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Introduction
Brain activity measured using electroencephalography (EEG) 
allows for a close investigation of electrical signals in the fre-
quency and time domains. It is a common neuroscience method 
used in psychological, behavioural, cognitive and clinical 
research due to its affordability and ease of use. The standard 
state-of-the-art EEG equipment involves a swim-cap-like device 
with inserted electrodes. The connection between the scalp and 
the electrode is normally bridged with electrolyte gel. The signal 
is recorded through electrode wires connected to a computer. 
Technological advancements aim to improve the usability of 
EEG systems through new electrode types and wireless EEG sig-
nal recording.

The main disadvantage of the gold standard gel-based elec-
trodes is the time-consuming preparation process including skin 
abrasion, gel application and impedance checks. The setup time 
depends on the number of included electrodes and researcher expe-
rience but typically varies between the average of 30 and 70 min 
(Kam et al., 2019; Oliveira et al., 2016). After the recording, par-
ticipants have to wash the gel out of their hair and the electrodes 
require cleaning. Skin abrasion and lengthy preparation may be 
problematic for participants with sensory sensitivities, attention 
difficulties and restlessness which are often observed in young 
children and individuals with neurodevelopmental conditions such 

as autism spectrum disorder (ASD) or attention-deficit hyperactiv-
ity disorder (ADHD). The use of the systems is also limited to 
trained researchers or clinicians, but researchers often look for sys-
tems that can be applied independently by participants or patients 
at home (Hinrichs et al., 2020; Jochumsen et al., 2020; Radüntz, 
2018).

Alternatively, systems that do not require skin abrasion such as 
EEG nets might be preferred (DiStefano et al., 2019; Pierce et al., 
2021) though they generally use saline or gel solutions and cannot 
be used by participants independently. In the last few years, new 
systems with dry electrodes emerged. They require no skin abra-
sion, no gel/saline solutions and could potentially be used by par-
ticipants independently without the presence of a trained researcher 
(Hinrichs et  al., 2020; Kam et  al., 2019; Pinegger et  al., 2016). 
However, the data recorded with these systems have been reported 
to contain a higher number of artefacts (Hinrichs et  al., 2020; 
Oliveira et  al., 2016), higher pre-stimulus noise levels (Hinrichs 
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et al., 2020; Mathewson et al., 2017) and lower signal-to-noise ratio 
(SNR; Radüntz, 2018) than standard gel-based electrode record-
ings. This is likely caused by the lack of an electrolyte substance 
that could bridge the scalp-electrode connection and keep the elec-
trodes close to the skin throughout the recording (Mathewson et al., 
2017; Pinegger et al., 2016). In addition, two studies reported lower 
participant comfort ratings for dry compared to wet EEG electrode 
systems due to the pressure from electrodes’ metal pins (Kam et al., 
2019; Oliveira et al., 2016). These issues may deem dry-electrode 
systems unsuitable for many research designs.

Water-based electrodes are a promising development which 
could potentially improve on the gel-based systems’ disadvan-
tages and mitigate the issues observed in dry-electrode record-
ings. They consist of plastic casings and paper or felt inserts 
soaked in tap water. Compared to gel-based electrodes, there is 
no need for skin preparation or washing hair and the preparation 
procedure is relatively easier and less time consuming. In con-
trast to dry electrodes, the scalp-electrode connection is sup-
ported with water which may help to sustain high-quality signal. 
No metal parts of the electrodes come into direct contact with the 
skin, thus potentially improving participant comfort as well. So 
far, the quality of EEG recordings using water-based electrodes 
has been evaluated in the context of brain computer interface 
(BCI) designs and the results are promising. Noise levels during 
a short circuit recording were the lowest in a water-based com-
pared to gel-based and dry electrode systems (Pinegger et  al., 
2016) and the SNR has been reported to be comparable between 
water- and gel-based systems (Jochumsen et al., 2020). In addi-
tion, participant satisfaction was the highest for water-based 
compared to gel-based and dry systems (Pinegger et al., 2016). 
Moreover, the available water-based EEG systems allow for 
mobile wireless recordings of the EEG signals. This creates an 
opportunity to obtain EEG recordings in a wider range of con-
texts outside of the lab including everyday life situations, at 
home recordings, motor and sports research (Hinrichs et  al., 
2020; Oliveira et  al., 2016; Radüntz, 2018). Taken together, 
water-based electrode EEG systems may seem very attractive for 
a wide range of research designs in neuroscience (examples of 
recent studies: Hazarika and Dasgupta, 2018; Raj et al., 2020).

To our knowledge, there are currently no empirical studies inves-
tigating the suitability of the new mobile water-based EEG electrode 
systems for application in cognitive and behavioural neuroscience 
research. We aimed to fill this gap by evaluating the quality of signal 
obtained with a water-based electrode system and investigating 
whether it may affect time-frequency and event-related potential 
(ERP) analyses. We also aimed to understand potential drawbacks 
and best methodological practices for the use of such systems. We 
applied evaluation methods and suggested benchmarking compari-
sons previously used for dry electrode systems evaluations (Hinrichs 
et al., 2020; Kam et al., 2019; Mathewson et al., 2017; Oliveira et al., 
2016; Radüntz, 2018). Practical advice is provided alongside the 
obtained results for researchers who might want to consider using 
water-based electrode EEG systems in the future.

Method

Participants and procedure

The study consisted of two phases. Phase 1 was part of a proce-
dure for an earlier study which used a gel-based EEG system 

(Topor et al., 2021b). The overall procedure during phase 1 was 
around 1 h and 45 min and included demographic and worry 
questionnaires (Penn State Worry Questionnaire; Meyer et  al., 
1990) and the Bruininks–Oseretsky Test of Motor Proficiency 
2nd Edition–short form (BOT2-SF; Bruininks and Bruininks, 
2005) prior to the EEG recording. Altogether, 46 participants 
were recruited in the pilot and the final study stage. Recruitment 
was facilitated through the University of Surrey’s research volun-
teer system and through word of mouth. All participants were 
given an opportunity to win one of two £50 prize vouchers and 
psychology students received lab tokens required as part of their 
course. Participants were excluded for diagnoses of psychiatric, 
neurological or neurodevelopmental disorders.

In phase 2, the same participants were contacted and invited 
to participate again. They were contacted one by one, in no par-
ticular order, and recruitment stopped when the 10th participant 
agreed to complete the study. Sample size was determined based 
on previous evaluations of EEG systems, which included eight to 
nine participants (Mathewson et al., 2017; Oliveira et al., 2016; 
Pinegger et  al., 2016), and detected significant differences 
between the devices used. We also used a within-subject design 
which is advantageous for the preservation of power in studies 
with small sample sizes (Charness et al., 2012).

