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Ruijven5, Bernhard Schmid1

1 Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland, 2 Department of Zoology, University of Oxford, Oxford, United

Kingdom, 3 Department of Biology, McGill University, Montreal, Quebec, Canada, 4 Department of Forest Resources, University of Minnesota, St. Paul, Minnesota, United

States of America, 5 Nature Conservation and Plant Ecology group, Wageningen University and Research Centre, Wageningen, the Netherlands, 6 Center for Population

Analysis, Swiss Ornithological Institute, Sempach, Switzerland

Abstract

The idea that species diversity can influence ecosystem functioning has been controversial and its importance relative to
compositional effects hotly debated. Unfortunately, assessing the relative importance of different explanatory variables in
complex linear models is not simple. In this paper we assess the relative importance of species richness and species
composition in a multilevel model analysis of net aboveground biomass production in grassland biodiversity experiments
by estimating variance components for all explanatory variables. We compare the variance components using a recently
introduced graphical Bayesian ANOVA. We show that while the use of test statistics and the R2 gives contradictory
assessments, the variance components analysis reveals that species richness and composition are of roughly similar
importance for primary productivity in grassland biodiversity experiments.
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Introduction

Concern over the ongoing loss of biodiversity has prompted

ecologists to investigate the consequences for ecosystem processes

[1,2]. This biodiversity and ecosystem functioning research has

been one of the most hotly discussed topics in ecology since the mid-

1990s. Much of the research within this area has used biodiversity-

functioning experiments (biodiversity experiments for short) that

assemble communities of differing diversity and monitor the

response of different ecosystem processes (other approaches include

diversity removal experiments and observational comparative

surveys). Many of these biodiversity experiments feature replicated

manipulations of more than one aspect of biodiversity raising the

issue of how best to compare their relative importance. One

particular area of debate has been over the importance of species

richness – numbers of species - relative to other aspects of

biodiversity, particularly composition – types of species [3,4,5,6].

The terminology in this area can be confusing; to be clear, here we

use composition to mean all the different combinations (mixtures

and monocultures) of species used in a biodiversity experiment (that

is, in our analysis composition is a factor with a level for each

different combination of species). We do not examine species

identity effects, by which we mean the (binary) presence or absence

of each species across a range of mixtures.

In this paper we extend existing analyses of data from grassland

biodiversity experiments (Table 1) to derive new insights. We

compare a typical least squares mixed model ANOVA (‘‘mixed

model ANOVA’’) with a maximum likelihood mixed-effects model

(‘‘mixed-effects model’’) that treats some variables as fixed and

some as random [7,8] and a hierarchical or multilevel model

(‘‘multilevel model’’) that calculates variance components for all

variables [9]. Because mixed-effects models treat some variables as

fixed and some as random comparing the relative importance of

variables from these two different classes can be difficult, as we

explain below. In contrast, multilevel models that calculate

variance components for all variables (presented here as a

graphical ANOVA table) allow for easier assessment of their

relative importance [9,10]. Using this recently suggested ap-

proach, we analyse data on aboveground annual net primary

production (ANPP) from grassland biodiversity experiments and

show that species richness and species composition are of similar

importance for this ecosystem process.

Biodiversity experiments have typically been analyzed within

the classical least squares linear model framework that includes

regression and analysis of variance (ANOVA) as special cases

[11,12,13,14]. Table 2 presents a typical analysis of data on

aboveground biomass production from some of the major

grassland biodiversity experiments. In ANOVA tables of this type,

larger F values, with their accompanying lower P values, are often

taken as evidence for greater importance of one explanatory

variable relative to another. As we describe in the results in greater

detail, species richness has an F value of 68.3 and species
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composition an F value of 1.3, which could be taken to imply that,

on average, species richness was more important than species

composition. However, test statistics and P values are a poor

measure of relative importance of different explanatory variables

since predictors with higher F ratios (and lower P values) do not

necessarily correspond to effects with higher estimated magni-

tudes. The F value (variance ratio) for each explanatory variable is

calculated by dividing its mean square - the signal - by the

appropriate error, or noise, term. In many complex ANOVA

designs (e.g. split-plot, repeated measures), including those that

manipulate both species richness and composition, there are

multiple treatment (signal) and error (noise) terms (as implied by

the naming of multilevel or hierarchical models) and different

explanatory variables are compared to different error terms.

Therefore, in multilevel models F and P values are not useful for

comparing the importance of explanatory variables that are tested

against different error terms [9,10].

An alternative measure of the relative importance of different

explanatory variables is the increase (or decrease) in the multiple R-

square (the proportion of the total sums of squares explained by a

given variable) of a model when an explanatory variable is added (or

removed). However, this also has limitations. First, conventional

measures of R2 may not be appropriate for mixed models [9].

