivers to such an extent that even their eye movements are monitored [105]. Accordingly,
new approaches are needed for AI implementations in road freight.
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Figure 1. Behavioral ecology analysis of human-AI systems. Iterations of system evolution
(phylogeny) and individual adaptations (ontogeny) of system mechanism are needed in order to
minimize situated entropy from system function that can cause ethical stress.

As summarized in Table 1, human stress that can undermine behavioral ethics can
be low when function is well-matched to an environment. This is because there is low
information uncertainty, low physical disorder, and low unproductive energy consumption.
Hence, there is low situated entropy. However, as summarized in Table 2, human-AI system
phylogeny can involve interrelated fitness components that evolve over very different time
scales, and can have very different levels of distribution. Moreover, human-AI system phy-
logeny can lead to a behavioral trait not being robust amidst environmental perturbations.
Hence, there can be many situations in which human-AI systems will not reduce situated
entropy that brings ethical stress. Thus, while human-AI systems can introduce opportuni-
ties for reducing situated entropy, they can also introduce new challenges. In particular,
human navigation skills can be undermined by frequent use of AI-enabled navigation
systems [48], but AI-enabled navigation systems cannot be relied upon in all situations.
Accordingly, human-AI navigation systems need to be situated within wider efforts that
can reduce situated entropy. For example, the replacement of hundreds of separate de-
livery locations with common collection locations [106]. Furthermore, as summarized in
Table 3, the human-AI system mechanism needs to include additional components within
a management policy, for example, that limits the potential for productivity incentives to
lead unintentionally to unethical actions. However, this could increase the complexity and
the risk of failure of a human-AI system. Accordingly, system design for high reliability
is required [107]. As summarized in Table 4, it is important that ontogeny can include
individualized adaptation of human-AI systems in order to mitigate against the potential
for individual differences in experience and personality to lead to chronic stress that can
undermine human moral motivation. However, this can further increase complexity, which
it may not be possible to offset completely with system design for high reliability [108]. An
overall summary of opportunities and challenges for human-AI truck navigation systems
is shown in Table 5.
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Table 5. Vehicle navigation example of opportunities and challenges for behavioral ethics in human-
AI systems.

Construct Opportunities Challenges

Function Human-AI truck navigation system can reduce
stress-inducing situated entropy experienced by
human truck drivers who have poor navigation
skills and so could otherwise easily get lost

Continual use of AI-enabled navigation systems
can undermine human navigation skills

Phylogeny Ongoing evolution of technological components has
potential to widen the range of human-AI truck
navigation systems.

Until there is further evolution of AI
components, reduction of stress arising from
experience of situated entropy depends upon
there being favorable environmental conditions

Mechanism Human-AI system can include additional
components within a management policy that limits
the potential for productivity incentives to lead
unintentionally to unethical actions

The inclusion of additional components can
increase system complexity. Thus, there needs to
be system design for high reliability.

Ontogeny Individualized adaptation of human-AI system to
suit individual human truck drivers can be possible

Differences in experience and personality can
lead to human interaction with AI leading to
unintended ethical stress

6.3. AI Diagnostic Support for Human Healthcare Providers

Human-AI navigation systems provide quite straightforward examples of moral dilem-
mas, such as whether or not to drive through traffic lights as they turn from orange to red,
and whether or not to continue to drive when feeling sleepy. However, there are many
other potential applications of human-AI systems where moral dilemmas are less straight-
forward. Consider, for example, a human-AI system for planning recovery pathways for
functional disorders, i.e., for medical conditions without complete medical explanation
that impair normal functioning of bodily processes [109]. Here, moral dilemmas arise
for healthcare organizations and their personnel from the challenge of deciding where to
allocate and where not to allocate finite healthcare resources at the tax payers’ expense.
In particular, lack of complete medical explanation for functional disorders can lead to
concerns that they are actually factitious disorders or malingering [110]. Factitious disorder,
which has also been called Munchausen Syndrome, involves people behaving as if they
have illnesses by deliberately producing, feigning, or exaggerating symptoms [111]. This is
different to malingering, which involves deliberate effort to simulate illness in order to get
out of obligations and/or to obtain benefits [112]. Accordingly, there can be stigma against
patients with functional disorders that presents obstacles to diagnosis and treatment. It
has been argued that symptoms can be misunderstood or dismissed because of stigma.
Moreover, it has been argued that stigma exacerbates the suffering of patients, and can
result in poor clinical management involving prolonged use of healthcare resources [113].
Thus, new healthcare systems are needed that can provide better diagnosis and better
recovery pathways for people suffering with functional disorders [114].