The final sample consisted of 10 participants who completed 
both phases 1 and 2. We attempted to ensure a gender balance 
within the sample and thus recruited five males and five females. 
Mean age at phase 1 was 26.5 years old, range of 22–38. The time 
between participation at phases 1 and 2 ranged from 7 to 12 
months. In the final sample, there were no individuals who won 
the £50 prize in phase 1 and no additional incentives were offered 
at phase 2. Phase 2 consisted of the EEG recording and flanker 
task only and no additional demographic or health checks were 
carried out. All participants provided written informed consent. 
The study complied with ethical regulations at the University of 
Surrey, approval ID 428470-428461-48044088.

Materials and equipment

Gel-based EEG system.  The EEG recordings at phase 1 were 
acquired using a Brain Products setup with a gel-based EasyCap 
(EasyCap system kit, Brain Products, n.d.b; from now on referred 
to as the Brain Products setup) with 32 Ag/AgCl sintered elec-
trodes in a 10/20 system (Fp1, Fp2, Fz, F3, F4, F7, F8, FC1, FC2, 
FC5, FC6, Cz, C3, C4, T7, T8, CP1, CP2, CP5, CP6, TP9, TP10, 
Pz, P3, P4, P7, P8, POz, O1 and O2). The ground electrode was 
located within the cap at the AFz position. The electrooculo-
graphic signal was recorded from the left side (vertical, VEOG) 
and above (horizontal, HEOG) the left eye using additional elec-
trodes outside of the cap. The reference electrodes were also 
external to the cap, located on the mastoids and recorded implic-
itly (i.e. not as separate channels). Data were recorded in DC 
mode using Brain Vision Recorder V1.2 (Brain Products, 2012) 
at 500 Hz with amplifier input impedance at 10 GΩ and electrode 
impedance below 5 kΩ. A high cut-off online filter was imple-
mented at 250 Hz.

During the equipment preparation, each participant’s head cir-
cumference was measured with tape to select the right EEG cap 
size (52, 54, 56 or 58 cm available). The electrodes remained fit-
ted within the caps between different recording sessions. Once the 
caps were placed on the head, the position of the electrodes was 
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adjusted. The external electrooculographic and reference elec-
trodes were placed on the skin using electrode stickers. Using a 
cotton bud, participant hair was moved from under the electrodes. 
We also applied an alcohol solution on the skin and the scalp 
directly through the hole in the electrodes (see Figure 1 for an 
illustration). This was followed by the application of the electro-
lyte gel directly at electrode locations. In the case of noisy chan-
nels, it was possible to improve the signal quality by reapplying 
the gel and securing electrodes closer to the scalp. The preparation 
of each participant for recording lasted from 30 min to 1 h.

The electrode cables were gathered at the back of the partici-
pant’s head in a tight net and plugged in an input box connected to 
Brainamp MR Plus amplifier (Brain Products, n.d.a). The EEG 
signal was recorded directly to a laptop that the amplifier was con-
nected to using an USB adapter. The same USB adapter received 
the stimulus-response digital event markers from the stimulus 
computer via its parallel port. This wired setup enabled each stim-
ulus and response category to have a unique signal at the parallel 
port translated to a unique marker value within Brain Vision 
Recorder alongside the EEG recording. All recordings were per-
formed in a sound-proofed, electrically unshielded room.

Water-based EEG system.  During phase 2, EEG data were 
acquired using the BIOPAC Mobita water-based setup (Mobita 
– W – 32 EEG, Biopac Systems, Inc., n.d.b; from now on referred 
to as Mobita) with 32 electrodes in a Mobita-32EEG-CAP-A 
ConfiCap (Biopac Systems, Inc., n.d.a). Similar to the Brain 
Products EasyCap cap, it had fixed electrode positions in the 
10/20 system, though included Fpz and Oz channels instead of 
TP9 and TP10. In contrast to EasyCap, the ground electrode was 
not located within the cap but secured with a sticker in the middle 
of the forehead. It was not possible to add more external elec-
trodes so the electrooculographic signal was extracted from Fp1 
for VEOG and F7 for HEOG. The cap includes two reference 
electrodes located on the mastoids which are recorded as separate 
channels though the recording is performed in a reference-free 
mode. These mastoid electrodes can later be used for offline re-
referencing. Recordings were obtained in DC mode at 1000 Hz 
using the Acqknowledge software V 5.0.3 (Biopac Systems, Inc., 
2018). The Mobita system does not allow for the measurement of 
electrode impedance. It has been argued that electrode imped-
ance may have little influence over data quality if amplifier input 
impedance is high (Ferree et al., 2001). However, Mobita’s input 
impedance was comparable to that of the Brain Products ampli-
fier (10 GΩ) so we aimed to monitor possible noise interference 

for consistency between the two systems. Therefore, live spectral 
power was visually inspected for each electrode to detect noisy 
spikes at 50 Hz. Online filters were not applied.

Equipment setup included manual preparation of Mobita elec-
trodes before participant arrival. Small pieces of absorbent paper 
(supplied by Biopac Systems, Inc.) were rolled and inserted into 
the plastic electrode casings. Electrodes were then placed in a jug 
of tap water. One adjustable cap size (medium: 54–58 cm) with 
empty holes (grommets) for the electrodes was fitted and adjusted 
for correct positioning for all participants. Although skin prepa-
ration is not suggested in the Mobita instruction manual (Biopac 
Systems, Inc., 2019), we decided to apply the same alcohol solu-
tion used in the Brain Products recording in the areas with 
exposed skin (forehead and mastoids) to remove the natural oili-
ness which could prevent good conductance for the water-based 
electrodes. However, alcohol makes the skin dry which could 
also reduce the skin to electrode connectivity in water-based sys-
tems (Biopac Systems, Inc., 2016), so we did not apply it any-
where else. Before inserting the electrodes, participant hair was 
moved with a cotton bud to expose the scalp within the empty 
grommets. If a noisy spike was observed at 50 Hz while checking 
the channels’ live spectral power, the electrode was removed, the 
hair was moved again to expose the scalp more and improve the 
electrode to scalp contact. In one case, due to noise across a num-
ber of electrodes, we tied a bandage around the participant’s head 
to keep the electrodes close to the scalp and prevent them from 
being dislocated by hair movement. Finally, the Mobita amplifier 
(Mobita-W-32EEG, Biopac Systems Inc., n.d.b) was placed in a 
sleeve and attached to participants’ right arm with a strap. The 
preparation procedure required 15 min prior to participant arrival 
and between 15 and 30 min in the presence of the participant 
(30–45 min in total).