However, even if we ignore this problem the R2 may not be a good

indicator or relative importance of different explanatory variables. For

example, as we will discuss later, in Table 2 species richness explains 9

percent of the total sums of squares while species composition explains

41 percent. Comparison of the R2 values could be taken to imply that

species composition is more important than species richness and

therefore leads to a conclusion opposite to that given by the F and P

values. However, this fails to take into account the large disparity in

the degrees of freedom (1 for species richness when it is treated as a

continuous predictor versus 294 for species composition).

R2 also has limitations for comparing the importance of species

richness at different experimental sites since, all else being equal,

R2 is positively related to the range of continuous explanatory

variables [9]. In other words, all else being equal, experiments with

a wider range of species richness will have higher R2s.

Variance components are a better quantity for comparing the

relative importance of different explanatory variables [10,15,16].

Each variance (mean square) in an ANOVA table is made up of

variation from different sources - the variance components. There

is one special case where the variance and the variance component

are equal, and that is for the residual mean square at the bottom of

the ANOVA table. As we move up the ANOVA table the other

mean squares are made up of this residual variance component

plus one or more additional (or added) variance components. We

illustrate this with regard to this example below but first detail

several problems that must be overcome in order to get variance

components for all explanatory variables.

Within the mixed-effects model framework, variance compo-

nents are calculated only for random effects and not for fixed

effects. This is an issue of interpretation, not calculation

[17,18,19]: the variance component for a random effect is the

variation estimated for the entire population of possible levels of

the random effect (the so-called super population) whereas a

variance component calculated for a fixed effect would reflect only

the variation in the sample of levels used in that particular analysis

(the so-called finite population) which may not extend to

alternative versions of the design that use other levels of the fixed

factor. However, the calculation of variance components for fixed

and random effects would be identical, despite this difference in

interpretation [18,19]. This lack of variance components for fixed

effects in mixed-effects models obviously means that they cannot

be used to compare the importance of fixed and random effects.

There are no watertight definitions of fixed and random effects

[9,20] but the basic idea can be illustrated by contrasting

experimental treatments with blocking variables [21]. Fixed effects

are easier to explain since least squares analysis mostly treats

variables as fixed (indeed random effects were not distinguished

Table 1. Summary of the relevant design details for the subsets of compatible data analysed from the grassland biodiversity
experiments that replicated both species richness and composition (ordered by increasing aboveground annual net biomass
production, ANPP).

Experimental Site ANPP Diversity Compositions Blocks Plots Year

Wageningen 149.9 1,8 9 6 54 3

BIODEPTH Portugal 200.2 1,2,4,8,14 27 1 56 2

BioCON 227.0 1,4,16 21 3 56 3

BIODEPTH Greece 232.4 1,2,4,8,18 26 2 52 2

BIODEPTH Sweden 255.7 1,2,4,8,12 28 2 58 2

Jena 453.4 1,2,4,8,16 78 4 156 2

BIODEPTH Switzerland 500.8 1,2,4,8,32 32 2 64 2

BIODEPTH Sheffield 528.8 1,2,4,8,12 26 2 54 2

BIODEPTH Silwood 564.1 1,2,4,8,11 33 2 66 2

BioGEN 621.5 1,4 16 1 32 2

BIODEPTH Ireland 630.7 1,2,3,4,8, 33 2 70 2

BIODEPTH Bayreuth 681.6 1,2,4,8,16 30 2 60 2

Total 359 (308 crossed) 29 778

The subsets of the species richness gradients used are given by ‘Diversity’ and the number of species compositions (monocultures or polycultures) in each experiment
by ‘Compositions’. For comparability we used data from the earlier stages of each experiment (year 2 or 3). Numbers of compositions for each experiment ignore
duplication of species mixtures with other experiments but the row titled Total gives the number of compositions ignoring duplicates and discounting duplicates (in
parentheses). The version of the variable with 308 levels was used in all analyses, resulting in partially crossed random effects for experimental sites and species
composition in the mixed-effects model.
doi:10.1371/journal.pone.0017434.t001

Grassland Productivity in Biodiversity Experiments
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until more than 20 years after the birth of ANOVA [22]) and so

they are familiar to all analysts as classical treatment variables. In

contrast, we can consider the levels of a random effect to be a

sample representative of the entire (super) population – of blocks

for example. In mixed-effects models the individual values of the

levels of a random factor are typically of less interest than

quantifying the overall level of variation, although their individual

values - the so-called Best Linear Unbiased Predictions (BLUPs) -

can be examined. Blocking terms are a common example of

random effects where we might be more interested in the

estimated magnitude of the block-to-block variability than in the

predictions for particular blocks.

