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Abstract
Current acute pain intensity assessment tools are mainly based on self-reporting by patients, which is impractical for non-
communicative, sedated or critically ill patients. In previous studies, various physiological signals have been observed 
qualitatively as a potential pain intensity index. On the basis of that, this study aims at developing a continuous pain moni-
toring method with the classification of multiple physiological parameters. Heart rate (HR), breath rate (BR), galvanic skin 
response (GSR) and facial surface electromyogram were collected from 30 healthy volunteers under thermal and electrical 
pain stimuli. The collected samples were labelled as no pain, mild pain or moderate/severe pain based on a self-reported 
visual analogue scale. The patterns of these three classes were first observed from the distribution of the 13 processed 
physiological parameters. Then, artificial neural network classifiers were trained, validated and tested with the physiological 
parameters. The average classification accuracy was 70.6%. The same method was applied to the medians of each class in 
each test and accuracy was improved to 83.3%. With facial electromyogram, the adaptivity of this method to a new subject 
was improved as the recognition accuracy of moderate/severe pain in leave-one-subject-out cross-validation was promoted 
from 74.9 ± 21.0 to 76.3 ± 18.1%. Among healthy volunteers, GSR, HR and BR were better correlated to pain intensity vari-
ations than facial muscle activities. The classification of multiple accessible physiological parameters can potentially provide 
a way to differentiate among no, mild and moderate/severe acute experimental pain.

Keywords  Acute pain intensity monitoring · Physiological parameters · Facial surface electromyogram · Artificial neural 
network

1  Introduction

In acute pain management, the presence and intensity of 
pain are evaluated for decisions on intervention. Current 
pain intensity evaluation relies on patient self-reporting with 
tools like the visual analogue scale (VAS) and numerical 
rating scale. These one-dimensional assessment tools are 
considered powerful in acute pain assessment but require 
interactive communication between patient and caregiver, 
which is difficult for patients with limited communication 
capability [1]. Various physiological signals have been 
observed as potential pain intensity indicators, including 
heart rate (HR), heart rate variability, breath rate (BR), 
galvanic skin response (GSR) and photoplethysmographic 
pulse wave amplitude [2–10]. These parameters are easy to 
access in routine monitoring or with apparatus of a small 
size. However, there is unconformity in existing studies with 
different acute pain stimuli and subject groups in terms of 
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the feasibility and superiority of each physiological param-
eter. Moreover, the variation of a sole physiological param-
eter is not specific to nociception, which is also influenced 
by other factors such as different physiological and psy-
chological conditions, measurement and anesthesia [11]. A 
comprehensive index combined with multiple parameters 
analysis may lead to better pain intensity prediction than an 
individual parameter as more than one intensity category 
has the potential to be differentiated with comprehensive 
decision support information [12–15].

In addition to the above-mentioned physiological signs, 
the impact of facial expressions on pain intensity assessment 
is important. Facial expressions of pain can act as a behav-
ioural source of evidence to mirror self-report ratings [16]. 
Ekman and Friesen [17] have decoded spontaneous facial 
expressions into the movements of individual facial mus-
cles with a Facial Action Coding System (FACS). Through 
FACS, high accuracy in binary pain expression classifica-
tion (pain versus no pain) can be reached [17, 18]. As to 
fine-sorted pain intensity levels, Prkachin and Solomon’s 
pain intensity (PSPI) scale is defined according to four facial 
actions (brow lowering, orbital tightening, levator contrac-
tion and eye closure) and is the sum of these four actions’ 
intensities [17–20]. With the help of computer vision algo-
rithms and machine learning methods, automatic pain moni-
toring [21, 22] and continuous pain intensity estimation [22, 
23] have been explored. However, from the perspective of 
practical use, the correspondence between the PSPI scale 
and VAS has not been clearly established, and from the per-
spective of reliability, the performance in existing studies is 
barely satisfactory.

