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Mary S. Easton Center for Alzheimer’s Research and Care, Department of Neurology, David Geffen School of Medicine at
UCLA, Los Angeles, CA, United States

Tau is a microtubule-associated protein known to bind and promote assembly of
microtubules in neurons under physiological conditions. However, under pathological
conditions, aggregation of hyperphosphorylated tau causes neuronal toxicity,
neurodegeneration, and resulting tauopathies like Alzheimer’s disease (AD). Clinically,
patients with tauopathies present with either dementia, movement disorders, or
a combination of both. The deposition of hyperphosphorylated tau in the brain
is also associated with epilepsy and network hyperexcitability in a variety of
neurological diseases. Furthermore, pharmacological and genetic targeting of tau-
based mechanisms can have anti-seizure effects. Suppressing tau phosphorylation
decreases seizure activity in acquired epilepsy models while reducing or ablating tau
attenuates network hyperexcitability in both Alzheimer’s and epilepsy models. However,
it remains unclear whether tauopathy and epilepsy comorbidities are mediated by
convergent mechanisms occurring upstream of epileptogenesis and tau aggregation,
by feedforward mechanisms between the two, or simply by coincident processes. In
this review, we investigate the relationship between tauopathies and seizure disorders,
including temporal lobe epilepsy (TLE), post-traumatic epilepsy (PTE), autism spectrum
disorder (ASD), Dravet syndrome, Nodding syndrome, Niemann-Pick type C disease
(NPC), Lafora disease, focal cortical dysplasia, and tuberous sclerosis complex. We
also explore potential mechanisms implicating the role of tau kinases and phosphatases
as well as the mammalian target of rapamycin (mTOR) in the promotion of co-pathology.
Understanding the role of these co-pathologies could lead to new insights and therapies
targeting both epileptogenic mechanisms and cognitive decline.

Keywords: tau, epilepsy, mTOR, hyperexcitability, hyperphosphorylation of tau, cognitive decline

INTRODUCTION

Tau is a microtubule-associated protein encoded in humans by the microtubule-associated
protein tau gene, MAPT, on chromosome 17 (Wang and Mandelkow, 2016). In the brain, tau
is most abundant in neurons, including neuronal axons, somatodendritic compartments, and
nuclei, but it is also present in glia and, to a lesser degree, extracellularly (Morris et al., 2011;
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Wang and Mandelkow, 2016). The functions of tau in the
brain are multifaceted, but its most well-characterized role
is in microtubule binding and assembly. Tau is natively
unfolded and highly soluble, thus exhibiting little tendency
for aggregation. However, under pathological conditions, the
hyperphosphorylation of tau reduces its affinity for tubulin and
is thought to drive abnormal aggregations of phosphorylated
tau (p-tau), such as neuropil threads or neurofibrillary tangles
(NFTs), resulting in tauopathies (Wang and Mandelkow, 2016;
Kovacs, 2017).

Endogenous tau is also implicated in neuronal activity (Wang
and Mandelkow, 2016), though this role of tau is less well
understood. Neuronal excitation, in turn, also regulates tau by
promoting extracellular release and phosphorylation. Rapid and
persisting increases in extracellular tau following in vivo (Yamada
et al., 2014) or in vitro (Pooler et al., 2013) neuronal stimulation
suggest that tau amplification is associated with pathological
neuronal activation. Given that seizure and chronic epilepsy
animal models result in prolonged tau phosphorylation (Liang
et al., 2009; Liu et al., 2016; Alves et al., 2019), a growing body of
research is examining the role of pathological tau in epilepsy and
mechanisms underlying epilepsy and tauopathy comorbidities.

In Alzheimer’s disease (AD), which is the most common
tauopathy, an estimated 60% of patients have seizures and
subclinical epileptic activity (Vossel et al., 2016, 2017; Lam et al.,
2020; Horvath et al., 2021). Seizures are more common in AD
and dementia with Lewy bodies than in primary tauopathies,
such as frontotemporal dementia and progressive supranuclear
palsy (Beagle et al., 2017). However, the possibility of seizures
and hyperexcitability in primary tauopathies should not be ruled
out, as they occur more frequently in these diseases than in the
general population (Beagle et al., 2017; Sanchez et al., 2018).
Myoclonus, a sign of network hyperexcitability, is observed in
a subset of patients with corticobasal degeneration (Armstrong
et al., 2013), and epileptic activity is present in the FTDP-17
animal model of frontotemporal dementia with parkinsonism
(Garcia-Cabrero et al., 2013).