Within the least squares framework, the variance components

can be calculated from the means squares in an ANOVA table but

only unambiguously for balanced designs. This is a major

limitation of the least squares framework for analyses of this type.

For unbalanced designs statisticians recommend estimating

variance components using maximum likelihood methods. To

make matters worse, even for least squares analyses of balanced

datasets there is disagreement over the appropriate error term for

use in tests for interactions between fixed and random effects, what

Nelder [18,19] called the ‘‘great mixed-model muddle’’. Even for

simple two-factor designs, there are two main schools of thought

on how to do the testing plus some additional alternative points of

view [23] that we explain briefly in the methods. We mention this

because one advantage of maximum likelihood mixed-effects

models is that there appears to be greater agreement regarding

statistical testing [24]. Maximum likelihood mixed-effects models

also have several other advantages over the classical least squares

approach regarding better handling of missing values, parameter

estimation and prediction [9]. Confusingly, modern mixed-effects

models can be fitted using either standard maximum likelihood or

restricted (reduced/residual) maximum likelihood (REML), an

extension developed specifically for analyses with both fixed and

random effects [20,25].

While modern mixed-effects models can estimate variance

components for unbalanced datasets, we are still left with the

limitation that they are only calculated for the random effects due

to the problems of interpretation explained above. This is a

particular problem for the analysis of biodiversity experiments

since species composition is usually treated as a random effect and

species richness a fixed effect. Species composition is usually best

treated as a random effect because replicate species compositions

are usually only a small sample of all the possible combinations. In

contrast, the species richness treatment is always treated as a fixed

effect because its levels are deliberately selected (fixed) and form a

larger fraction of the total range of possibilities. Because mixed-

effects software generally does not calculate variance components

for fixed effects there is no estimate for species richness that can be

compared with that for species composition.

The solution suggested by Gelman [10] based on earlier ideas

[17,18,19,26] is straight-forward: we can simply calculate variance

components for all variables (and interactions). This is generally

not done in mixed-effects models because of the problem of

interpretation: the variance components are always estimates for

the super population and while this is appropriate for random

effects it is generally thought of as inappropriate for fixed effects.

To avoid this, Gelman’s approach instead calculates finite-

population variance components in all cases. The finite- and

super-population variance components should have similar point

estimates but the super-population estimates will have greater

uncertainty, especially for variance components with few degrees

of freedom. In other words, the intervals for the super population

will be wider than for the finite population. Variance components

can be presented on the variance (squared) scale but, for easier

comparison with the point estimates, are often presented instead as

standard deviations (the square-roots of the variance components)

[8,9]. For easy visual comparison we present the variance

components on the standard deviation scale (the square roots of

the variance components) with intervals following Gelman’s

graphical analogue of the classical ANOVA table. We can use

the intervals to visually assess whether a variance component of

zero is consistent with the data (note that the method does not

allow estimates of exactly zero so that the intervals can only

approach zero but not actually contain it). A similar analysis could

be attempted by specifying all variables as random within a mixed-

effects model with the caveat that the variance components are

then the super population estimates and interpretation becomes

more complex as explained above [27]. Gelman [9,10] instead

uses WinBUGS [28,29,30], one of the family of BUGS software

(Bayesian inference Using Gibbs Sampling). In the literature,

multilevel models include mixed-effects models, but to distinguish

Table 2. A typical least squares mixed-model ANOVA table of net annual aboveground biomass production in grassland
biodiversity experiments.

Explanatory variable DF Sum of Squares Mean Squares F ratio P ($ F) Error R2 (%)

Experiment (E) 11 23053686 2095790 83.7 1.46610212 B 34

Block (B) 17 425869 25051 1.6 0.057 P 1

Species Richness (R) 1 6413444 6413444 68.3 4.88610215 C 9

Species Composition (C) 294 27608931 93908 1.3 0.144 E.C 41

Experiment*Richness (E.R) 11 1601422 145584 2.1 0.049 E.C 2

Experiment*Composition (E.C) 39 2762484 70833 4.6 1.59610215 P 4

Residual (plots) error (P) 387 5986016 15468 9

Total 760 67851852 100

Species richness (continuous, log2 scale) is the only fixed effect. The R2 - the percentage of the total sum of squares explained by each row of the table - is a limited
measure of relative importance because it does not account for the large differences in degrees of freedom (DF). F or P values do not indicate relative importance
because different explanatory variables are tested against different error terms (column 7): (1) Experiment (random) is tested against block; (2) Block (random) against
the overall (between plot) residual error; (3) Species richness (fixed) against species composition; (4) Experiment*Richness (random) against Experiment*Composition;
(5) Species composition (random) against its interaction with experiment; (6) Experiment*Composition (random) against the overall (between plot) residual error
(following Hector et al. 1999 and Spehn et al. 2005).
doi:10.1371/journal.pone.0017434.t002

Grassland Productivity in Biodiversity Experiments
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the two in this paper we use mixed-effects to refer to analyses

containing both fixed and random effects (implemented using the

R lmer function) and multilevel models to refer to our application

of Gelman’s approach – implemented using WinBUGS - that

calculates variance components for all variables).