The electrode cables were quite short, rested loosely at the 
participant’s back and were attached to the amplifier. The ampli-
fier wirelessly transferred the EEG signal through a USB Wi-Fi 
antenna to a recording laptop. The stimulus computer was linked 
via its parallel port to the Digital I/O (37 pin) port of an STP100C 
module (isolated digital interface) attached to the MP160 Biopac 
device (Biopac Systems, Inc., n.d.c) which allowed for the digital 
event markers to be recorded using Acqknowledge. However, the 
EEG data stream from the Mobita amplifier and the event marker 
data stream from MP160 could not be integrated into one record-
ing pane or synchronised across two recording panes in 
Acqknowledge (version 5.0.3). To solve this, a bespoke setup 
was made, whereby the event markers were sent via a wired 

Figure 1.  Two types of EEG recording setups and electrodes used in the current study: (a) Brain Products setup, (b) Mobita setup, (c) a gel-based 
Brain Products electrode and (d) a water-based Mobita electrode.
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connection to the Mobita amplifier to integrate into the recording 
at source. The integrated (EEG & event marker) data were then 
transferred wirelessly to the recording laptop as described before. 
Further details on this setup can be found in the Supplementary 
File. Recordings were performed in an electrically unshielded 
room with no special sound proofing as the system has been 
designed to be mobile and suitable for use in a wide range of 
environments. Table 1 displays a summary of technical differ-
ences between the two systems.

Cognitive task.  The participants completed an arrow version of 
the flanker task (Eriksen and Eriksen, 1974) while the EEG data 
was acquired. This is a commonly used task in the study of atten-
tional and error-control processes suitable for ERP research inves-
tigating both stimulus- and response-locked components such as 
P300 and error-related negativity (ERN; Pratt et al., 2011; Riet-
dijk et al., 2014). The task was presented using E-Prime software 
version 3 (Psychology Software Tools, 2012). Each trial consisted 
of seven arrowheads presented at the centre of the screen. The 
target stimulus was the middle arrowhead and participant’s task 
was to detect whether it was pointing left or right and respond 
using the computer keyboard (letter ‘C’ for left and letter ‘M’ for 
right). Three distractor arrowheads on each side of the target 
changed direction depending on the trial condition. If they pointed 
in the same direction as the target, the condition was congruent. If 
in the opposite direction, it was incongruent. In the neutral condi-
tion, the distractor arrowheads were replaced with the letter ‘v’. 
Each trial was proceeded by a fixation cross. Maximum response 
time in each trial was 600 ms and between-trial intervals were jit-
tered in duration (400–1600 ms). One participant who initially 
participated in the study during the pilot completed 750 trials and 
all remaining participants completed 600 trials (200 per condi-
tion) with the task taking approximately 20 min.

Researcher and participant experience.  Participants’ experi-
ences of both systems were discussed at phase 2. Their observa-
tions were noted retrospectively and remain anecdotal in nature. 
However, they provide important practical information which 
should be considered for research protocols involving the Mobita 
system. Researcher notes focused on technical issues observed 
during the recordings. All observation notes can be found in the 
Demographics file in the project repository (https://osf.io/kubv5/; 
Topor et al., 2021a).

Data analyses

Data import and digital marker positions.  Offline analysis of 
the EEG data from both systems was performed using BrainVi-
sion Analyzer 2 (Brain Products, 2012). The Brain Products data 
were recorded in a format compatible with BrainVision. Digital 
event markers were integrated and correctly numbered to reflect 
different event types (congruent, incongruent, and neutral stim-
uli). Correct and incorrect responses were marked using partici-
pant response data extracted from Eprime and a Perl script that 
was previously prepared and used with the task.

EEG data recorded with Mobita were exported to EDF format 
(Kemp et al., 1992) and imported to BrainVision Analyzer. As a 
result of the bespoke solution for digital signal recording, only 
the values of 0 and 1 could be registered to mark events. 
Therefore, all stimuli events were marked when a change from 0 
to 1 occurred in the digital channel and all responses were marked 
when 1 changed back to 0. In R Studio (RStudio Team, 2020), 
task-relevant data recorded with Eprime were used alongside the 
Acqknowledge markers to label the type of condition and correct/
incorrect responses.

For a detailed description of the preparation of digital markers 
for the bespoke digital signal transfer used for Mobita in this study, 
see the Supplementary Material. One particularly significant diffi-
culty observed during this process was data loss in the Mobita 
recordings of three participants caused by two types of signal 
drops. The first type was caused by Wi-Fi connection issues and 
led to no data being recorded (all channels were flat) for the dura-
tion of a few trials at each instance. The second type of signal drop 
led to a complete termination of recording in the Acqknowledge 
software for about 1 min in one case. The cause of this is unknown. 
Acqknowledge does not record the duration of recording termina-
tion in such situations, and this had to be determined manually by 
comparing the timings recorded by Acqknowledge and Eprime 
and determining the temporal location of the gap. Data loss in this 
case included 68.09 s of data (40 consecutive trials).

Pre-processing.  For pre-processing, only channels overlapping 
between the two systems were selected. In the Brain Products 
setup, TP9 and TP10 and in Mobita, Fpz and Oz were excluded. 
Data were visually inspected for channels with no or extreme 
activity. No channels were interpolated in the Brain Products 
recordings. In Mobita, channels were interpolated in two 

Table 1.  A summary of technical differences between the Brain Products and Mobita EEG systems.

Brain Products Mobita

Non-overlapping channels TP9, TP10 FPz, Oz
Ground electrode location AFz Middle of the forehead
Reference recording mode Linked Mastoids (Implicit) Reference Free Recording
Electrooculographic electrodes Separate HEOG and VEOG Fp1, F7
Electrode impedance <5 kΩ Not available
Online filter 250 Hz None
Sampling rate 500 Hz 1000 Hz
EEG Cap size Based on the head size One adjustable size
Total preparation time 30–60 min 30–45 min
Recording room Unshielded, sound-proofed Unshielded

HEOG: horizontal electrooculogram; VEOG: vertical electrooculogram; EEG: electroencephalogram.

https://osf.io/kubv5/
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recordings (one channel in the first case and two channels in the 
second case). In addition, during the inspection of the Mobita 
data, the mastoid channels were observed to be extremely noisy 
or flat in three recordings. Therefore, all EEG recordings from 
both systems were re-referenced to the average activity of the 
subset of overlapping channels. For the Brain Products setup, this 
included the initial implicit reference but in Mobita, the mastoid 
electrodes were excluded. Subsequently, the following filters 
were applied: 0.1 Hz high-pass, 50 Hz low-pass and 50 Hz notch 
filter with threshold selection designed to avoid ERP distortion 
and ensure the most optimal signal-to-noise levels based on best 
practice recommendations and previous EEG system compari-
sons (Tanner et al., 2015, 2016). Data were then re-sampled to 
512 Hz in both systems. Before artefact cleaning, all non-task 
data were removed. This included the start and the end of the 
recordings as well as breaks between the blocks leaving only 
task-related block segments for further analysis.