New investments in human resources are needed for new healthcare systems. In
addition, artificial intelligence can contribute to new healthcare systems by carrying out
automated analyses of healthcare study results, such as scans, and by analyzing patterns
over a series of results. For example, gait problems are a feature of some functional
disorders. Gait encompasses walking, running, and other means of natural locomotion
combined with posture. Gait analysis includes the measurement of multiple parameters
from which conclusions can be drawn about health [115]. Gait analysis could contribute to
distinguishing between functional disorders, factitious disorders, and malingering, because
gait involves complex natural processes that are difficult to fake consistently. Hence, gait
analyses are used for security as well as for healthcare [116]. Some gait patterns are found
frequently among patients with functional disorders. These include excessive gait slowness,
knee buckling, and astasia-abasia, which refers to the inability to either stand or walk in a
normal manner.
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Regardless of what initiates functional symptoms, they can be perpetuated by phobic
avoidance and affective disorders [117]. Accordingly, it is important that gait analysis
reports do not contribute to phobic avoidance and affective disorders, but rather contribute
to a care pathway for patient recovery [118]. For example, gait analysis reports can con-
tribute to evaluation of patients’ complex disorder status, treatment, rehabilitation, and
recovery [119]. In practical terms, this can involve important outcomes such as prevent-
ing wheelchair dependency [120]. A range of artificial intelligence techniques have been
applied to gait analysis. These have been found to have potential for making positive con-
tributions to detecting disorders and differentiating between disorders [121–125], including
detecting affective disorders [116,126–129].

However, there remain many challenges in the deployment of AI for gait analyses.
Notably, there has been little progress in making AI-enabled gait analyses understandable
for patients and healthcare providers [130]. Hence, both can experience much information
uncertainty about gait analyses. As summarized in Table 6 below, if the human-AI system
does have the function of reliable and explainable gait analysis, it can reduce the patient’s
situated entropy in the patient’s healthcare environment. However, this depends upon the
patient agreeing with the AI-enabled gait analysis, and patient acceptance of a diagnosis can
depend upon patients’ preconceptions rather than the content of diagnoses [131,132]. If the
patient does not agree, the patient can experience information uncertainty, physical disorder,
and unproductive energy expenditure related to trying to find alternative treatment options,
all of which can lead to stress that can worsen the patient’s condition. However, even if the
patient does not agree with the diagnosis, the healthcare provider can experience reduced
situated entropy about the allocation of treatment resources. This is because patients who
do not agree with a diagnosis are less likely to respond to treatment, and resources have to
be allocated appropriately in the healthcare provision environment of scarce resources [133].
Ongoing evolution of technological components has the potential to improve diagnoses.
This could lead to AI-based diagnosis based on advanced technologies being seen as being
more reliable than human diagnosis. However, AI-enabled gait analysis will only be robust
in an environment where the recording of the patient’s gait, for example with sensors
and cameras, is ideal for their operation. At the same time, the environment must be
acceptable to the patient. In addition, the mechanism of the human-AI systems can involve
many software and hardware components in recording and analysis that can be difficult
to combine. Moreover, patients need to be comfortable with having their gait recorded.
Thus, the reliable function of objective gait analysis can be difficult to achieve even in
ideal environments.