We applied the approach suggested by Gelman [9,10] to data

on aboveground annual net primary production from grassland

biodiversity experiments that replicated both species richness and

composition as part of their design (the eight BIODEPTH project

sites, the Jena Biodiversity Experiment, the Wageningen Biodi-

versity Experiment, the BioGEN experiment and the BioCON

experiment; Table 1). To perform the analysis we used WinBUGS

linked to R 2.8.1 [31] via the R2winBUGS package [32] (Text S1).

We analysed annual net primary production using a multilevel

model containing explanatory variables for experimental sites (12

levels), blocks within experimental sites (29 levels), experimental

communities with different species compositions (359 levels

reduced to 308 after eliminating duplicate compositions at

multiple sites), the diversity gradient at each experimental sites

(11 points on a diversity gradient that is treated as a continuous

replicated regression on the log2 scale) and the residual differences

between plots (778 plots in total). Details of the experiments are

given in Table 1 and the diversity gradients displayed in Figure 1.

In the following results section, we begin by first considering the

results of the traditional ANOVA (Table 2), where the focus is on

null hypothesis significance testing, before comparing and

contrasting the results with the mixed-effects and multilevel model

output that is focused more on estimation of the magnitude of the

effects.

Results

The least squares mixed-model ANOVA is summarized in

Table 2 and the regression slopes from it are presented in Fig. 1

with their 95% confidence intervals and the observed above-

ground ANPP of each plot. The slopes show a similar range of

responses to previous comparative analyses in ranging from

indistinguishable from zero to significantly positive with no

negative slopes observed. Both the experiment-by-richness (vari-

ation in slopes) and the experiment-by-composition interactions

are significant, suggesting that richness and composition are

important but that the effects of both differ between experiments.

Blocks have a much weaker effect that is not quite significant even

with this large dataset. Closer examination of Table 2 confirms

that because richness and composition are tested against different

error terms their F and P values are of little use for comparing

Figure 1. Regression slopes from the least squares mixed-model ANOVA. The response of aboveground annual net primary productivity to
manipulations of species richness in each of the 12 grassland biodiversity experiments showing data for individual plots and fixed effects regression
slopes fitted for each experiment with their 95% confidence intervals.
doi:10.1371/journal.pone.0017434.g001
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their relative importance. Similarly, Table 2 displays the big

differences in degrees of freedom that (together with the multilevel

nature of the analysis) also make the R2 values of limited use for

comparing relative importance.

Figure 2 illustrates some of the results from the mixed-effects

model and some of the important differences from the least

squares ANOVA. The regression slopes are the so-called Best

Linear Unbiased Predictors (BLUPs) predicted by the mixed-

effects model for each site [20]. The slopes are similar to those in

Figure 1 but close inspection shows ‘shrinkage’ of the individual

slopes towards the overall mean response (e.g. a slightly steeper

slope in Greece). This occurs because the slope predicted for each

site is a compromise (weighted average) of the value estimated for

each site (as in Figure 1) and the overall average slope. Rather than

display the individual plot values again as in Figure 1, Figure 2

displays the mean biomass predicted for each species composition

together with their SEMs. Due to the separation of variables into

fixed and random the summary of the analysis shown in Table 3 is

split into two parts. The upper fixed-effects section reports the

effects of (only) species richness in a manner similar to a classical

ANOVA table (e.g. Table 2) except the R lmer function currently

does not report a P value due to the difficulties in calculating them

for mixed-effects models - although various methods are available

for obtaining an approximate P value [33,34]. The lower section

for the random effects reports the variance components on the

variance and standard deviation scales (the SDs are simply the

square roots of the variance components) together with likelihood

ratio tests of the change in deviance on removing each random

effect in sequence from the full model. The estimates of the

variance components can be used to compare the relative

importance of the random effects but not for the fixed effect of

species richness – hence the motivation for the multilevel model

analysis that estimates variance components for all explanatory

variables. For now, as well as noting the lack of a variance

components for the fixed effects, also recall that the variance

components are the super population estimates.