Ocular correction independent component analysis (ICA) was 
used with default BrainVision Analyzer settings (Brain Products 
GmbH, 2019: 279) to automatically detect components around 
blinks. Channels used to train the algorithm were HEOG and 
VEOG in the Brain Products setup and Fp1 and F7 in Mobita. 
Component rejection was semi-automatic where one researcher 
(M.T.) inspected each ICA component and confirmed its removal/
retainment. There were no significant differences between the 
number of components removed in the Brain Products 
(Median = 2.5, IQR = 1) and Mobita systems (Median = 2.5, 
IQR = 3; V = 7.5, p = 0.59). Data were epoched into two types 
including stimulus-locked epochs for frequency and P300 analy-
ses and response-locked epochs with correct and incorrect 
responses for ERN analyses. Stimulus-locked epochs were 
selected at −200 to 500 ms respective to stimulus onset. Response-
locked epochs were selected at −150 and 200 ms respective to 
response onset. Automatic artefact rejection was performed on all 
epochs using the default settings of BrainVision Analyzer exclud-
ing trials with activity below 0.5 μV for a duration of 50 ms, 
amplitude values falling outside of the −200 and 200 μV range, 
absolute amplitude difference above 200 μV in any interval of 
200 ms and finally, voltage steps of more than 50 μV per millisec-
ond. The number of rejected artefactual epochs is included as one 
of measures of noise and reported in the ‘Results’ section.

Noise measurements.  To assess potential noise in raw data, the 
fast Fourier transform was applied to unfiltered data that were 
re-referenced, re-sampled and segmented to task-related blocks 
without any ocular correction or artefact rejection. 0.1–2 Hz and 
49–51 Hz power values were then extracted for further analysis 
to understand the potential of slow drift interference (de Chev-
eigné and Arzounian, 2018) and line noise interference (Leske 
and Dalal, 2019).

Levels of noise were also assessed in the fully pre-processed and 
cleaned stimulus-locked data. First, the fast Fourier transform was 
applied and power values at 0.1–2 Hz and 49–51 Hz were extracted 
for a before-and-after pre-processing comparison of noise. In addi-
tion, the proportion of rejected artefactual stimulus-locked trials 
was calculated for both systems. Next, SNR and the root mean 
square (RMS) values were calculated from a subset of electrodes 
excluding those located at the edges of the cap which are particu-
larly prone to noise. The remaining subset therefore included F3, 
Fz, F4, FC5, FC1, FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, CP6, P3, 

Pz and P4. SNR and RMS metrics are common in studies compar-
ing different types of EEG equipment (Kam et al., 2019; Mathewson 
et al., 2017; Oliveira et al., 2016). SNR was calculated from aver-
aged, stimulus-locked trials using the formula embedded within the 
BrainVision Analyzer software (Brain Products GmbH, 2019: 402) 
which estimates the average signal power as squared absolute val-
ues of the average data across all data points and all frequency bins 
while noise power is estimated as the biased variance of the data 
across all segments. The values were extracted for all electrodes 
included in the specified subset and then averaged for each partici-
pant. RMS values were determined with BrainVision Analyzer’s 
RMS function which calculated the root from the average of the 
squares of the individual values (Brain Products GmbH, 2019: 210) 
within the stimulus-locked epochs’ baseline period of −200 to 
−100 ms prior to stimulus onset.

Time-frequency measurements.  For time-frequency analyses 
of task-related brain activity, the fast Fourier transform was 
applied to the pre-processed stimulus-locked epochs. The number 
of epochs was matched between the systems for each participant 
with an average of 467.8 (SD = 90.58) epochs per participant. 
Power was extracted from the same subset of electrodes used in 
the SNR and RMS analyses (see previous section). The data were 
analysed in four frequency bands including theta (4–8 Hz), alpha 
(8–14 Hz), low beta (14–24 Hz) and high beta (24–30 Hz). For the 
comparison of power activity within these bands, we followed the 
method used by Kam et al. (2019) whereby five electrodes with 
maximum activity were identified per system and power was 
averaged across the overlapping channels. For theta and alpha, 
electrodes with the most positive power were selected (theta Fz, 
F4, FC1, FC2, alpha Fz, Pz, P4) due to expected engagement of 
cognitive control and attentional processes. For low and high beta, 
electrodes with the least positive power were selected (low beta 
CP1, CP2, Pz, high beta CP1, CP2, Pz, P4) as pre-response motor-
related beta desynchronisation was expected (Doyle et al., 2005).

ERP measurements.  For ERP analyses, baseline correction was 
applied to all fully pre-processed epochs. The baseline window was 
located at −200 and −100 ms prior to stimulus onset for stimulus-
locked P300 epochs and at −150 to −100 ms for response-locked 
ERN epochs following best practice recommendations by Alday 
(2019). In P300 analyses, the same epochs were used as those in 
time-frequency analyses. ERN epochs were also matched between 
the two systems and the number of epochs for correct and error 
responses was matched as well. The selection of trials for matching 
was based on the order of occurrence. There was an average of 27.5 
(SD = 18.93) trials per participant. There was one participant with 
only five error trials available for ERN analyses. This is below the 
recommended value of at least six trials (Olvet and Hajcak, 2009) 
so this case was removed from all ERN analyses. EEG activity was 
then averaged across trials. Mean amplitude for the P300 compo-
nent was extracted at a 300–500 ms interval at Pz and for the ERN 
component at a 0–100 ms interval at Cz which is suitable for flanker 
task analyses (Klawohn et al., 2020; Rietdijk et al., 2014). To inves-
tigate the characteristics of the obtained ERPs, peak amplitude and 
latency were also extracted. ERN and P300 peaks were semi-auto-
matically identified in BrainVision Analyzer.

Statistical analyses.  All dependent variables were tested using 
the Wilcoxon test to statistically compare within-subject medians 
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(Fagerland and Sandvik, 2009) and the Fligner-Killeen test to assess 
homogeneity of variance (Michael and Edwardes, 2001) between 
the two systems. The dependent variables were divided into the fol-
lowing groups for the purpose of controlling the familywise error: 
average power values at 0.1–2 Hz and 49–51 Hz before and after 
pre-processing; proportion of artefactual stimulus-locked trials and 
stimulus-locked noise level metrics including SNR and RMS; aver-
aged power for four frequency bands (theta, alpha, low beta, high 
beta); mean amplitude, peak amplitude and peak latency for P300 
and ERN. Bonferroni correction was applied accordingly.

Exploratory analyses.  Due to the observed P300 and ERN 
topographical differences between the two systems, we decided to 
explore whether SNR values might differ between the two systems 
by electrode locations. We therefore divided the SNR electrode 
subset into three general regions: frontal (Fp1, F2p, F7, F3, Fz, F4, 
F8), central (FC5, FC1, FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, 
CP6) and posterior (P7, P3, Pz, P4, P8, O1, O2). We calculated 
the average SNR values for these regions for each participant and 
each system and compared these values using the Wilcoxon and 
Fligner-Killeen tests. Bonferroni correction was applied.