Furthermore, AI-enabled gait analysis cannot be reliable if the patient and/or the
healthcare provider’s human expert are impelled to avoid AI due to personal factors such
as experience and personality. In such situations, the patient could experience anxiety
when interacting with AI that could unintentionally alter gait [134]. In addition, if the
healthcare provider’s human expert does not trust AI [135], the expert may not base
treatment recommendations on the AI-enabled gait analysis. This can be because the AI has
a so-called black box model within which inputs and outputs can be seen, but the processes
and workings in between them cannot be seen. New methods are being researched to
obtain information from AI systems in order to generate explanations for their outputs.
However, these methods have limitations such as only providing details relevant for a
single decision, rather than providing underlying rationale or causality [136]. Accordingly,
there is also research being carried out to develop less complex AI models. However,
there are few working examples of such models in 2022 [137]. Accordingly, healthcare
practitioners may be more suspicious than trusting of AI-enabled diagnoses.
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Table 6. Diagnostic support example of opportunities and challenges for behavioral ethics in human-
AI systems.

Construct Opportunities Challenges

Function Reduced situated entropy about basis for
treatment decisions, and about allocation of
healthcare resources

Reduced situated entropy for patient depends
upon patient agreeing with the diagnosis

Phylogeny Ongoing evolution of technological components
has potential to improve diagnoses.

Human-AI system only robust when environment
is ideal for gait recording and AI gait analysis is
acceptable to the patient

Mechanism AI-enabled gait analysis has the potential to be
seen as providing a diagnosis that is more reliable
than that of human healthcare providers alone

AI-enabled gait analysis cannot provide a reliable
basis for diagnosis unless many components are
combined successfully

Ontogeny Individualized adaptation of human-AI system to
suit individual patients and healthcare providers
can be possible

Patient may unintentionally alter gait during gait
recording process if has anxiety about interacting
with AI-enabled system. Also, human healthcare
provider may not trust AI-enabled diagnoses.

In terms of ontogeny, both the patient’s and the expert’s interaction with the AI may
evolve so that either or both may become more or less anxious about interacting with AI.
Only if both approach AI, rather than avoid AI, can the human-AI system have the function
of providing an objective basis for allocation of scarce healthcare resources. Accordingly,
the behavioral ethics of healthcare resource allocation can only be better enabled by a
human-AI system if the humans that are involved with the system do not suffer persistent
anxiety and stress from interacting with AI. This can depend upon patients and healthcare
providers attributing positive intentionality to AI [138,139]. Here, it is important to note
that human perception has evolved to facilitate human survival [140,141] and, whatever
the visual appearance of AI, patients and healthcare providers may see AI as a threat to
survival [82–85] if they do not attribute positive intentionality to AI. While there may be
sufficient time for a healthcare provider to undertake necessary steps to achieve attribution
of positive intentionality to AI by its own personnel, such as co-creating working personas
and scenarios for the AI [142], it is less likely that there will be enough time to do this
for patients.

7. Conclusions

Humans no longer have millennia to evolve behavioral traits that can best enable
survival in enduring environments. Rather, rapid changes to behaviors and environments
come from the introduction of artificial intelligence (AI), and infrastructures that facilitate
its application. In this paper, it has been explained how four fundamental questions of
behavioral ecology can be applied to inform development of ethical human-AI systems.
As summarized in Figure 1, analyzing human-AI systems in terms of function, phylogeny,
mechanism, and ontogeny reveals that they can increase ethical stress that can lead to
questionable decisions and dubious actions. Accordingly, application of the four funda-
mental questions can support balanced assessment of ethical human-AI system concepts,
and provide a structure to improve their function, phylogeny, mechanism, and ontogeny
for behavioral ethics during their development.

Overall, the paper provides two contributions. First, behavioral ecology analysis of
behavioral ethics. Second, application of behavioral ecology questions to identify opportuni-
ties and challenges for ethical human-AI systems. These include the need for policy-making
to encompass the many environmental factors that can affect human-AI systems. This
is imperative as there are many scenarios where environmental conditions can lead to
situated entropy from system function that can cause ethical stress. Accordingly, it can be
appropriate for policy making to be informed through application of methods such as task
analysis, and failure mode and effects analysis (FMEA). Task analysis involves detailed
evaluation of mental and manual activities in work scenarios and how they can be affected
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by environmental conditions [143]. FMEA is a risk assessment method that mitigates
potential failures in systems, which has been used in a wide range of industries [144].