Finally, Figure 3 presents the results of multilevel model

analysis. Since the motivation for the analysis is to compare the

importance of species richness with species composition the point

estimates of the variance components with 95 and 68% credible

intervals (the Bayesian counterpart of confidence intervals [10])

are presented with more comprehensive output from the analysis

given in Table 4. Before using the new method to compare the

relative importance of species richness and composition it seems

Figure 2. Regression slopes from the maximum likelihood mixed-effects model. The response of aboveground annual net primary
productivity to manipulations of species richness in each of the 12 grassland biodiversity experiments showing average biomass for each species
composition with their SEMs plus the overall average slope in red and the slope predicted for each site in black (with shrinkage) from the mixed-
effects model.
doi:10.1371/journal.pone.0017434.g002
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prudent to compare the results of the tests performed by the

different methods. We have already seen that, despite some

differences in the details, the least squares ANOVA and maximum

likelihood mixed-effects model are qualitatively in agreement.

Rows in the least squares ANOVA table (Table 2) and the fixed-

effects summary of the mixed-effects model (Table 3, top) that

contain non-significant F tests should correspond to estimates in

the graphical ANOVA table (Figure 2) that are indistinguishable

from zero. For our dataset, inferences based on the point estimates

and intervals from the multilevel model (Figure 3) generally agree

with those based on the least square ANOVA and mixed-effects

model (Tables 2 and 3). The experiment-by-richness and the

experiment-by-composition interactions are again significant (zero

is well outside the confidence intervals) confirming that species

richness and composition are important but that both vary among

experiments. If, to compare the methods in greater detail, we

progress to examining the main effects we can see that species

richness is clearly significant in both approaches. The single

exception is the main effect of the species composition that is

judged significant in the graphical comparison of variance

components and the likelihood ratio test of the random effect in

the mixed-effects models but not by the F test in the conventional

ANOVA table. However, in general tests of significance using the

three different methods are in agreement, so we proceed to the

main goal of comparing the relative importance of variables in the

graphical Bayesian ANOVA table using the estimates of the

variance components (on the standard deviation scale) from the

multilevel model.

Using the estimation based approach we can immediately get a

better sense of the relative importance of the different explanatory

variables than is possible from a conventional ANOVA table or

mixed-effects model. The variance components for species

richness and composition and their interactions with experiment

are all of a roughly similar magnitude, and of similar size to the

Table 3. Summary of the maximum likelihood mixed-effects model analysis reporting fixed- and random-effects separately.

Fixed effects DF SS MS F

Species richness 1 441915 441915 28.6

Random effects Variance component % SD logLikelihood Chi2 P ($ Chi2)

Experiment 21248.4 28 145.8 5087.5 260.1 ,0.0001

Block 357.2 1 18.9 5217.8 1.9e25 0.9966

Species composition 13951.9 18 118.1 5217.8 198.5 ,0.0001

Experiment x Richness 1151.3 2 33.9 5118.5 20.6 ,0.0001

Experiment x Composition 23751.5 31 154.115 5228.1 62.0 ,0.0001

Residuals 15456.2 20 124.3

The fixed effects are reported following the conventions of least squares ANOVA (e.g. Table 2). The R lmer function currently does not give P values due to the
difficulties of calculating them for mixed-effects models. The random effects section reports the super-population variance components on the variance and standard
deviation scales (the SD is simply the square root of the variance component) with likelihood ratio tests of the change in deviance on removing each random effect from
the model in turn. Each variance component is expressed as a percentage of the summed total for all 6 six random effects (lower column 3: ‘%’).
doi:10.1371/journal.pone.0017434.t003

Figure 3. Variance components from the multilevel model analysis using BUGS presented as a graphical ANOVA table. Point
estimates (standard deviation scale) are medians of the posterior distributions produced by Gibbs sampling using WinBUGS with 95% (wide) and 68%
(narrow) intervals.
doi:10.1371/journal.pone.0017434.g003
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unexplained variation. Only blocks stand out as relatively

unimportant. The interaction of experiment with species richness

is slightly smaller than the interaction of experiment with species

composition suggesting the former is slightly more consistent (this

effect was more pronounced in an earlier analysis before the final

BioGEN dataset was added). In general, given the observed level

of uncertainty, species richness and species composition (and

experimental site too) are of similar importance for productivity in

grassland biodiversity experiments.

Discussion

The idea that losses of species richness could have negative

impacts on ecosystem functioning initially met with a lot of

resistance; in particular effects of richness were predicted to be

minor compared to compositional effects [3,4,5,35]. In this paper

we present a new analysis of data on net aboveground biomass

production in some of the major grassland biodiversity experi-

ments that replicated both species richness and species composi-

tion, using a recently suggested application of multilevel model

analysis to compare the explanatory variables in terms of their

variance components. Counter to earlier predictions - and to

unreliable impressions given by test statistics and the conventional

R2 - the numbers and types of species present in experimental

grassland communities are of roughly similar importance for

aboveground productivity.