Furthermore, tau pathology is repeatedly found in human
epilepsy (Sanchez et al., 2018). In a post-mortem series of 138
refractory epilepsy cases of diverse causes, Braak staging of
NFTs in the age group 40–65 years revealed increased Braak
stages III/IV compared with data from an age-matched series
of non-epilepsy cases (Thom et al., 2011). Abnormally high
total tau and p-tau levels were also detected in cerebrospinal
fluid of status epilepticus patients, with increased total tau
correlating with greater risk of developing chronic epilepsy
(Monti et al., 2015). Given that neurodegenerative conditions
characterized by hyperphosphorylated tau aggregations exhibit
increased rates of epilepsy, epilepsies are being re-conceptualized
within a tauopathy context (Xi et al., 2011; Sanchez et al., 2018;
Ali et al., 2019).

As such, the present review seeks to explore the following
three main questions: (1) Does tau play a role in mediating
network hyperexcitability and seizure activity across different
epilepsy disorders? (2) Do comorbid tauopathies and epilepsies
stem from independent or common mechanisms? (3) How
do tauopathy and epilepsy comorbidities contribute to

disease-related cognitive impairment? In light of evidence
indicating tau-mediated epileptic activity and dysregulation of
tau-related cell signaling pathways across seizure disorders, we
propose a potential overarching mechanism (Figure 1) whereby
endogenous tau helps enable network hyperexcitability, which
triggers homeostatic responses aimed, in part, to disable tau
activity by phosphorylation. Resulting tau hyperphosphorylation
and aggregation may in turn further contribute to cognitive
impairments seen in some seizure disorders.

ROLE OF TAU IN EPILEPTIC ACTIVITY

Across various animal models that exhibit epilepsy, reducing
tau levels reduces network hyperexcitability, seizure severity, and
latency to seizure stages (Roberson et al., 2007; Ittner et al., 2010;
DeVos et al., 2013; Holth et al., 2013; Wang and Mandelkow,
2016; Ali et al., 2019). Endogenous levels of tau also positively
correlate with chemically induced seizure susceptibility in wild-
type mice (DeVos et al., 2013), suggesting a role of endogenous
tau in mediating epileptic activity.

Though not a primary epilepsy, autism spectrum disorder
(ASD) is a disease with links to both seizures and tau.
Several studies reveal a strong relationship between epilepsy
in individuals with autism and autism in those with epilepsy
(Viscidi et al., 2013; Reilly et al., 2015; Sundelin et al.,
2016), with the prevalence of epilepsy in ASD doubling in
adolescence (26%) compared to childhood (12%) (Hara, 2007;
Woolfenden et al., 2012; Sharma et al., 2021). Likely explanations
supporting the conjugation of the two conditions include
an imbalance in neuronal excitation/inhibition (Bourgeron,
2009; Nelson and Valakh, 2015; Specchio et al., 2022). In
the Cntnap2−/− mouse model of autism with focal epilepsy,
global tau knockdown prevents epileptic activity in addition
to other autistic-like behaviors (Tai et al., 2020), indicating an
epileptogenic role of tau in ASD.

Genetic ablation of tau, even by 50% by inactivation of a
single Mapt allele, also reduces epileptic activity, high mortality
rates, and cognitive deficits in the Scn1a mouse model of
Dravet syndrome, a severe and intractable childhood epilepsy
that is caused by mutations in the SCN1A gene and can
lead to autism (Catterall et al., 2010; Li et al., 2011; Gheyara
et al., 2014; Anwar et al., 2019; Tai et al., 2020). This effect
also occurs in the Scn1a model following postnatal injection
of tau-targeting antisense oligonucleotides (Shao et al., 2022),
suggesting that antisense oligonucleotides may be a promising
treatment avenue for children with Dravet syndrome. Shao
et al. (2022) further found that selective genetic ablation of
tau in hippocampal excitatory neurons but not in inhibitory
neurons mediates the neuroprotective effects of tau reduction in
the Scn1a model. The authors propose that the suppression of
epileptic activity by tau reduction may therefore result from a
lower hypersynchrony of excitatory neuronal activity rather than
greater inhibitory regulation.