Human-AI systems may be an important direction for future research into behavioral
ethics as more time is spent in environments that are either partially or fully generated
by artificial intelligence; for example, in virtual worlds that may be referred to as the
metaverse [145,146]. Virtual worlds involve persistent immersive environments within
which individual human users can have many avatars [147,148]. Although it is recog-
nized that virtual environments can shape behavior in physical environments [149,150],
and that there can be ethical issues from interplay between virtual behavior and phys-
ical behavior [151,152], behavioral ethics implications have not been considered in the
development of human-AI systems that span physical and virtual environments. For
example, via augmented reality [153]. Future research could consider to what extent,
if any, human-AI systems can entail complementary physical and virtual sensory ecolo-
gies [154,155]. In addition, future research could investigate how to minimize the potential
for human-AI systems to introduce perceptual traps [156] and/or ecological traps [157]. In
doing so, future research could apply function, phylogeny, mechanism, and ontogeny as
structuring constructs to inform the design of ethical human-AI systems that entail human
transitions back and forth between physical environments and virtual environments.
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124. Pogorelc, B.; Bosnić, Z.; Gams, M. Automatic recognition of gait-related health problems in the elderly using machine learning.
Multimed. Tools Appl. 2012, 58, 333–354. [CrossRef]

125. Yang, M.; Zheng, H.; Wang, H.; McClean, S.; Hall, J.; Harris, N. A machine learning approach to assessing gait patterns for
complex regional pain syndrome. Med. Eng. Phys. 2012, 34, 740–746. [CrossRef]

126. Hausdorff, J.M.; Peng, C.K.; Goldberger, A.L.; Stoll, A.L. Gait unsteadiness and fall risk in two affective disorders: A preliminary
study. BMC Psychiatry 2004, 4, 39. [CrossRef] [PubMed]

127. Popkirov, S.; Hoeritzauer, I.; Colvin, L.; Carson, A.J.; Stone, J. Complex regional pain syndrome and functional neurological
disorders–time for reconciliation. J. Neurol. Neurosurg. Psychiatry 2019, 90, 608–614. [CrossRef]

128. Thieme, K.; Turk, D.C.; Flor, H. Comorbid depression and anxiety in fibromyalgia syndrome: Relationship to somatic and
psychosocial variables. Psychosom. Med. 2004, 66, 837–844. [CrossRef]

129. Zhao, N.; Zhang, Z.; Wang, Y.; Wang, J.; Li, B.; Zhu, T.; Xiang, Y. See your mental state from your walk: Recognizing anxiety and
depression through Kinect-recorded gait data. PLoS ONE 2019, 14, e0216591. [CrossRef]

130. Slijepcevic, D.; Horst, F.; Lapuschkin, S.; Raberger, A.M.; Zeppelzauer, M.; Samek, W.; Breiteneder, C.; Schöllhorn, W.I.; Horsak, B.
On the explanation of machine learning predictions in clinical gait analysis. arXiv 2019, arXiv:1912.07737.

131. Zogas, A. “We have no magic bullet”: Diagnostic ideals in veterans’ mild traumatic brain injury evaluations. Patient Educ. Couns.
2021, 105, 654–659. [CrossRef]

132. Dunn, C.E.; Edwards, A.; Carter, B.; Field, J.K.; Brain, K.; Lifford, K.J. The role of screening expectations in modifying short–term
psychological responses to low-dose computed tomography lung cancer screening among high-risk individuals. Patient Educ.
Couns. 2017, 100, 1572–1579. [CrossRef] [PubMed]

133. Lidstone, S.C.; MacGillivray, L.; Lang, A.E. Integrated therapy for functional movement disorders: Time for a change. Mov. Disord.
Clin. Pract. 2020, 7, 169–174. [CrossRef]

134. Gage, W.H.; Sleik, R.J.; Polych, M.A.; McKenzie, N.C.; Brown, L.A. The allocation of attention during locomotion is altered by
anxiety. Exp. Brain Res. 2003, 150, 385–394. [CrossRef] [PubMed]

135. Hatherley, J.J. Limits of trust in medical AI. J. Med. Ethics 2020, 46, 478–481. [CrossRef] [PubMed]
136. Van der Waa, J.; Nieuwburg, E.; Cremersa, A.; Neerincx, M. Evaluating XAI: A comparison of rule-based and example-based

explanations. Artif. Intell. 2021, 291, 103404. [CrossRef]
137. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat.