Power analysis.  The results of the study showed some sig-
nificant differences between the EEG systems and also a number 
of potentially practically informative non-significant differences 
with large effect sizes. This could be due to the small sample size, 
the large number of statistical tests and the Bonferroni correction 
for multiple comparisons. To help in the interpretation of these 
potentially informative effects, we decided to run a post hoc power 
analysis on the smallest large effect size obtained. Post hoc power 
analyses are discouraged when reliant on effect sizes achieved with 
a limited sample as it is not possible to estimate whether these effect 
sizes reflect the true population effects (Lakens, 2021). However, 
considering the methodological focus of the current study and the 
practical importance of differences between the two systems, it is 
important to understand the current study’s statistical sensitivity to 
detect the effects of interest. The power calculation was conducted 
with G*Power (Faul et al., 2007) using the results of the 0.1–2 Hz 
raw data power comparison between the Brain Products setup and 
Mobita where a non-significant large effect size was found (r = 0.53). 
The analysis yielded power of 21.7% (calculation output https://osf.
io/fdmzx/). This therefore reflects very small chances for obtaining 
statistically significant results, even for large effect sizes of inter-
est with the current sample and with the given number of tests and 
comparisons. We therefore implemented the Bayes factor calcula-
tion in favour of the alternative hypothesis (BF10, further referred to 
as BF) for all Wilcoxon tests to help with the interpretation of non-
significant results (Dienes, 2014). The prior was set to the jmv’s R 
package default of 0.7 (function ttestPS()) to reflect our expectations 
that differences between the two systems were likely. BF values of 
⩽0.33 were deemed as evidence in support of no statistical differ-
ence and ⩾3 as evidence in support of statistical difference between 
the systems.

Results

Researcher and participant experience

For the fit of the cap, during the Brain Products setup recording, 
common comments referred to the chin strap that felt ‘scratchy’ 

for some participants. It had to be adjusted throughout the proce-
dure to improve comfort. During the Mobita recording, in some 
instances the front of the cap put pressure on the forehead which 
led to moderate discomfort. The Mobita cap has a tightening 
string which helps to adjust the fit though it is positioned around 
the face only. We either loosened it up for participants or refrained 
from using it to improve comfort.

Participants were generally impressed with Mobita due to its 
shorter preparation time. The preparation procedure that involved 
participants took up to 30 min compared with up to an hour for 
the Brain Products setup. Some were also relieved that they did 
not have to wash their hair following the procedure and could 
quickly go back to their activities after participating in the study. 
One participant mentioned that they only agreed to participate 
again when they were informed that the procedure would be 
shorter this time and no gel would be used. It is worth noting, 
however, that from the experimenter point of view, the total time 
taken to prepare each system was not very different as Mobita 
required extra preparation before participant arrival.

Noise comparisons

Prior to pre-processing, average power was significantly more 
variable for Mobita at 0.1–2 Hz (χ2 = 8.9, p = 0.022) and 49–51 Hz 
(χ2 = 11.0, p = 0.007) compared to the Brain Products setup, but 
there were no significant differences for median comparisons. In 
fact, the BF obtained for the difference at 49–51 Hz was 0.32 sug-
gesting that the two systems picked up a statistically comparable 
level of line noise. Figure 2 displays individual data plots with 
average power at 0.1–2 Hz and 49–51 Hz for both systems as well 
as the overall averaged power spectrum for the raw EEG data.

Following pre-processing, there were no statistically signifi-
cant median or variance differences between the two systems. The 
BF values were inconclusive; thus, there is no evidence to suggest 
that the two systems are comparable despite the lack of significant 
differences. Figure 3 displays individual data plots with average 
power at 0.1–2 Hz and 49–51 Hz for both systems as well as the 
overall averaged power spectrum for the pre-processed EEG data. 
Exact statistical results are presented in Table 2.

The artefact rejection rate for Mobita was significantly higher 
(V = 1, p = 0.008, r = 0.85) and more variable across participants 
(χ2 = 6.42, p = 0.023) than in the Brain Products setup. There 
were no statistically significant differences between the two sys-
tems in terms of SNR medians or variance but the obtained BF 
suggests that the two systems are likely statistically different. 
Baseline RMS was significantly more variable for Mobita com-
pared with the Brain Products setup (χ2 = 12.74, p = 0.001) but 
there was no median difference, and the BF was inconclusive. 
Exact statistical results are reported in Table 3, and individual 
data plots are presented in Figure 4.

Frequency power comparisons

Frequency power was compared between the Brain Products 
setup and Mobita across four bands (theta, alpha, low beta and 
high beta). No statistically significant results were obtained for 
the median and variance tests of difference. However, the BF 
reflects a statistically likely difference between the two systems 
for the high beta frequency. Medians, interquartile ranges and 
exact test results can be found in Table 4. Figure 5 displays 

https://osf.io/fdmzx/
https://osf.io/fdmzx/
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topographical power distribution, scatter plots and individual 
data plots for the Brain Products setup and Mobita across the four 
frequency bands.

ERP comparisons

P300.  No statistically significant differences were found 
between Brain Products and Mobita systems for the mean ampli-
tude, peak latency and peak amplitude of the P300 component at 
300–500 ms in terms of medians and variance which is confirmed 
by the obtained BF values for all comparisons. Table 5 displays 
the medians and interquartile ranges observed, as well as exact 
statistical results. Figure 6 displays the P300 waveforms, topog-
raphies, a scatter plot and an individual data plot for comparison 
of P300 mean amplitude values.

ERN.  No statistically significant differences were found between 
Brain Products and Mobita systems for the mean ERN amplitude 
at 0–100 ms in terms of medians and variance. In addition, no 
statistically significant differences in medians or variance were 

identified in ERN peak amplitude or peak latency. However, the 
BF values suggest that while the two systems are comparable in 
terms of ERN peak amplitude, the mean amplitude and latency 
could be considered statistically different. In Figure 6(a), it is 
evident that the ERN peak occurs early in Mobita, almost directly 
at the time of response onset. Table 5 displays the medians and 
interquartile ranges observed, as well as exact statistical results. 
Figure 6 displays the P300 waveforms, topographies, a scatter 
plot and an individual data plot for comparison of ERN mean 
amplitude values.

Exploratory analysis

Exploratory analysis focused on the differences in SNR values by 
electrode locations including frontal, central and posterior. In 
Figures 6(a) and 7(a), we have observed that the obtained ERP 
peaks are shifted frontally. The shift is especially prominent for 
P300 (Figure 6(a)). We were therefore interested in finding out 
whether some electrodes might be particularly susceptible to high 
noise levels. We found no differences in variance between the two 

Figure 2.  Raw data average power prior to pre-processing. Jittered individual data points are plotted for (a) 0.1–2 Hz and (b) 49–51 Hz to compare 
between the Brain Products and Mobita recordings. The vertical bar marks the median and the shaded box reflects the interquartile range. (c) A 
representation of log-transformed power spectrum at 0–60 Hz for Brain Products and Mobita.



8	 Brain and Neuroscience Advances

systems. The median difference was only significant for posterior 
electrodes and this was further confirmed by the obtained BF. 
Table 6 displays the medians and interquartile ranges observed, as 

well as exact statistical results. Figure 7 presents the individual 
data plot for the comparison of SNR values across electrode loca-
tion and between Brain Products and Mobita systems.