In some models, pathological tau, rather than endogenous
tau, can contribute to epileptic activity. Temporal lobe epilepsy
(TLE) is one of the most prevalent forms of focal epilepsy
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FIGURE 1 | Cascade of events in development of seizures and tau pathology. Endogenous tau has an enabling function in the development of seizure activity
following disease onset or traumatic insult. Network hyperexcitability in turn leads to cognitive decline and the activation of mechanisms involving mTOR and tau
kinases and phosphatases, resulting in abnormal phosphorylation of tau. Overactivation of these cell signaling pathways increases susceptibility to pathological tau
hyperphosphorylation and aggregation, which may also contribute to epilepsy-associated cognitive decline. GSK-3β, glycogen synthase kinase-3β; CDK5,
cyclin-dependent kinase 5; PP2A, protein phosphatase 2A; mTOR, mammalian target of rapamycin; p-tau, abnormally phosphorylated tau. Created with
BioRender.com.

(Tellez-Zenteno and Hernandez-Ronquillo, 2012; Asadi-Pooya
et al., 2017), and in the electrical amygdala kindling rodent model
of TLE, tau-knockout mice do not differ from wild-type mice in
seizure outcome following repeated kindling (Liu S. et al., 2017).
However, kindling produces longer epileptic discharge durations
and accelerated seizure progression in rTg4510 transgenic
mice, which overexpress P301L tau in forebrain and develop
increased p-tau and NFTs (Liu S. et al., 2017). These findings
suggest that an increase in p-tau and tau aggregation promotes
kindling-induced epileptogenesis.

Taken together, findings across different seizure disease
models reveal a significant function of endogenous tau, as
well as pathological tau, in the mediation of epileptic activity.
Given tau’s role in modulating neuronal activity under normal
physiological conditions (DeVos et al., 2013; Chang et al., 2021),
endogenous tau likely contributes to network hyperexcitability
across primary and secondary epilepsies. In humans, tau mRNA
expression and protein levels in the brain can vary greatly
(Trabzuni et al., 2012). And though exact reasons for individual
differences in endogenous tau levels remain unknown, high levels
may consequently predict a person’s susceptibility to epileptic
activity. Elevated tau measurements in cerebrospinal fluid have
in fact been shown to correlate with seizure type and duration
in patients with epilepsy (Tumani et al., 2015). Higher levels of

endogenous tau alone may not cause seizures, but it is possible
that this may predispose an individual to seizure development
upon pathogenesis.

PRESENCE OF P-TAU PATHOLOGY IN
SEIZURE DISORDERS AND LINKS TO
EPILEPTIC ACTIVITY

While levels of endogenous or total tau differ across examinations
of patients with epilepsy, increased levels of p-tau in the brain are
found across many seizure disorders (Thom et al., 2011). These
include patients with TLE, Dravet syndrome, Nodding syndrome
(Thom et al., 2011; Pollanen et al., 2018; Hotterbeekx et al.,
2019), Niemann-Pick type C disease (NPC) (Auer et al., 1995;
Love et al., 1995; Suzuki et al., 1995; Malnar et al., 2014), focal
cortical dysplasia IIB (FCDIIb) (Sen et al., 2007; Iyer et al., 2014),
and tuberous sclerosis complex (TSC) (Sarnat and Flores-Sarnat,
2015; Liu et al., 2020), as well as animal models of post-traumatic
epilepsy (PTE) (Cho et al., 2020; Alyenbaawi et al., 2021), Lafora
disease (Epm2a−/−) (Ganesh et al., 2002; Puri et al., 2009;
Machado-Salas et al., 2012), and ASD (Gassowska-Dobrowolska
et al., 2021). It should be noted that tau aggregation in the brain is
associated with older age and is generally uncommon in healthy
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young adults (Braak et al., 2011; Crary et al., 2014). However,
the presence of tau pathology in childhood or adolescent-
onset epilepsies, such as Dravet syndrome, Nodding syndrome,
Lafora disease, NPC, TSC, and ASD, and in relatively younger
TLE patient cohorts (Puvenna et al., 2016; Smith et al., 2019;
Gourmaud et al., 2020) suggest a causal link between seizure
activity and p-tau accumulation.

In animal models of TLE, tau hyperphosphorylation is
observed in relevant brain regions, including the amygdala,
hippocampus, and cortex, following chemical and electrical
amygdala kindling (Jones et al., 2012; Liu et al., 2016; Alves
et al., 2019). And in humans with chronic epilepsy, elevated
p-tau is present in post-mortem (Thom et al., 2011) as well
as surgically resected tissue (Puvenna et al., 2016; Tai et al.,
2016; Liu C. et al., 2017; Prada Jardim et al., 2018; Smith et al.,
2019; Gourmaud et al., 2020). For instance, analysis of resected
temporal lobe tissue by Tai et al. (2016) found pathological tau
phosphorylation in the form of neuropil threads, NFTs, and
pre-tangles in 31 of 33 TLE patients between 50 and 65 years
of age. Interestingly, observations of subpial bands formed by
cortical p-tau depositions have been made across separate studies
(Puvenna et al., 2016; Tai et al., 2016; Smith et al., 2019), providing
evidence for a novel pattern of tau pathology in TLE that may
result from seizure-induced reorganization of temporal lobe
networks (Tai et al., 2018).