Mach. Intell. 2019, 1, 206–215. [CrossRef]
138. Thellman, S.; Silvervarg, A.; Ziemke, T. Folk-psychological interpretation of human vs. humanoid robot behavior: Exploring the

intentional stance toward robots. Front. Psychol. 2017, 8, 1962. [CrossRef]
139. Wiese, E.; Metta, G.; Wykowska, A. Robots as intentional agents: Using neuroscientific methods to make robots appear more

social. Front. Psychol. 2017, 8, 1663. [CrossRef]
140. Churchland, P. Epistemology in the age of neuroscience. J. Philos. 1987, 84, 544–555. [CrossRef]

http://doi.org/10.1016/j.genhosppsych.2019.01.009
http://www.ncbi.nlm.nih.gov/pubmed/30777298
http://doi.org/10.1136/practneurol-2018-001950
http://doi.org/10.1017/S1092852920002084
http://doi.org/10.1136/practneurol-2015-001241
http://doi.org/10.1001/jamaneurol.2018.1264
http://doi.org/10.1016/j.socscimed.2009.05.002
http://www.ncbi.nlm.nih.gov/pubmed/19481321
http://doi.org/10.1007/s10462-016-9514-6
http://doi.org/10.1007/s10072-019-04185-8
http://www.ncbi.nlm.nih.gov/pubmed/31832998
http://doi.org/10.1080/03091902.2020.1822940
http://www.ncbi.nlm.nih.gov/pubmed/33078988
http://doi.org/10.1007/s00415-019-09378-x
http://www.ncbi.nlm.nih.gov/pubmed/31134375
http://doi.org/10.1109/JBHI.2017.2785682
http://www.ncbi.nlm.nih.gov/pubmed/29990052
http://doi.org/10.1007/s11042-011-0786-1
http://doi.org/10.1016/j.medengphy.2011.09.018
http://doi.org/10.1186/1471-244X-4-39
http://www.ncbi.nlm.nih.gov/pubmed/15563372
http://doi.org/10.1136/jnnp-2018-318298
http://doi.org/10.1097/01.psy.0000146329.63158.40
http://doi.org/10.1371/journal.pone.0216591
http://doi.org/10.1016/j.pec.2021.06.002
http://doi.org/10.1016/j.pec.2017.02.024
http://www.ncbi.nlm.nih.gov/pubmed/28274672
http://doi.org/10.1002/mdc3.12888
http://doi.org/10.1007/s00221-003-1468-7
http://www.ncbi.nlm.nih.gov/pubmed/12707746
http://doi.org/10.1136/medethics-2019-105935
http://www.ncbi.nlm.nih.gov/pubmed/32220870
http://doi.org/10.1016/j.artint.2020.103404
http://doi.org/10.1038/s42256-019-0048-x
http://doi.org/10.3389/fpsyg.2017.01962
http://doi.org/10.3389/fpsyg.2017.01663
http://doi.org/10.5840/jphil1987841026


Behav. Sci. 2022, 12, 103 18 of 18

141. Prakash, C.; Fields, C.; Hoffman, D.D.; Prentner, R.; Singh, M. Fact, fiction, and fitness. Entropy 2020, 22, 514. [CrossRef]
142. Björndal, P.; Rissanen, M.J.; Murphy, S. Lessons learned from using personas and scenarios for requirements specification of

next-generation industrial robots. In International Conference of Design, User Experience, and Usability; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 378–387.

143. Diaper, D. Scenarios and task analysis. Interact. Comput. 2002, 14, 379–395. [CrossRef]
144. Liu, H.C.; Liu, L.; Liu, N. Risk evaluation approaches in failure mode and effects analysis: A literature review. Expert Syst. Appl.