Figure 3.  Pre-processed data average power. Jittered individual data points are plotted for (a) 0.1–2 Hz and (b) 49–51 Hz to compare between the 
Brain Products and Mobita recordings. The vertical bar marks the median and the shaded box reflects the interquartile range. (c) A representation of 
log-transformed power spectrum at 0–60 Hz for Brain Products and Mobita.

Table 2.  Median and interquartile ranges displayed for both systems before and after pre-processing for average power at 0.1–2 Hz and 49–51 Hz.

Brain Products Mobita Median BF Variance

  Wilcoxon Fligner-Killeen

  Median (IQR) V, p (r) χ2, p

Raw data
  0.1–2 Hz 0.03 (0.42) 1.31 (2.67) 11, 0.84 (0.53) 1.37 8.90, 0.022*
  49–51 Hz –4.76 (0.33) –5.64 (5.30) 30, 1.0 (0.08) 0.32 11.01, 0.007*
Pre-processed data
  0.1–2 Hz 5.31 (0.57) 5.68 (1.61) 18, 1.0 (0.31) 0.42 6.86, 0.07
  49–51 Hz –5.06 (0.78) –5.05(1.16) 32, 1.0 (0.21) 0.37 0.44, 1.0

BF: Bayes factor; IQR: interquartile range.
The results of statistical comparisons of medians (Wilcoxon) and variance (Fligner-Killeen) are also presented. Significant differences are marked with an asterisk. Bayes 
factors suggesting no significant differences are reported in bold. Bonferroni correction was used to adjust the obtained p-values.
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Discussion
Mobita is an example of an innovative approach to EEG 
recordings via water-based electrodes and a wireless setup. 
These relatively new systems may be of interest to researchers 
who want to shorten the EEG preparation time (e.g. for chil-
dren or clinical populations), reduce the possibility of sensory 
discomfort (e.g. for participants with sensory sensitivities) or 
considering independent recordings taken by participants or 
patients at home. From our experience, Mobita is currently not 
suited for a quick and easy application in studies aiming to 
analyse EEG recordings in time-locked epochs for frequency 
or ERP comparisons. Researchers considering the use of such 

systems should weigh the potential benefits against technical, 
practical and data quality disadvantages presented in this 
study.

Technical and practical considerations

Participants in the current study had a generally positive experi-
ence when using Mobita and some expressed their preference for 
Mobita over the Brain Products setup due to the reduced prepara-
tion time and not having to wash their hair following the proce-
dure. However, none of the participants had any pre-existing 
sensory sensitivities, hyperactivity or attention difficulties. It is 
not clear if Mobita would be more beneficial for participants with 

Table 3.  Median and interquartile ranges displayed for both systems for all three measures of noise: percentage of rejected artefactual trials, signal-
to-noise ratio, and root mean square.

Brain Products Mobita Median BF Variance

  Wilcoxon Fligner-Killeen

  Median (IQR) V, p (r) χ2, p

Artefact rejection % 0.58 (0.64) 3.80 (12.60) 1, 0.008 (0.85)* 1.9 6.42, 0.023*
SNR (μV) 0.05 (0.05) 0.04 (0.04) 48, 0.15 (0.66) 3.2* 1.67, 0.76
RMS (μV) 10.80 (1.83) 20.80 (12.39) 5, 0.08 (0.73) 1.5 12.74, 0.001*

BF: Bayes factor; IQR: interquartile range; SNR: signal-to-noise ratio; RMS: root mean square.
The results of statistical comparisons of median (Wilcoxon) and variance (Fligner-Killeen) are also presented. Significant differences are marked with an asterisk. 
Bonferroni correction was used to adjust the p-values.

Figure 4.  Jittered individual data points reflect average percentage of rejected artefactual trials, signal-to-noise ratio and root mean square for 
Brain Products and Mobita recordings.
The vertical bar marks the median and the shaded box reflects the interquartile range.

Table 4.  Median and interquartile ranges displayed for both systems for four frequency bands: theta, alpha, low beta and high beta.

Brain Products Mobita Median BF Variance

  Wilcoxon Fligner-Killeen

  Median (IQR) V, p (r) χ2, p

Theta –0.78 (0.59) 0.10 (1.03) 12, 1.0 (0.50) 0.95 1.03, 1.0
Alpha –1.15 (0.88) –0.38 (1.82) 18, 1.0 (0.31) 0.79 1.23, 1.0
Low beta –2.35 (0.67) –1.65 (0.82) 6, 0.22 (0.69) 1.91 1.72, 1.0
High beta –3.67 (0.84) –3.11 (0.67) 3, 0.08, (0.79) 4.69* 0.07, 1.0

BF: Bayes factor; IQR: interquartile range.
The results of statistical comparisons of medians (Wilcoxon) and variance (Fligner-Killeen) between the two systems are also displayed. Significant differences are marked 
with an asterisk. Bonferroni correction was used to adjust the obtained p-values.
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such difficulties and how much improvement it could bring over-
all to the experience of the EEG procedure.

From the researcher point of view, however, the Brain 
Products setup was more optimal in terms of the technical and 
practical application while the Mobita system required more 
adaptations and time-consuming solutions at all stages – setup, 
recording and analysis. At setup, it required a bespoke solution to 
allow for it to record synchronised digital and EEG signals for 
time-locked analyses. This is despite the setup being marketed as 
being able to record ERPs with no modifications or solutions that 

were alternative to the original expectations. The initial process 
of setting up Mobita is not straightforward and may require tech-
nicians or engineer assistance. At recording, the Mobita cap was 
not well fitted for some participants as one adjustable size was 
used instead of using caps fitted for individual head sizes like in 
the case of the Brain Products setup. It was also problematic that 
the mastoid reference electrodes were embedded within the cap 
as it was difficult to keep them close to the scalp to obtain good 
quality reference data. As a result, an average reference was used 
during pre-processing instead. In addition, the unavailability of 

Figure 5.  (a) Topographies for all power frequencies are displayed for comparison between the two systems. The topographies have not been 
normalised and different scales are used for Brain Products and Mobita. (b) Scatter plots with fitted line of best fit and confidence intervals to 
visually reflect the relationship between power obtained with the Brain Products and Mobita systems. (c) Jittered individual data points reflecting 
average power for each participant recorded with each system. The vertical bar marks the median and the shaded box reflects the interquartile 
range.

Table 5.  Median and interquartile ranges are displayed for both systems for the measures of P300 mean amplitude at 300–500 ms, ERN mean 
amplitude at 0–100 ms, peak amplitude values and peak latency.