Tau hyperphosphorylation is also consistently present in
the initial and long-term secondary mechanisms initiated by
traumatic brain injury (TBI) (Petraglia et al., 2014; Zheng et al.,
2014; Rubenstein et al., 2015; Ali et al., 2019; Tan et al., 2020),
a leading cause of morbidity and mortality worldwide (Hay
et al., 2016). For instance, sustaining even a single TBI can
result in progressive NFT formation that is more extensive and
severe than what is expected with normal aging (Johnson et al.,
2012; Zanier et al., 2018). Furthermore, it is estimated that
over 50% of severe TBI cases will result in seizures or PTE
(Kovacs et al., 2014), and animal models reveal increased p-tau
levels in the brain associated with TBI-induced epileptic activity
(Cho et al., 2020; Alyenbaawi et al., 2021). In a recent study,
Alyenbaawi et al. (2021) presented a novel model of transgenic
zebrafish expressing a fluorescent tau biosensor where TBIs
by blast-like pressure waves induced progressive tauopathies.
Tau aggregation positively correlated with TBI severity and
the presence of seizure-like clonic shaking. Furthermore, tau
aggregation following TBI administration was prevented by the
anti-convulsant ezogabine and exacerbated by kainate treatment,
demonstrating a role of seizure activity in mediating tauopathy
development (Alyenbaawi et al., 2021).

A mechanism by which epileptogenesis gives rise to tau
hyperphosphorylation may underlie the high incidence of
tauopathy and epilepsy co-pathology that is found in diseases
such as AD and dementia with Lewy bodies (Vossel et al.,
2016, 2017; Beagle et al., 2017). Given that endogenous tau
plays a role in regulating neuronal activity, disruption in
the homeostatic balance of tau modifications may mediate
seizure comorbidities observed in these diseases, and epileptic
activity may in turn help drive tau hyperphosophorylation. In
classical tauopathies where overt epilepsy infrequently occurs,

tau hyperphosphorylation can arise from a variety of different
causes (Kovacs, 2017). However, it is also possible that epileptic
activity in these tauopathies is clinically underrecognized due
to being non-motor or subclinical in nature, as suggested
by the detection of subclinical epileptic activity in over 40%
of AD patients during overnight electroencephalography and
1-h magnetoencephalogram recordings (Vossel et al., 2016).
More studies involving extended periods of neurophysiological
monitoring are therefore required to investigate the presence
of epileptic activity and its potential contribution to tau
hyperphosphorylation in primary tauopathies.

It should also be noted that tau pathology is not universally
found in connection with epileptic activity. For instance, 31% of
the post-mortem refractory epilepsy cases studied by Thom et al.
(2011) were classified as Braak Stage 0, and analysis of surgically
resected tissue from 56 TLE patients by Silva et al. (2021)
found p-tau-positive neurons in only two samples. The absence
of pathological tau deposition in these cases indicates that
epileptogenesis does not always lead to tauopathies. However,
the factors that determine the subsequent development of tau
pathology in some cases of aberrant network excitability but
not others remain unclear. It is possible that the formation of
pathological tau deposits is linked to specific seizure disorders
or that mechanisms mediating tau hyperphosphorylation are
overactivated in cases of more severe epilepsy.

DYSREGULATION OF CELL SIGNALING
ACTIVITY UPSTREAM OF TAU
PHOSPHORYLATION

Kinases
Given that the balance of tau phosphorylation states is regulated
by enzymatic activity, investigations into the impairment
of tau kinases and phosphatases in seizure disorders reveal
links between epileptic activity and tau hyperphosphorylation.
Investigations into novel pharmacological interventions
targeting tau hyperphosphorylation in epilepsy have
therefore concentrated on inhibiting and enhancing related
phosphorylation and dephosphorylation mechanisms,
respectively (Zheng et al., 2014; Ali et al., 2019).