The analysis presented here compares the importance of species

richness with that of species composition, that is the overall

variation between the different species compositions used (i.e. the

differences between all monocultures and polycultures). Our

analysis is therefore limited to studies (sometimes subsets of the

full data from each experiment) that replicated both species

richness and composition. The comparison of species richness and

composition is particularly problematical because species richness

is a simple predictor with few degrees of freedom (1 when treated

continuously) while species composition has many (294 here!) and

so the variance components approach is particularly useful.

Many researchers interested in the effects of biodiversity on

ecosystems focus on aspects of functional diversity including

functional group richness (numbers of functional groups),

functional composition (combinations of functional groups) and

continuous measures of functional trait diversity [36,37]. Com-

paring species richness with functional richness is less problemat-

ical when the degrees of freedom are the same and this has been

done several times in the literature [38,39,40,41,42]. It was not

possible to perform a combined analysis of functional diversity

here as the 12 studies differ in this aspect of their designs and

employ four different functional group classifications (for example,

one of the eleven studies distinguishes species with the C3 or C4

photosynthetic systems, while another distinguishes short and tall

herbs). Furthermore, the functional group effect would also be

partially confounded with experiment since the Wageningen

biodiversity experiment deliberately omitted all legume species to

see whether biodiversity effects disappeared in their absence (they

do not).

As explained above, one drawback of least squares mixed model

ANOVA is its focus on null hypothesis significance testing and the

associated difficulty in identifying the appropriate error terms,

even for simpler examples than the relatively complex analysis

presented here. One advantage of the Bayesian graphical ANOVA

approach is that, by emphasizing estimation over testing, it

sidesteps this ‘great mixed-model muddle’ – indeed, it does not

require the analyst to specify error terms at all. Instead, inferences

can be based upon the point estimates and intervals. In this

analysis, the graphical comparison of variance components from

the multilevel model (and the tests performed in the mixed-effects

model analysis) support all of the conventional ANOVA tests

except the one for the species composition main effect, questioning

the assignment of the error term in this case. The point is moot in

this case because the significant experiment-by-composition

interaction term indicates the importance (albeit somewhat

variable across experiments) of species composition but it

illustrates how the automatic estimation-based testing possible

with the graphical comparison of variance components might be a

useful cross-check in the difficult assignment of error terms in the

context of the ‘great mixed-model muddle’.

One point of discussion regarding statistical inference raised by

the comparison between the mixed-effects and multilevel model is

over the appropriate scale on which to compare the variance

components. Mixed-effects analysis generally compares the

variance components for the random effects as estimated on the

variance scale, expressing each variance component as a

percentage of the summed total [e.g.16,43]. Some leading

statisticians have even suggested that variance components

calculated on the variance (squared) scale should be presented

graphically as two dimensional areas rather than as a point

estimates [26], in which case presenting variance components on

the SD scale as point estimates with intervals seems appropriate. In

contrast, the new graphical Bayesian ANOVA approach applied

here compares the variance components as estimated on the

Table 4. Summary of the BUGS output for the multilevel model analysis.

Explanatory variable
Variance component
(%) [SD scale] SE 2.5% 16.0% 84.0% 97.5%

Experiment 96.5 (15) 19.1 59.4 77.1 115.3 136.0

Block 26.0 (4) 7.5 12.6 18.7 33.5 41.6

Species richness 111.2 (17) 11.3 88.2 100.3 121.4 133.5

Species composition 114.2 (18) 4.0 106.9 110.1 118.0 122.3

Experiment*Richness 80.3 (12) 11.6 57.3 68.6 92.1 103.0

Experiment*Composition 101.1 (16) 1.4 98.5 99.7 102.5 103.7

Residuals 116.5 (18) 1.7 113.2 114.8 118.3 119.8

Variance components are calculated as finite-population Standard Deviations and the percent contribution of each to the total are used as a rough measure of their
relative importance. Column 3 gives the Standard Errors (SE) of the variance component estimates on the SD scale (given in column 2). The 2.5 and 97.5% quantiles are
the upper and lower bounds of the 95% CI (Credible Interval) and the 16 and 84% values of a 68% CI (equivalent to 61 SEM with symmetric normal distributions).
doi:10.1371/journal.pone.0017434.t004
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standard deviation scale. Obviously, differences between the point

estimates of variance components with larger and smaller effects

will appear more pronounced on the variance scale than on the

standard deviation scale (although obviously the upper and lower

bounds of their intervals on the variance scale will be the square of

those on the standard deviation scale too). So far as we can

ascertain from the literature there seems to be no clear-cut

argument in favour of one scale over the other but focusing on the

standard deviation scale seems to be a recent trend even in the

mixed-effects models literature [8]. It is also important to keep in

mind that the variance components in the mixed-effects models

are super-population estimates for the random effects only while

the multilevel model analysis produces finite-population estimates

for all explanatory variables.