Brain Products Mobita Median BF Variance

  Wilcoxon Fligner-Killeen

  Median (IQR) V, p (r) χ2, p

P300
  Mean amplitude (μV) 2.40 (1.63) 1.69 (2.39) 31, 1.0 (0.11) 0.33 1.53, 1.0
  Peak amplitude (μV) 2.54 (1.75) 2.49 (3.22) 21, 1.0 (0.15) 0.33 1.69, 1.0
  Peak latency (ms) 346 (38) 343 (67) 23, 1.0 (0.16) 0.32 2.85, 1.0
ERN
  Mean amplitude (μV) −2.69 (5.46) −0.89 (1.62) 1, 0.09 (0.85) 6.96* 1.04, 1.0
  Peak amplitude (μV) −3.96 (7.96) −4.56 (0.98) 36, 1.0 (0.02) 0.32 0.31, 1.0
  Peak latency (s) 41 (16) 6 (29) 13, 0.17 (0.87) 17.3* 1.48, 1.0

BF: Bayes factor; IQR: interquartile range; ERN: error-related negativity.
The results of statistical comparisons of medians (Wilcoxon) and variance (Fligner-Killeen) are displayed for all measures. Significant differences are marked with an 
asterisk. Bayes factors suggesting no significant differences are reported in bold. Bonferroni correction was used to adjust all obtained p-values.
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an electrode impedance measure meant that the researcher could 
not easily check and compare signal quality across the cap. 
Therefore, this increased the chances for Mobita EEG recordings 
to register more noise than the Brain Products setup. Mobita was 
also susceptible to signal drop and recording termination which 

led to loss of data. During the analysis, the digital marker signal 
for cognitive task events (stimuli and responses) had to be 
extracted from Acqknowledge and labelled (condition and 
response types) externally while during the Brain Products 
recording the digital signal was mostly already labelled into 

Figure 6.  (a) The P300 waveforms and topographies for each system. (b) Mean amplitude scatter plot with a fitted line of best fit and confidence 
intervals to visually reflect the relationship between the Brain Products and Mobita systems. (c) Jittered individual data points reflecting average 
mean amplitude for each participant recorded with each system. The vertical bar marks the median and the shaded box reflects the interquartile 
range.

Figure 7.  (a) The ERN waveforms and topographies for each system. (b) Mean amplitude scatter plot with a fitted line of best fit and confidence 
intervals to visually reflect the relationship between Brain Products and Mobita systems. (c) Jittered individual data points reflecting average mean 
amplitude for each participant recorded with each system. The vertical bar marks the median and the shaded box reflects the interquartile range.

Table 6.  Median and interquartile ranges displayed for both systems for SNR values recorded with frontal, central and posterior electrodes.

SNR (μV) Brain Products Mobita Median BF Variance

Wilcoxon Fligner-Killeen

Median (IQR) V, p (r) χ2, p

Frontal electrodes 0.05 (0.05) 0.03 (0.02) 47, 0.49 (0.63) 2.00 0.46, 1.0
Central electrodes 0.04 (0.05) 0.03 (0.02) 46, 0.63 (0.60) 1.96 0.33, 1.0
Posterior electrodes 0.07 (0.04) 0.03 (0.03) 54, 0.04 (0.85)* 32.44* 0.09, 1.0

BF: Bayes factor; IQR: interquartile range.
The results of statistical comparisons of medians (Wilcoxon) and variance (Fligner-Killeen) are provided. Statistically significant results are marked with an asterisk. 
Bonferroni correction was used to adjust all obtained p-values.
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different types. This was especially challenging for instances 
when the EEG and digital signal drops occurred as the gaps had 
to be manually detected and the markers were then realigned. 
However, this could be mitigated by choosing an option to record 
the signal directly to the logger instead of transferring the data 
wirelessly to the computer for recording. See the recommenda-
tion section below.

Data noise

Mobita had higher variance in registered noise at 0.1–2 Hz and 
49–51 Hz in raw data compared to the Brain Products setup sug-
gesting that signal quality in Mobita is more likely to be affected 
by individual factors such as environmental condition, head 
shape and cap fit. Following pre-processing, power at 49–51 Hz 
became visually comparable with Brain Products (Figure 2). 
However, this was not the case for power at 0.1–2 Hz, and power 
variance only reduced slightly numerically (Table 2, Figure 3(a)). 
From a practical perspective, this may prompt researchers who 
are using the system in the future to consider the potential likeli-
hood of slow drifts in Mobita recordings even after standard pre-
processing steps have been applied. These drifts may be caused 
by poor electrode-to-skin contact and may mask slow cortical 
activity in studies looking at low frequencies or distort ERP com-
ponents (de Cheveigné and Arzounian, 2018). In addition, we 
observed statistically significant median and variance differences 
in the artefact rejection rates between the systems indicating 
higher noise levels and further data loss following the pre-pro-
cessing procedures. SNR was generally lower for Mobita with 
the BF value indicating that this was a substantial statistical dif-
ference. Median comparison of SNR values per channel area 
(frontal, central and parietal) reached statistical significance for 
posterior electrodes which was further confirmed with the BF 
value. The RMS values were significantly more variable for 
Mobita. Taken together, these findings indicate that Mobita reg-
isters more noise at recording which can be mostly improved 

with pre-processing. However, the high artefact rejection rates, 
low SNR and variable RMS suggest that the data will likely still 
contain higher levels of noise compared to standard EEG sys-
tems. This may affect the EEG results as explained below.

EEG results

Regarding the frequency analyses, power across the four bands 
(theta, alpha, low beta and high beta) did not significantly differ 
between the two systems in terms of median or variance compari-
sons. However, the obtained BF for high beta frequency suggests 
that the two systems are statistically different. For this frequency, 
we expected to observe motor-related beta desynchronisation in 
the parietal regions reflected with power values that are negative 
or close to 0. Mobita activity seemed to be more positive than 
Brain Products setup activity potentially masking the motor-
related beta desynchronisation. This might have been caused by 
significantly lower SNR in the parietal channels in the Mobita 
system as evident from the exploratory analysis (Figure 8). In 
addition, from a visual comparison of the scatter plots for all four 
frequency bands, theta power is the least consistent between the 
two systems. This could be due to the observed increase in slow 
drift noise in Mobita (Figure 3). The topographies for all bands 
are relatively similar based on visual comparisons with a slight 
frontal shift of maximal power observed in theta and alpha bands 
recorded with Mobita.

With regards to the ERP analyses, statistical comparisons 
between the two systems were non-significant for P300 mean 
amplitude, peak amplitude and peak latency. In fact, the obtained 
BF suggests that the two systems are not statistically different in 
terms of these measures. Therefore, there is no indication from 
the current data that Mobita could yield unreliable P300 results. 
The P300 waveforms seemed visually similar. However, looking 
at the P300 topographies (Figure 6(a)), the Brain Products setup 
recorded maximal P300 activity over parietal regions which is 
expected in a Flanker task (Klawohn et al., 2020). In contrast, the 
P300 activity was maximal over the frontal region in Mobita 
which is unexpected. The topographies should be visually similar 
as the same participants were tested on the same task with both 
systems. Although we cannot rule out the possibility that this 
frontal shift could have been caused by practice effects, several 
previous studies showed a reduction of the P300 amplitude and a 
more parietal shift of the component as a result of practice effects 
(Friedman et al., 2001; Nakata et al., 2015). As in the case of beta 
power, it is likely that the posterior activity was masked by low 
SNR in parietal and centro-parietal channels which could have 
caused the shift of maximal P300 activity more frontally in 
Mobita. This is a significant issue for consideration in future 
research as it may lead to false interpretation of results which 
may be inconsistent with previous literature and the current 
understanding of frontal and parietal P300 variants (van Dinteren 
et al., 2014).