One relevant kinase responsible for tau phosphorylation is
glycogen synthase kinase-3β (GSK-3β) (Toral-Rios et al., 2020).
Upregulation of GSK-3β is found in surgically resected tissue
samples from patients with intractable epilepsy (Xi et al., 2009;
Liu X. et al., 2017), and GSK-3β overactivation co-occurs with
increased p-tau levels in mesial TLE patients (Liu C. et al., 2017).
Inhibition of GSK-3β may have dual benefits given that GSK-3β

inhibition reduces tau hyperphosphorylation and NFT formation
in tau-overexpressing transgenic mice (Noble et al., 2005; Engel
et al., 2006; Leroy et al., 2010) and produces anticonvulsant
effects against pentylenetetrazol-induced seizures in zebrafish
larvae (Aourz et al., 2019). However, the observation of sustained
increases in p-tau levels following kainic acid administration
being accompanied by only transient increases in GSK-3β activity
(Liang et al., 2009) and the lack of effect on hippocampal p-tau
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by GSK-3β inhibitor pretreatment in the intra-amygdala kainic
acid-induced status epilepticus mouse model (Alves et al., 2019)
indicate that GSK-3β is not the only kinase responsible for tau
phosphorylation following epileptic activity.

Another protein kinase highly implicated in tau
phosphorylation is cyclin-dependent kinase 5 (CDK5).
Dysregulation of CDK5 signaling can contribute to
neurodegeneration, excitotoxicity, and tau hyperphosphorylation
(Cruz et al., 2003). As is seen with GSK-3β, CDK5 overactivation
is present in resected tissue from refractory epilepsy patients (Xi
et al., 2009; Liu X. et al., 2017), and dysplastic cortical neurons in
FCD patients express CDK5 aggregations (Sisodiya et al., 2002).
Furthermore, progressive activation of CDK5 co-occurs with
increasing tau phosphorylation in rodent seizure models (Chen
et al., 2000; Liang et al., 2009), indicating significant mediation
of seizure-associated tau hyperphosphorylation by CDK5.
For example, in the genetic mouse model of NPC, increased
activation of CDK5 and its activator, p25, coincides spatially
and temporally with tau pathology, and CDK5 inhibition
by roscovitine and olomoucine prevents cytoskeletal protein
phosphorylation (Bu et al., 2002; Zhang et al., 2004, 2008).

Both GSK-3β and CDK5 play a role in neuronal excitability
through involvement in GABAergic and glutamatergic
neurotransmission, and inhibiting their activity can affect
network activity through various mechanisms (Sen et al., 2008;
Jaworski, 2020; Toral-Rios et al., 2020; Banerjee et al., 2021).
Therefore, inhibiting these kinases should be approached with
caution. For instance, genetic ablation of the CDK5 activator,
p35, increases susceptibility to spontaneous seizures in mice
(Chae et al., 1997). Tau levels were not measured in this study, but
it is possible that the absence of activated CDK5 in this genetic
model results in higher levels of dephosphorylated tau that
contribute to neuronal hyperexcitability. These considerations
highlight the complexity of kinase regulation in the setting
of normal activity and hyperexcitable states. Targeting tau
rather than upstream kinases may therefore be a more viable
intervention option for seizure disorders (Figure 1).

Phosphatases
In addition to kinase activity, tau hyperphosphorylation
associated with seizure activity may also be due to a lack of
tau dephosphorylation by tau phosphatases. Following kainic
acid administration in mice, biphasic changes in p-tau levels
occur, where decreased phosphorylation is first observed within
the first 6-h period followed by a gradual 3–5-fold increase
until a 48-h endpoint. This progression is accompanied by a
corresponding increase and then decrease in the activation
of protein phosphatase 2A (PP2A) (Liang et al., 2009),
which is estimated to account for 70% of human brain tau
dephosphorylation (Wang and Mandelkow, 2016). It is possible
that phosphatase activity is initially triggered to offset elevated tau
phosphorylation caused by upregulated kinase activity following
an epileptic event. For instance, GSK-3β upregulation causes
PP2A activation (Wang et al., 2015). However, long-lasting
phosphatase downregulation ultimately occurs, as evidenced
by decreased PP2A activity paired with increased p-tau levels
observed in epileptogenic brain regions following post-kainic

acid status epilepticus, amygdala kindling, and fluid percussion
injury in rats (Liu et al., 2016).