To develop a continuous pain monitoring method from 
multiple physiological parameters with machine learning, 
HR, BR, GSR and facial surface electromyogram (sEMG) 
were monitored from healthy volunteers under experimental 
pain stimulus. Facial expressions were captured from sEMG 
of the skin above five pain expression-related facial muscles 
[24]: corrugator supercilii, orbicularis oculi, levator labii 
superiors, zygomaticus major and risorius. Two types of 
experimental pain stimuli, thermal stimuli (heat) and elec-
trical stimuli, were employed on both the right and left sides 
of the body in the study to cover more than one dimension of 
pain perceptions [25]. Three pain intensity levels—no pain, 
mild pain, and moderate/severe pain—were collected from 
self-reports with VAS and were defined as three categories 
in classification.

2 � Methods

The study was approved by the Ethics Committee of the Hos-
pital District of Southwest Finland (ETMK:83/1801/2015).

2.1 � Study protocol

2.1.1 � Subjects and exclusion criteria

The study subjects were recruited by inviting generally 
healthy, voluntary working-age people. Each study subject 
provided a written informed consent. Thirty volunteers 
with no chronic or acute somatic or mental illness, taking 
no regular medication during the study or 2 weeks preced-
ing it were included in the study. All the study subjects had 
normal cardiovascular parameter limits, normal sensation 
and healthy skin in the face and upper extremities. Preg-
nant subjects or subjects with a body mass index > 30 kg/
m2 were excluded from the study.

2.1.2 � Experimental pain stimuli

Slow heating (< 1℃/s) was chosen as a pain model. Heat-
ing the skin first activates the A-delta fibres and then the 
C-fibres, causing two types of pain. Slow heating mainly 
activates the C-fibres, causing longer pain stimuli which 
are less localized than with rapid heating [26]. The ther-
mal pain was induced with a small heating element placed 
on the study subject’s inner forearm. The heating element 
was of a round shape with a diameter of 3 cm (shown in 
Fig. 1) and its temperature was controlled to increase 1 °C 
every 3 s up to 45 °C and every five seconds after that. The 
heating process stopped when reaching 52 °C to avoid skin 
burn and the temperature of the heating element then rose 
to 54 or 55 °C before cooling down. The heating element 
was detached from the skin surface of forearm immedi-
ately when the study subject reported an intolerable sensa-
tion. In the case that no intolerable sensation was reported 
during the temperature increment, the heating element was 
removed when reaching its maximum temperature. A cold 
pad was placed on the heated spot after each thermal pain 
test. The second pain stimulus was electrical stimulation 
[27]. This model was chosen because pain is only pre-
sent during the stimulation. The electrical stimulus was 
induced on the fingertip of the ring finger with a transcu-
taneous electrical nerve stimulation (TENS). TENS is the 
use of an electrical neurostimulation in physical therapy 
and TENS device is available on the commercial market. 
The electrical stimulus is non-invasive and can be stand-
ardized. In the study, the electrical pulses from a Sanitas 
SEM 43- Digital EMS/TENS device were set at a width of 
250 µs and repeated 100 times per second. TENS output 
has 50 intensity levels with a 200 milliampere maximum 
peak-to-peak current output when the load resistance is 
500 ohms. The intensity of electrical pulses was controlled 
to increase level by level every three seconds until either 
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the study subject could not tolerate the pain anymore or it 
reached the maximum level of 50.

2.1.3 � Biopotential measurement

Physiological signals including HR, BR, GSR and five facial 
sEMG from the right side of the face were continuously 
recorded throughout the session. Figure 1 showed a brief 
description of the measurement environment, where GSR 
was captured from pre-gelled Ag/AgCl electrodes on the 
finger, five channels sEMG were captured from electrodes 
in the same type on corrugator supercilii, orbicularis oculi, 
levator labii superiors, zygomaticus major and risorius on 
the face, and HR and BR were from a Bioharness® belt 
worn on chest. HR, BR and GSR were taken at 1 s time reso-
lution and sEMG were sampled with a Texas Instruments 8 
channel biopotential measurement device at a rate of 1000 
samples per second.

2.1.4 � Study design

The study subject was seated in an armchair. At the begin-
ning of the study session, the sensors and the device were 
established and it was ensured that they were able to 
record and appropriately catch the signals from all devices. 
The pain was induced by thermal and electrical stimuli in a 
random fashion, two times for each stimulus. The subjects 
were tested four times during each session and the tests 

were (1) electrical stimuli on the right-hand ring finger, (2) 
electrical stimuli on the left-hand ring finger, (3) thermal 
stimuli on the right inner forearm, and (4) thermal stimuli 
on the left inner forearm. The pain exposure starting loca-
tion was randomized and the change of stimulated skin site 
helped in avoiding habituation to repeated experimental 
pain [28]. Each data collection session started by letting 
the subject settle down and rest for ten minutes, so as to 
acquaint himself or herself with the study environment. 
Pain testing was only repeated after the subject’s HR and 
BR had returned (if changed) to their respective baseline 
level.