Bayesian methods are increasingly recommended for use in

statistical analysis in many areas of science including ecology

[44,45,46,47,48]. However, they are both less widely understood

than classical least squares methods and controversial [49,50,51].

The BUGS analysis presented here is Bayesian in that it uses

Gibbs sampling to calculate posterior distributions. It is also

Bayesian in treating all predictors as random variables described

by a prior distribution. However, it is not Bayesian in the fullest

sense of using informative prior values for the distributions of the

random variables. Furthermore, while this approach is Bayesian in

the ways described above, it is also more general in the sense that it

is partly descended from similar ideas developed within the least

squares and maximum likelihood frameworks [17,18,19,26].

The use of variance components to assess the importance of

different explanatory variables is not new, even in ecology [15,52].

Indeed, even the graphical Bayesian ANOVA employed here has

been used once before in ecology [53]. The new contribution of

this paper is in using this methodology to reveal that, counter to

earlier predictions, species richness and composition are of similar

importance for primary production in grassland biodiversity

experiments.

Materials and Methods

Experimental Design
We analyse compatible subsets of data from the grassland

biodiversity field experiments that replicated species richness and

composition as part of their designs. The conditions for inclusion

were a species richness gradient with a minimum of two diversity

levels that was composed of species composition (polycultures and

monocultures) that were also replicated in a minimum of two plots.

Since two of the 12 studies had only two levels of diversity where

species composition was also replicated (Wageningen, 1 and 8

species; BioGEN, 1 and 4 species) we restricted the model to fitting

simple linear regressions only (the linear regression with species

richness on a log2 scale approach that has proved appropriate for

the analysis of many biodiversity experiments). While the level of

compositional replication is sometimes low with regard to

estimating the effects of a particular species composition our focus

here is on estimating the overall variability across all species com-

positions, that is, the variance component for species composition.

The eleven datasets combined for analysis here are the eight

BIODEPTH experiments (Spehn et al. 2005), the Jena Biodiver-

sity Experiment [54,55], the Wageningen Biodiversity Experiment

[56,57,58,59,60] the Cedar Creek BioCON experiment [42,61,62]

and the BioGEN experiment [63]. The dataset is available online

as supplementary material (Text S2). We analyze the response of

aboveground ANPP (g m22 year21) of individual plots at each of

the 12 experimental sites. Details of the experimental designs are

given in Table 1 and the supporting citations.

Analysis
We employed three related analyses: a least squares mixed-model

ANOVA, a maximum likelihood mixed-effects analysis and a

Bayesian multilevel (or hierarchical) model using Gibbs Sampling

(MCMC). As the multilevel model is the newest and least familiar

we focus on that and to avoid repetition the model underlying all

three approaches is explained only once in the section on the

multilevel model (except for approach-specific differences given in

the paragraphs on each method). The supplementary R script

implements all three methods using R and WinBUGS (Text S1).
Least squares ANOVA. Although the least squares ANOVA

can be referred to as a mixed model, the only difference from an

entirely fixed-effects ANOVA is in the assignment of the error terms

for the F tests. However, as explained in the main text, one major

limitation of mixed-model ANOVA is the difficultly involved in

specifying these error terms. In particular, there are two alternative

schools of thought that are usually explained with regard to a simple

mixed model with one fixed factor, one random factor, the (random)

interaction term and an overall residual error. Both approaches test

the fixed effect against the interaction. The disagreement comes

over testing the main effect of the random factor. The so-called

constrained approach tests the main effect of a random factor

against the overall residual while the unconstrained approach uses

the interaction [23]. In biodiversity experiment the principle interest

is usually in species richness (or a similar measure of diversity). This

debate does not affect the inference for species richness effects since

both approaches test the fixed effect against its interaction with the

random factor (experiments). The interaction is tested against the

overall residual (note that alternative tests against other interactions

produce the same qualitative results for the data analysed here).
Mixed-Effects Model Analysis. One advantage of mixed-

effects models is that there is greater agreement over how to test

the random main effect: so far as we are aware, all MEM software

produces results consistent with the unconstrained approach [24].