Similarly, abnormal p-tau in the form of NFTs are also
observed in the Epm2a−/− mouse model (Puri et al., 2009),
which replicates many of the features of Lafora disease
caused by EPM2A mutations, including laforin deficiency,
neuronal degeneration, spontaneous epileptic activity, and
the development of Lafora bodies (Ganesh et al., 2002).
Laforin is another tau phosphatase (Puri et al., 2009), though
further research is required to investigate connections between
hyperexcitability states and laforin downregulation in other
seizure disorders. At least in the Epm2a−/− model, pathological
tau levels are also associated with increased GSK-3β activation
(Puri et al., 2009), suggesting that tau hyperphosphorylation is
not mediated by the absence of laforin alone in Lafora disease.

Interestingly, the lack of phosphatase activity may also
contribute to epileptic activity. Sodium selenate is a specific
agonist for PP2A expressing the regulatory B subunit, an
essential subunit for tau dephosphorylation by PP2A (Jones
et al., 2012; Liu et al., 2016), and shows promise as a potential
antiepileptic treatment option. Sodium selenate treatment
attenuates seizure activity and tau hyperphosphorylation and
accumulation following administration of pentylenetetrazol or
kainic acid as well as in the TLE model of amygdala kindling
and the fluid percussion injury model of PTE (Jones et al., 2012;
Liu et al., 2016). The antiepileptic effects of sodium selenate
persist following drug washout in animal TBI models (Liu et al.,
2016), highlighting a potential disease-modifying effect of PP2A
upregulation by sodium selenate during epileptogenesis when
applied in early PTE disease stage.

The mechanisms through which tau dephosphorylation
by phosphatase function alleviates epileptic activity remain
unclear. Dephosphorylated tau at sufficient levels may be
favorable in chronic epileptic states, or phosphatases may
participate in independent signaling pathways that abate
neuronal hyperexcitability. Regardless, as was proposed with
tau kinases, long-term phosphatase inactivation may serve as
a homeostatic response aimed at maintaining higher levels
of phosphorylated tau and preventing endogenous tau from
enabling network hyperexcitability (Figure 1). Taken together,
the discussed findings indicate that seizures give rise to
disruptions in the intricate balance of tau kinase and phosphatase
activity and that the combined effects of kinase upregulation
and phosphatase downregulation contribute to progressive tau
hyperphosphorylation and accumulation in seizure disorders.

Mammalian Target of Rapamycin
Pathways
The mammalian target of rapamycin (mTOR) is a highly
conserved protein kinase that is implicated in a wide array of
cellular and metabolic functions, including cell survival, growth,
proliferation, migration, and differentiation (Wong, 2010; Mueed
et al., 2018). Activation of mTOR is also a proposed driver of
tau pathology given the involvement of tau-related kinases both
upstream and downstream of mTOR signaling (Figure 2) and
the contribution of mTOR-mediated autophagy dysfunction to

Frontiers in Aging Neuroscience | www.frontiersin.org 5 July 2022 | Volume 14 | Article 903973

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-903973 July 13, 2022 Time: 13:34 # 6

Hwang et al. Tauopathy and Epilepsy Comorbidities

FIGURE 2 | Simplified diagram of activated kinase signaling cascades in epilepsy. Epileptic activity leads to the activation of tau kinases, GSK-3β and CDK5, as well
as mTOR. Dashed-line arrows indicate indirect activation of mTOR by GSK-3β through the mTOR complex 1 and of CDK5 by mTOR through amyloid-β aggregation
and calpain activation. The downstream targets of mTOR activation involve the activation of additional tau kinases, p70S6K1 and eIF4E. GSK-3β, glycogen synthase
kinase-3β; mTOR, mammalian target of rapamycin; CDK5, cyclin-dependent kinase 5; S6K1, ribosomal protein S6 kinase 1; 4EBP1, 4E binding protein 1; p70S6K1,
phosphorylated S6K1; eIF4E, eukaryotic translation initiation factor 4E; p-tau, abnormally phosphorylated tau. Created with BioRender.com.

tau hyperphosphorylation (Tramutola et al., 2017; Mueed et al.,
2018). For instance, the downstream targets of mTOR activation
include signaling cascades involving 4EBP1, S6K1, and CDK5, all
of which result in tau phosphorylation (Mueed et al., 2018).