The intensity of pain was evaluated using VAS at two 
time-points: t1—when the pain reached an uncomfortable 
level (VAS 3–4) and t2—when the study subject reported 
intolerable pain or when stimulus intensity reached the 
non-harmful maximum. The time points and data defini-
tion are illustrated in Fig. 2. To balance the data size of 
each class, data of the 30 s before applying pain stimulus 
was labelled as no pain. During pain stimulation, data 
from when it started to when it reached an uncomfortable 
level was labelled as mild pain. The second part of the 
data under pain stimulus was marked as moderate/severe 
pain, where either moderate or severe depends on the VAS 
the study subject reported. All physiological signals were 
marked with time stamps and were saved for offline pro-
cessing along with VAS evaluations.

Fig. 1   The devices for pain stimulation and the biopotential measurement environment
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2.2 � Data pre‑processing

Data on sEMG and other physiological data were processed 
and checked separately, as shown in Fig. 3. The aim of the 
pre-processing was to eliminate noise interference and verify 
the validation of the data.

For sEMG, 50 Hz power line noise was coupled to elec-
trode lead wires from the environment. Movement artifacts 
and baseline drift in low frequencies both caused noise in 
the sEMG signal. There was also a third noise source, which 
was caused by electrical stimulus pulses. Electrical pulses 
were added to finger skin’s surface and captured from facial 
skin’s surface as well, due to the electrical conductivity of 
the human body. In sEMG pre-processing, a 20 Hz Butter-
worth high-pass filter was first applied to remove movement 
artifacts and baseline drift from six sEMG channels. Adap-
tive noise cancellation was employed for the power line and 

electrical pulse elimination, where non-linear noise in each 
of the five pain-related facial muscle channels was estimated 
by reference to a frontalis sEMG with an adaptive neuro-
fuzzy inference system (ANFIS) estimator [29].

To unify the time granularity of sEMG data and other 
physiological data, sEMG data was split into 1000-sam-
ple segments for feature extraction. The root mean square 
(RMS) in Eq. 1 and wavelength (WL) in Eq. 2 were the 
chosen features, where N was the window length and xi 
was the ith data point in the window. The RMS feature pro-
vided direct insight on sEMG amplitude in order to provide 
a measure of signal power, while WL was related to both 
waveform amplitude and frequency [30]. All signal process-
ing was conducted in MATLAB.

(1)RMS =

√√√√ 1

N

N∑

i=1

x2
i

Fig. 2   The timeline of one test, 
the time to have VAS report 
(t1 and t2) and the data label in 
each part (no pain, mild pain 
and moderate/severe pain)

Fig. 3   The data processing flow and two matrixes for classification
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For all physiological features, data validation on their 
range and conditions were carried out. After checking, three 
thermal stimuli tests were excluded from the total of 120 
tests due to invalid GSR data in the no pain part and another 
thermal stimulus test was excluded for invalid sEMG data. 
All the validated physiological features were standardized 
with a standard core within each test and constituted the 
13-dimensional parameter matrix. This standardization 
rescaled the range and distribution of each parameter, in 
which way the within-subject and the between-subject dif-
ference in value range were suppressed. There were 12,509 
samples at one-second resolution from 116 tests in the 
parameter matrix. Each sample with 13 parameters was 
labelled according to the data division in Fig. 2. No pain, 
mild pain and moderate/severe pain data were labelled as 1, 
2 and 3 respectively. Subsequently, the statistical median of 
every parameter was calculated from three sections of each 
test and constituted the median matrix with a length of 348.