For ERN mean amplitude, peak amplitude and peak latency, 
there were no statistically significant differences between the two 
systems. However, the BF values showed the two systems to be 
statistically comparable in terms of ERN peak amplitude but dif-
ferent in terms of mean amplitude and peak latency. The latency 
shift is also evident by visually inspecting the ERN waveform 
(Figure 7(a)). The Mobita ERN peak occurs almost at the onset of 
response, but it is normally expected at around 50 ms post 

Figure 8.  Jittered individual data points reflecting average SNR values 
for each participant presented by electrode location and recording 
system. The vertical bar marks the median and the shaded box reflects 
the interquartile range.
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response onset in Flanker tasks (Klawohn et  al., 2020; Riesel 
et al., 2013) which is accurately reflected in the Brain Products 
waveform. The likely explanation for this latency shift is the 
bespoke solution for digital marker recording used in Mobita. It 
seems that stimulus-locked events can be accurately marked with 
the current system where the digital signal is set from 0 to 1 at 
stimulus onset since the peak latency for the P300 component did 
not differ between the two systems. At response onset, the digital 
signal is set back from 1 to 0 and it seems that this event was 
recorded approximately 35 ms earlier than the actual response if 
we directly compare the Brain Products and Mobita peak latency 
median values (Table 5). This issue may again have adverse con-
sequences in future research and lead to false interpretation of 
results that will not be consistent with the current knowledge 
about the ERN. Otherwise, visual inspection of the ERN wave-
forms suggests that the ERN component registered with both sys-
tems is rather similar and occurs to be slightly clearer for Mobita 
than Brain Products. This could potentially be due to practice 
effects as all Mobita recordings were taken during phase 2 of the 
study. The topographies are also visually similar with a slight 
frontal shift observed in Mobita, but this is unlikely to lead to 
false interpretation.

Limitations

As the Mobita recording was acquired after the Brain products 
recording for all participants, on the same task, there could be a 
confound of order and practice effects. These could potentially 
have influenced the observed topographical, ERP and power dif-
ferences. Previous reports suggest that to reduce the impact of 
practice effects, re-testing should be done later than within 
3 months and with no additional repetitions of the task in between 
(Bartels et  al., 2010; Hausknecht et  al., 2007). In the current 
study, participants completed the task only twice with a 
7–12 months interval, thereby minimising potential practice 
effects. Another confounding factor could be the fact that the gel-
based system was recorded in a sound-proofed room, while the 
water-based system was not. This may have led to higher partici-
pant distraction in Mobita recordings as well as reduced SNR 
(Ledwidge et al., 2018).

One limitation of the current study is the small sample size 
and low statistical power. However, considering the practical 
nature of the study, even results from a limited sample can be 
highly informative for the development of future protocols. The 
observed patterns and differences between the two systems will 
help researchers to understand the possible pitfalls of the system 
so that preventive solutions can be developed. For instance, when 
measuring P300, special attention should be given to ensuring 
good quality signal in the parietal electrodes which are suscepti-
ble to noise. These results can also help to explain unexpected 
results that researchers might obtain in the future due to noisy 
recordings.

Another limitation of the study is that in case of Mobita, it 
was the first time that the system was used to collect and analyse 
EEG data at the School of Psychology, University of Surrey. The 
Brain Products system has been used numerous times and best 
practices have already been established over the years. It is there-
fore possible that data recorded with the Brain Products setup 
were of better quality because the researchers were able to use it 
more confidently. It is possible that with the development of best 
practice solutions as well as further practice in the use of 

water-based systems, the recorded data will also be of higher 
quality. The current study is an important step in the development 
of these best practice solutions.

Finally, authors have not conducted any formal recordings of 
the objective experiences at data acquisition for participants nor 
themselves. The experiences were retrieved from lab notes and 
memory. However, all described experiences illustrate difficul-
ties which have led to certain practical adaptations or methodo-
logical considerations for the future as detailed in the section 
below. Therefore, the subjective nature of these experiences pre-
sents a case scenario of a real-life application of a water-based 
EEG system.

Recommendations for future research

Based on the results presented in this study, we provide a set of 
general recommendations to avoid technical difficulties and false 
conclusions in studies using water-based electrode EEG systems. 
For more specific explanations regarding the assessment of elec-
trode noise prior to recording, the bespoke solution on digital 
event markers and event markers labelling in the current study, 
see the Supplementary File.

For studies using water-based EEG systems for low-fre-
quency effects and ERPs, researchers may want to consider 
robust solutions for detrending data in order to prevent the slow 
drifts from distorting or masking the effects of interest. For stud-
ies focused on effects located in parietal regions, such as the 
P300 or beta desynchronisation, researchers should be especially 
careful about ensuring low noise levels. They should plan for 
regular assessments of data quality and perhaps consider taking 
more than one recording during a single procedure. The power 
spectrum of all channels can be assessed for noise during the 
recording breaks and the electrode fitting can be re-adjusted to 
improve the electrode to scalp contact. This would be especially 
beneficial for long procedures to ensure that the electrodes have 
not become dry or dislocated.

For studies requiring the use of mastoid reference channels, 
researchers should consider the likelihood of high noise levels 
due to the difficulty in sustaining good electrode to skin contact. 
One solution is to apply a bandage or an elastic band to secure the 
electrodes in place (see the Supplementary File for an example).

Researchers should take a careful approach if their studies 
require good temporal precision (e.g. in ERP analyses) and if 
they are using a new EEG system which may or may not have 
been designed for time-locked analyses. To avoid possible 
latency shifts (as observed in this study), one solution is to syn-
chronise the EEG recording with the stimulus presentation soft-
ware at the point of the first stimulus onset and use event timing 
values from the stimulus recording software output rather than 
the digital signal.

Finally, to avoid data loss due to signal drops in wireless sys-
tems, we recommend that researchers record EEG signal directly 
to the data logger instead of sending the data wirelessly to a 
recording computer. Issues associated with data loss and high 
noise levels can be further alleviated by aiming to recruit larger 
samples and increasing the number of trials in tasks to preserve 
statistical power. It may also help to reduce data noise if record-
ings are performed in sound-proofed rooms rather than naturalis-
tic environments that are common in wireless recordings. Another 
consideration for the wireless setup is the difficulty in sending 
triggers (currently only possible with a wired connection).
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Conclusion
Water-based EEG systems could potentially help to reduce par-
ticipant involvement time and discomfort. However, they may 
require a number of time-consuming adaptations which are not 
necessary when using the state-of-the-art gel-based systems. 
Researchers should be aware of the likelihood that water-based 
systems will register high levels of noise which may affect analy-
ses investigating ERPs, low frequencies and parietal activity. 
Otherwise, they may be at risk of drawing wrong conclusions 
from their results.
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