2013, 40, 828–838. [CrossRef]
145. Bogdanovych, A.; Rodríguez-Aguilar, J.A.; Simoff, S.; Cohen, A. Authentic interactive reenactment of cultural heritage with 3D

virtual worlds and artificial intelligence. Appl. Artif. Intell. 2010, 24, 617–647. [CrossRef]
146. Dionisio, J.D.N.; Burns, W.G.; Gilbert, R. 3D virtual worlds and the metaverse: Current status and future possibilities. ACM

Comput. Surv. 2013, 45, 1–38. [CrossRef]
147. Nevelsteen, K.J. Virtual world, defined from a technological perspective and applied to video games, mixed reality, and the

Metaverse. Comput. Animat. Virtual Worlds 2020, 29, e1752. [CrossRef]
148. Lin, H.; Wang, H. Avatar creation in virtual worlds: Behaviors and motivations. Comput. Hum. Behav. 2014, 34, 213–218.

[CrossRef]
149. Nagy, P.; Koles, B. The digital transformation of human identity: Towards a conceptual model of virtual identity in virtual worlds.

Convergence 2014, 20, 276–292. [CrossRef]
150. Baker, E.W.; Hubona, G.S.; Srite, M. Does “being there” matter? The impact of web-based and virtual world’s shopping

experiences on consumer purchase attitudes. Inf. Manag. 2019, 56, 103153. [CrossRef]
151. Papagiannidis, S.; Bourlakis, M.; Li, F. Making real money in virtual worlds: MMORPGs and emerging business opportunities,

challenges and ethical implications in metaverses. Technol. Forecast. Soc. Chang. 2008, 75, 610–622. [CrossRef]
152. Kafai, Y.B.; Fields, D.A.; Ellis, E. The ethics of play and participation in a tween virtual world: Continuity and change in cheating

practices and perspectives in the Whyville community. Cogn. Dev. 2019, 49, 33–42. [CrossRef]
153. Swilley, E. Moving virtual retail into reality: Examining metaverse and augmented reality in the online shopping experience. In

Looking Forward, Looking Back: Drawing on the Past to Shape the Future of Marketing; Campbell, C., Ma, J., Eds.; Springer: Cham,
Switzerland, 2016; pp. 675–677.

154. Dusenbery, D.B. Sensory Ecology; W.H. Freeman: New York, NY, USA, 1992.
155. Stevens, M. Sensory Ecology, Behaviour, and Evolution; Oxford University Press: Oxford, UK, 2013.
156. Patten, M.A.; Kelly, J.F. Habitat selection and the perceptual trap. Ecol. Appl. 2010, 20, 2148–2156. [CrossRef] [PubMed]
157. Battin, J. When good animals love bad habitats: Ecological traps and the conservation of animal populations. Conserv. Biol. 2004,

18, 1482–1491. [CrossRef]

http://doi.org/10.3390/e22050514
http://doi.org/10.1016/S0953-5438(02)00005-X
http://doi.org/10.1016/j.eswa.2012.08.010
http://doi.org/10.1080/08839514.2010.492172
http://doi.org/10.1145/2480741.2480751
http://doi.org/10.1002/cav.1752
http://doi.org/10.1016/j.chb.2013.10.005
http://doi.org/10.1177/1354856514531532
http://doi.org/10.1016/j.im.2019.02.008
http://doi.org/10.1016/j.techfore.2007.04.007
http://doi.org/10.1016/j.cogdev.2018.11.004
http://doi.org/10.1890/09-2370.1
http://www.ncbi.nlm.nih.gov/pubmed/21265448
http://doi.org/10.1111/j.1523-1739.2004.00417.x

	Introduction 
	Function 
	Phylogeny 
	Mechanism 
	Ontogeny 
	Behavioral Ecology Analysis of Ethical Stress in Human-AI Systems 
	Overview 
	AI Navigation Support for Human Truck Drivers 
	AI Diagnostic Support for Human Healthcare Providers 

	Conclusions 
	References