2.3 � Data observation and classification

To visualize the median matrix in 2-dimensional scatter 
plots, the dimension of parameters in the median matrix was 
first reduced from 13 with principal component analysis. 
The first two principal components of the median matrix 
were non-normally distributed. Nevertheless, with the abil-
ity of multivariate analysis, Gaussian distributions were 
then estimated for each pain intensity level to observe their 
approximate distribution boundaries in the first two princi-
pal components. To fit Gaussians to the parameters of each 
group, the mean (µ) and variance (σ2) of Gaussian distribu-
tion were estimated in maximum likelihood estimation. In 
a d-dimensional Gaussian distribution, mean and variance 
were estimated from

The 95% confidence regions of distributions were marked 
as approximate boundaries. Tests with different pain stimuli 
were plotted separately.

In the next observation, the significance of each param-
eter in pain intensity level recognition was observed with 
correlation analysis. Pearson’s linear correlation coeffi-
cients between each standardized parameter and labels were 
calculated.

(2)WL =

N−1∑

i=1

|xi+1 − xi|

𝜇̂i =
1

N

∑N

(n=1)
xni, for i = 1,… d and

𝜎̂2

ij
=

1

N

∑N

(n=1)
(xni − 𝜇̂i)(xnj − 𝜇̂j), for i, j = 1,… , d.

Using the classification method in machine learning, 
a model can be built to predict class labels (i.e. 1—no 
pain, 2—mild pain and 3—moderate/severe pain) from 
input features (i.e. parameter matrix or median matrix). 
The resulting classifier is then used to assign class labels 
to the testing instance with new input features. One benefit 
of applying classification is its effectiveness in establish-
ing the many-to-many mapping. The classification tech-
nique chosen in this study was the artificial neural network 
(ANN), which is a non-linear classifier having generally 
better performance with continuous and multi-dimensional 
features [31]. This method emulates the information pro-
cessing capabilities of human brain neurons and can pro-
vide a flexible mapping between inputs and outputs [32].

With 13 parameters as the classifier inputs (x) and 3 
pain intensity levels as the outputs (y), the ANNs classi-
fier was built in three layers: an input layer with 13 units, a 
hidden layer with 10 units and an output layer with 3 units. 
As the architecture presented in Fig. 4, model parameter 
matrices W[1], b[1], W[2] and b[2] were optimized during 
training. The classifier was applied to both the labelled 
median matrix and the labelled parameter matrix. Before 
classification, the samples were divided randomly into 
three proportions, where 70% were training samples 
being presented initially to the classifier for training the 
network; 15% were validation samples to improve classi-
fier generalization properly; and the remaining 15% were 
testing samples, independent from the trained classifier for 
classifier performance measurement. The classifier in this 
work was trained and evaluated in MATLAB Neural Net-
work Toolbox® [33]. The receiver operating characteristic 
(ROC) curve of each classification was presented. Both 
average accuracy and the area under ROC curve (AUC) 
were evaluated as the performance of classification. The 
true positive rate (TPR) was also taken into consideration 
in the evaluation, indicating the correct recognition rate of 
each pain intensity level. The distributions of AUC in the 
classification with a different number of involved param-
eters were then presented.

Leave-one-subject-out cross-validation classification 
with an ANNs classifier was next applied to the labelled 
median matrix and parameter matrix. In this classification, 
each subject was left out in turn as test samples in order 
to examine the performance of the classifier trained by 
samples from the rest of the subjects. This approach was to 
look into the diversity among subjects and also to examine 
the adaptivity of this method to fresh subjects. In addition 
to the same results were presented with the classification 
without cross-validation above, the TPR of each class and 
the average accuracy for every subject were compared in 
a row. Furthermore, the impact of facial sEMG param-
eters in pain intensity level recognition was investigated 
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by comparing classification performance without and with 
facial sEMG parameters.

3 � Results

Thirty volunteers (n = 30, 15 males and 15 females) in 
healthy condition were included in the study and examined 
between December 2015 and April 2016. The mean age 
was 33 in women (SD = 11.9) and 35 in men (SD = 8.0). 
Each person experienced four tests successively (with 
electrical pain stimulus on right/left ring finger and with 
thermal pain stimulus on right/left forearm). In total, 116 

tests were included in the data analysis. The other 4 were 
excluded due to invalid measures. The average time length 
of each test involved in the analysis was 108 s (SD = 39 s). 
The average time interval between two successive tests 
was 289 s (SD = 192 s).