Furthermore, mTOR hyperactivation accompanies epileptic
activity across different seizure models including animal models
of TLE, PTE, FCDII, Dravet syndrome, ASD, and TSC (Meikle
et al., 2007; Zeng et al., 2008; Sha et al., 2012; Guo et al., 2013;
Gheyara et al., 2014; Butler et al., 2015; Marsan and Baulac,
2018; Tai et al., 2020; Shao et al., 2022). mTOR therefore likely
contributes to tau and seizure co-pathology, warranting further
pharmaceutical consideration of mTOR inhibition by rapamycin.
Rapamycin treatment inhibits both tau hyperphosphorylation
(Liu et al., 2013; Ozcelik et al., 2013; Tramutola et al., 2017) and
the development of status epilepticus and chronic epilepsy in
models of pharmacological seizure induction (Zeng et al., 2008;
Huang et al., 2010), TLE (Drion et al., 2016), and PTE (Guo et al.,
2013; Butler et al., 2015). Given that active GSK-3β also activates
mTOR (Mueed et al., 2018), tau hyperphosphorylation resulting
from seizure-associated GSK-3β upregulation may be further
exacerbated by GSK-3β-mediated mTOR activation (Caccamo
et al., 2013; Figure 2).

While the dysregulation of mTOR signaling pathways may
manifest differentially across seizure disorders, the many
connections between tau and mTOR highlight the significance
of maintaining an optimal ratio of dephosphorylated and
phosphorylated tau through balanced kinase/phosphatase
regulation. Endogenous tau enables mTOR activation through a
disinhibition mechanism whereby tau inhibits phosphatase and
tensin homolog deleted chromosome 10 (PTEN), which normally
inhibits mTOR (Tai et al., 2020; Figure 3). In genetic mouse
models of ASD and Dravet syndrome, tau ablation prevents
epilepsy and normalizes mTOR overactivation (Gheyara et al.,
2014; Tai et al., 2020; Shao et al., 2022), suggesting that reducing
tau may be beneficial in these diseases via PTEN disinhibition.
mTOR also functions as a negative regulator of autophagy
(Tramutola et al., 2017). Therefore, mTOR hyperactivity
could prevent clearance of both normal and pathological tau

(Chesser et al., 2013). Furthermore, reduced autophagy resulting
from mTOR overactivation is implicated in elevated endogenous
tau levels in the TSC2 mouse model of TSC (Caccamo et al.,
2013). In seizure disorders such as TSC and NPC that are
characterized by autophagy dysregulation (Pacheco et al., 2009;
Caccamo et al., 2013), increase in normal tau levels may in turn
contribute to both seizure activity and PTEN inhibition, creating
a feedback loop of mTOR overactivation that results in further
hyperphosphorylation of tau (Figure 3).

TAU-ASSOCIATED COGNITIVE DECLINE
IN EPILEPSY DISORDERS

Cognitive impairment is a common comorbidity of seizure
disorders. Though cognitive deficits can independently occur
in seizure disorders as a direct result of disease etiology, such
as trauma, epileptic activity contributes to, and exacerbates
cognitive decline (Holmes, 2015). However, there are also
investigations into a potential role of tau pathology in epilepsy-
associated cognitive decline. While individuals with dementia
have higher rates of epilepsy, seizures are experienced more
frequently in tauopathy-associated dementias like AD than in
other dementias (Sanchez et al., 2018). Cognitive decline is
also accelerated in patients who have both AD and seizures
compared to those with only AD (Vossel et al., 2017), suggesting
that pathological tau and seizures can synergistically worsen
cognitive outcomes.

Correlations between tau pathology and cognition are in fact
observed in epilepsy. Post-mortem analysis of 138 refractory
epilepsy cases revealed that 77% of patients with Braak staging
III or higher exhibited progressive cognitive decline (Thom
et al., 2011), and increased total and p-tau levels measured
in surgically resected tissue from TLE patients are inversely
correlated with cognitive scores (Kandratavicius et al., 2013; Tai
et al., 2016; Gourmaud et al., 2020). In younger TLE patients,
an association between post-operative naming decline and subtle
tau hyperphosphorylation localized to only the subiculum and
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FIGURE 3 | Interplay of endogenous tau, mTOR, and autophagy in epilepsy. (A) Under normal physiological conditions (blue), endogenous tau positively regulates
mTOR activity via PTEN inhibition, and mTOR in turn negatively regulates autophagy mechanisms that contribute to the clearance of tau and p-tau. (B) In
hyperexcitability states found in pathophysiological conditions such as tuberous sclerosis complex and Niemann-Pick type C disease (red), overactivation of mTOR
due to increased PTEN inhibition causes excess inhibition of autophagy, resulting in reduced clearance of tau species. Elevated levels of normal tau in turn
exacerbate epileptic activity and mTOR disinhibition. PTEN, phosphatase and tensin homolog deleted chromosome 10; mTOR, mammalian target of rapamycin;
p-tau, phosphorylated tau. Created with BioRender.com.