Our analysis has species richness as the only fixed-effect with all

other explanatory variables and interactions (see below) treated as

random effects. We used restricted maximum likelihood (REML)

as opposed to standard maximum likelihood.
Bayesian Multilevel Model Analysis. We implemented the

multilevel model analysis using the WinBUGS version of the

BUGS family of statistical software based on similar earlier

analyses [9,53,64]. BUGS stands for Bayesian inference Using

Gibbs Sampling, a type of Markov chain Monte Carlo (MCMC)

[28,29,30]. MCMC is sometimes simply described as a random

walk in parameter space: parameter values are randomly varied

and the likelihood estimated to build up a (posterior) distribution

from which point estimates (the mean or median) and credible

intervals (the appropriate quantiles) are derived.

The spatial blocking structure of our analysis consisted of plots

nested within blocks and experimental sites. The two treatments,

species richness and species composition, were applied at the plot

level. When the same species (monoculture) or combination of species

(polyculture) occurred at more than one site they were assigned the

same code (that is, a mixtures of species A and B would be assigned

the same numerical code regardless of experimental site). We also

fitted the interactions between experimental site and species richness

and between experimental site and species composition. Specifically,

we modeled the response yi measured in plot i as follows:

yi *mizei, with ei *Normal(0,s2
P) ð1Þ

Hence, we assumed that the response in plot i was normally

distributed about a mean of mi with plot-specific deviations ei. As
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usual, we assumed that the variability of these residuals ei could be

described by a zero-mean normal distribution with residual

variance s2
P. We assumed further that the plot-specific mean mi

was made up of additive contributions (main effects) of

experimental sites, block, species richness (log2 transformed) and

species composition as well as of the interactions between

experimental site and species richness and between experimental

site and species composition:

mi~b0zb1
j(i)zb2

k(i)zb3
r(i)zb4

s(i)zb5
j(i),r(i)zb6

j(i),s(i): ð2Þ

Here, the expected yield mi at plot i consisted of a grand mean

b0 plus additive contributions b1
j(i) of experimental sites j

(j~1 . . . 11), b2
k(i) of block k (k~1 . . . 28), b3

r(i) of species richness

r (continuous, log2 transformed), b4
s(i) of species composition level

(s = 1…294), b5
j(i),r(i) of the interaction between experimental sites j

and species richness level r, and b6
j(i),s(i) of the interaction between

experimental sites j and the species composition level s.

To make sources of variation comparable, we followed Gelman

(2005) and assumed that all six sets of effects were drawn from

separate, independent, zero-mean normal distributions:

b1
j(i) *Normal(0,s2

S) ð3Þ

b2
k(i) *Normal(0,s2

B) ð4Þ

b3
r(i) *Normal(0,s2

SR) ð5Þ

b4
s(i) *Normal(0,s2

SC) ð6Þ

b5
j(i),r(i) *Normal(0,s2

S:SR) ð7Þ

b6
j(i),s(i) *Normal(0,s2

S:SC) ð8Þ

Hence, we estimated variance components for experimental

sites (s2
S), blocks within experimental sites (s2

B), species richness

(s2
SR), species composition (s2

SC) and for the interactions between

experimental sites and species richness (s2
S:SR) and experimental

sites and species composition (s2
S:SC), respectively.

As explained in the main text, Gelman [10] argues that for a

description of the variance decomposition for all variables in a

dataset, the finite-population variances s2
m (the squared standard

deviations of the factor level effects bm of a categorical explanatory

variable m) may be preferable to the super-population variances

s2
m. Hence, we based our inference about the magnitude of the

effects of a factor on the finite-population standard deviation of the

factor level effects, sm, shown in Figure 3.

The model described in eq. 1–8 can be fitted using least squares,

maximum likelihood or Bayesian statistical methods. In the

supplementary material we present a script for implementing all

three approaches using R and WinBUGS (Text S1). With the

Bayesian approach inference in random-effects models is exact,

whereas in frequentist analyses (e.g. with the R function lmer in

the lme4 package) it is only approximate and understates the

uncertainty in the estimates because of the use of only point

estimates for the variance components [9]. We ran WinBUGS

[28,29] from R using the R2WinBUGS package [32] to fit our

model using conventional Markov chain Monte Carlo (MCMC)

simulation techniques. To introduce minimal prior information,

we used conventional vague priors for all parameters (see

supplementary R script), which typically yields values close to

the maximum likelihood estimates [48].

We ran three independent Markov chains for 100,000

iterations, discarded the first 5,000 iterations as a burn-in period

(i.e. when the outputs are still affected by the choice of the

arbitrary starting points of the chains and hence unrepresentative

of the target posterior distribution), and thinned the remainder by

1 in 200. From each Markov chain this yielded a sample of 475

random draws from the posterior distribution. Values of the

Brooks-Gelman-Rubin statistic, R
^

, of less than 1.1 for all

parameters suggested that the chains had reached convergence.

Supporting Information

Text S1

(DOC)

Text S2

(TXT)
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