3.1 � Comparison between data from two pain 
stimuli

The mean VAS reported at the end of each test was 7.0 
(SD = 1.3). In general, the electrical stimulus provided 
sharper nociception than the thermal stimulus, as a shorter 
transition time in mild pain and a higher final VAS on 

Fig. 4   The ANNs classifier architecture including an input layer (x = x1, x2,…, x13), a hidden layer (A = a1, a2,…, a10) and an output layer (y = y1, y2, 
y3)

Table 1   Statistics of the test 
record of the amount, length, 
stimulus intensity and pain 
intensity

a TENS intensity level, 0–50. The output of TENS device was biphasic rectangular pulses with a width of 
250 µs at a frequency of 100 Hz. The peak to peak output voltage was 100V in maximum (2V/ Intensity 
level)

Item Electrical pain stimulus Thermal pain stimulus

Number of tests 60 56
Time length in seconds
Mild pain 16 (SD = 10) 68 (SD = 16)
Moderate/Severe pain 37 (SD = 30) 36 (SD = 20)
Mean intensity of stimulus
 Uncomfortable (t1) 6a (SD = 3a) 48.7 °C (SD = 2.9 °C)
 Intolerable/maximum stimulus intensity reached (t2) 16a (SD = 9a) 52.9 °C (SD = 2.2 °C)

Mean intensity of pain (VAS 0–10)
 Uncomfortable (t1) 3–4 3–4
 Intolerable/maximum stimulus intensity reached (t2) 7.3 (SD = 1.2) 6.6 (SD = 1.3)
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average were shown in Table 1. Besides, more electrical 
stimulus tests than thermal stimulus ones reached pain tol-
erance within non-harmful stimuli intensity range. Pain tol-
erance was reached in 58 out of the total 60 electrical tests 
and in 38 out of the total 56 thermal tests. The subjectivity 
of pain perception was reflected by the variance in maximum 
stimulus intensity of pain tolerance under similar VAS.

To visualize the distribution of parameters, the 
13-dimensional parameters are presented as scatter plot 
in a 2- dimensional space in Fig. 5. The median matrix 
was employed for data visualization and its dimension was 
reduced with principal component analysis. As shown in 
Fig. 5, samples in different pain intensity levels were pre-
sented with different markers. The Gaussian distribution 
of each sample group was estimated and marked with its 
center and 95% confidence region. Figure 5 shows that 
the centres of each group were clearly separated (one-way 
ANOVA between parameters and pain intensity level: 
p < 0.001) and approximately linearly distributed in pain 
intensity level, especially under an electrical stimulus 

(Fig. 5a). Data from the electrical stimulus (Fig. 5a) and 
thermal stimulus (Fig. 5b) followed similar relative rela-
tions among the three levels, where the samples labelled 
no pain separated relatively well with the samples labelled 
with moderate/severe pain while the samples labelled with 
mild pain distributed in between and overlapped with the 
other two groups. This was consistent with previous stud-
ies where pain tolerance could be highly differentiated 
from no pain with high binary classification accuracy, 
while lower accuracy was in the classification of multiple 
pain intensity among no pain, pain threshold and pain 
tolerance [34, 35].

Differences were observed between two pain stimuli. 
Samples of moderate/severe pain under electrical stimu-
lus had less overlap with samples of no pain in Fig. 5a, 
compared to thermal stimulus in Fig. 5b. Meanwhile, mild 
pain samples under electrical stimulus was more dispersed 
(covariance matrix:[3.27300.55050.55050.6838] , versus 
thermal stimulus [0.33300.03140.03140.2022] ). Although 
there were differences across pain stimuli, the median 

Fig. 5   Median matrix is visualized in scatter plots after dimen-
sion reduction. Each data point stands for one sample in the median 
matrix and its shape represents its pain intensity level: the circles 
represent no pain, triangles represent mild pain, and squares repre-

sent moderate/severe pain. Tests with a single stimulus (Fig.  5a, b) 
and both stimuli (Fig. 5c) are visualized separately. The distribution 
of samples with the same pain intensity level is marked with its center 
and its 95% confidence region
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matrix from physiological parameters showed a pattern in 
pain intensity level, as shown in Fig. 5c.