TABLE 1 | Characterization of seizure disorders and their links to tau pathology and tau-associated mechanisms.

Disease Age of onset Symptoms Tau pathology Relevant signaling
pathways

Potential treatment
options

Temporal lobe
epilepsy

All ages Focal seizures,
cognitive decline,
hippocampal sclerosis

↑ total tau, ↑ p-tau,
neuropil threads,
pre-tangles, NFTs

mTOR,
GSK-3β, PP2A

Rapamycin, lithium,
sodium selenate

Post-traumatic
epilepsy

Dependent on
age of trauma

Seizures, cognitive
decline

Acute: ↑ total tau, ↑
p-tau
Chronic: ↑ p-tau,
NFTs

mTOR, PP2A Rapamycin, sodium
selenate, tau
reduction

Autism Spectrum
disorder

Infancy to early
childhood

Learning disability,
anxiety and/or
depression, seizures

↑ total tau, ↑ p-tau PTEN, PI3K, mTOR,
CDK5

Rapamycin, CDK5
inhibitor, tau reduction

Dravet syndrome Infancy Refractory epilepsy,
cognitive impairment

NFTs NMDA receptor
GluN2A subunit

GNE-0273, tau
reduction

Nodding
syndrome

Childhood,
adolescence

Seizures (vertical head
nodding), cognitive and
motor disability

Pre-tangles, NFTs Unknown

Niemann pick
disease

All ages Seizure, progressive
neurodegeneration,
cognitive decline

↑ p-tau, NFTs Cholesterol, mTOR,
CDK5

Rapamycin, CDK5
inhibitor

Lafora disease Adolescence Seizures, dementia ↑ p-tau, NFTs Laforin, GLT-1
transporter, loss of
GABAergic function

Focal cortical
dysplasia IIb

Infancy to early
adulthood

Refractory epilepsy ↑ p-tau, NFTs NMDA receptor
NR2A/B subunit

CDK5 inhibitor

Tuberous
sclerosis complex

All ages Tumors, seizures,
cognitive disability

↑ p-tau mTOR, GSK-3β Rapamycin, lithium

CDK5, cyclin-dependent kinase 5; GSK-3β, glycogen synthase kinase-3β; mTOR, mammalian target of rapamycin; NFTs, neurofibrillary tangles; PI3K, phosphoinositide
3-kinase; PP2A, protein phosphatase 2A; p-tau, phosphorylated tau; PTEN, phosphatase and tensin homolog deleted chromosome 10.
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dentate gyrus suggest that tau-associated pathological changes
in relevant brain regions over time may underlie progressive
cognitive impairment seen in TLE (Prada Jardim et al., 2018).
Furthermore, the neuroprotective effects of tau ablation against
not only seizures but also cognitive deficits in animal models
of ASD and Dravet syndrome (Gheyara et al., 2014; Tai
et al., 2020) provide evidence for a role of tau in mediating
cognitive impairment in these diseases as well. Therefore, tau
pathology present in seizure disorders may exacerbate cognitive
decline resulting from epileptic states, with seizure-driven tau
hyperphosphorylation further compounding this effect with
disease progression.

CONCLUSION

As presented in this review, a mounting body of literature
has elucidated connections between tau pathology and
epilepsy disorders of diverse etiologies. The antiseizure
effect of tau ablation that can be reproduced in a variety
of seizure models indicates a significant mediating role
of endogenous tau in epileptogenesis. Given findings of
upregulated kinase and downregulated phosphatase activity
across different seizure disorders, we propose that epileptic
activity can trigger homeostatic responses whereby enzymatic
pathways disable endogenous tau by increased phosphorylation
to stabilize aberrant network hyperexcitability. Subsequent
hyperphosphorylation and accumulation of tau results from

overactivation of such mechanisms, especially with recurring
epileptic activity, and continuous epileptic states. Furthermore,
growing evidence indicates a potential contribution of tau
hyperphosphorylation to progressive cognitive decline in seizure
disorders. Though the exact degrees to which tau involvement
in seizures and cognitive decline are mediated by convergent
or divergent mechanisms in distinct diseases remains unclear,
the overlapping of tau-related cell signaling pathways and
prevalence of tau hyperphosphorylation found throughout
different types of epilepsies (Table 1) warrant continuing efforts
into understanding epilepsies from a tauopathy perspective.
Greater focus on tau in epileptic pathophysiology may yield
advances in diagnostic and prognostic tools and novel therapeutic
approaches targeting tau and tau-associated pathways.
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