3.2 � Correlation analysis

The Pearson’s linear correlation coefficients between param-
eters and pain intensity level are plotted in Fig. 6 in descend-
ing order of absolute value. Observation and comparison 
were made on both the parameter matrix and median matrix. 
GSR, HR and BR in the parameter matrix were presented to 
be the three best-predicting parameters among all the param-
eters in this study. GSR and HR were positively correlated 
with pain intensity level, indicating that these two param-
eters were more likely to increase when a healthy subject 
experiences a high intensity of pain, while BR decreases. 
Among facial sEMG parameters, ZygRMS had a higher cor-
relation to the pain intensity level than others. As a meas-
ure of central tendency in parameters with less deviation, 
GSR, HR, BR and two corrugator superclii parameters in the 
median matrix showed stronger correlation to the pain inten-
sity level than the parameter matrix. It was noticeable that 
medians of both corrugator supercilii parameters showed 
considerable potential for differentiating pain intensity lev-
els. However, the same significance did not appear in the 
facial sEMG parameter matrix. This may suggest the tran-
sient response of facial expressions to acute pain.

3.3 � Classification with the median matrix 
and parameter matrix

The ANNs classifier was trained, validated and tested with 
a median matrix and parameter matrix separately. The ROC 
curves from the overall classification results are presented 
in Fig. 7. The average classification accuracy of the median 
matrix reached 83.3%, where no pain TPR = 86.2%, mild 
pain TPR = 78.4%, and moderate/severe pain TPR = 85.3%. 
For parameter matrix classification, the average accu-
racy was 70.6%, where no pain TPR = 70.9%, mild pain 
TPR = 65.6%, and moderate/severe pain TPR = 70.6%.

Better classification results were obtained from median 
matrix classification than from parameter matrix classifica-
tion. This was due to fewer fluctuations and less noise in 
the median matrix. However, classifying with the parameter 
matrix was closer to simulating pain intensity level monitor-
ing in a real-time manner because no label was pre-known 
for the statistical median of each data section. Among the 
three pain intensity levels, the classifications of no pain and 
moderate/severe pain had the same good performance when 
compared to the mild pain classification. This corresponds 
to the data observation in Fig. 5, where mild pain samples 
were prone to be misclassified into the other two classes.

According to the correlation analysis results, physi-
ological parameters were the first three parameters that 
related most to pain intensity and were supposed to 
contribute the most to the classification performance. 
Therefore, the contribution of the sEMG parameters to 
the classification was next observed with all possible 
combinations. ANNs classifiers were trained and tested 

Fig. 6   Pearson’s linear correlation coefficients between pain inten-
sity levels (1—no pain, 2—mild pain, 3—moderate/severe pain) and 
parameters in the parameter matrix (the black dots) and between pain 
intensity levels and the parameters in the median matrix (the grey 

dots). The physiological parameters on the horizontal axis are sorted 
in descending order of coefficient absolute value. Corresponding 
signed coefficient values are marked
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for each parameter combination. Their performance is 
presented in Fig. 8 with the distribution (mean ± SD) of 
AUC involving different numbers of sEMG parameters 
(from 0 to 10). It shows that adding sEMG features to 
classification in addition to physiological parameters 

improved the overall performance. With median matrix, 
the best performance appeared when 5 sEMG parameters 
were added to the classification. While with parameter 
matrix, AUC generally increased along with the increase 
of sEMG parameter amount, which was most prominent 

Fig. 7   The ROC and AUC of each pain intensity level and the average accuracy in median matrix classification (Fig. 7a) and parameter matrix 
classification (Fig. 7b)

Fig. 8   The distribution of AUC (mean ± SD) from classification with 
different number of sEMG parameters in addition to HR, BR and 
GSR, with all possible combinations. Results from the classification 

of median matrix are shown in Fig. 8a and results from the classifica-
tion of parameter matrix are shown in Fig. 8b
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in mild pain (from 0.74 to 0.77 in average) when the num-
ber of sEMG parameters increased from 0 to 1.

3.4 � Leave‑one‑subject‑out cross‑validation

The applicability of this pain intensity level recogni-
tion method to new subjects is examined in this part. A 

classification with leave-one-subject-out cross-validation 
was conducted among 30 subjects, where the neural net-
work classifier was trained by the data from 29 subjects 
and its performance was examined by the data from the 
rest 1 subject. The results from the 13-dimensional param-
eter classification are shown in Fig. 9. Their performance 
yielded to the classification performance in Fig. 7, where 

Fig. 9   The ROC and AUC of each pain intensity level and the average accuracy with leave-one-subject-out cross-validation in median matrix 
classification (Fig. 9a) and parameter matrix classification (Fig. 9b)

Fig. 10   The distribution of AUC (mean ± SD) from leave-one-sub-
ject-out classification with a different number of sEMG parameters in 
addition to HR, BR and GSR, with all possible combinations. Results 

from the classification of the median matrix are shown in Fig.  10a 
and results from the classification of parameter matrix are shown in 
Fig. 10b
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data from one subject may be involved in both training 
data set and test data set. This may indicate the similarity 
of the data from the 4 within-subject tests and the dissimi-
larity among subjects.

The contribution of sEMG parameters was then observed 
in the classification of both median matrix and parameter 
matrix with leave-one-subject-out cross-validation. The 
AUC distributions in Fig. 10 showed that sEMG parameters 
in parameter matrix helped improve the performance, while 
sEMG parameters in median matrix did not.

Furthermore, leave-one-subject-out classifications with 
facial sEMG parameters exclusively and inclusively were 
both conducted on the parameter matrix. The statistics of 
average accuracy and TPR from all subjects were placed in 
Table 2. It showed that on the basis of HR, BR and GSR, 
facial sEMG parameters contributed with both a mean accu-
racy improvement and individual deviation reduction. The 
mean TPR and accuracy across 30 subjects were slightly 
inferior to the parameter matrix classification results in 
Sect. 3.3, except for the moderate/severe pain level class 
where 76.3% of mean TPR was in the leave-one-subject-out 
classification and 70.6% in the overall classification. Clas-
sification performance varied among different subjects, 
reflected by the standard deviation of 10.5% in all classes 
and 18.1% in the moderate/severe pain level.

To observe the individual difference among subjects, 
the details of leave-one-subject-out classification with a 
13-dimensional parameter matrix were plotted. The aver-
age accuracy of each test subject and the TPR of each pain 
intensity level is presented in Fig. 11, where the test subject 
was sorted in descending average classification accuracy It 
can be observed that most of the subjects had a pain intensity 
level predictable with average classification accuracy above 
50%. With the multi-parameter classification method, half 
of the subjects had good classification performance with 
accuracy higher than 70%. Among the three classes, the 
moderate/severe pain was best predicted and was correctly 
recognized with a rate no less than 70% among 23 of all 30 
subjects. The subjects with low classification accuracy may 
have shown a different reaction pattern to pain stimulation 
comparing to others.

3.5 � Results summary

In this work, patterns of self-reported acute pain inten-
sity levels from monitored physiological signals were 
observed, which were categorized into no pain, mild pain 
and moderate/severe pain based on reported VAS. On the 
basis of that, a quantitative relation was mapped between 
physiological signals and pain intensity levels through 

Table 2   TPR and accuracy in parameter matrix classification without and with facial sEMG parameters

Classification No pain mean ± SD (%) Mild pain 
mean ± SD (%)

Moderate/severe pain 
mean ± SD (%)

Accuracy mean ± SD (%)

HR + BR + GSR 68.1 ± 18.2 57.8 ± 10.0 74.9 ± 21.0 65.4 ± 13
HR + BR + GSR + sEMG 69.7↑ ± 16.0↓ 64.6↑ ± 9.1↓ 76.3↑ ± 18.1↓ 68.2↑ ± 10.5↓

Fig. 11   The TPR of each pain intensity level and average accuracy for each subject in leave-one-subject-out classification with a base value of 
50%. Seventy per cent is taken as a characteristic value for performance evaluation
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classification. A classical supervised learning method was 
applied to the processed 13-dimensional physiological 
parameters under two experimental pain stimuli.

The distribution change, along with experimental acute 
pain stimulus intensity change, was first observed from 
a comprehensive group of monitored biopotentials in 
Fig. 5c. Differences in median matrix distribution were 
seen between tests under different stimuli in Fig. 5a, b. 
Among the 13 physiological parameters, HR, BR and GSR 
played an important role, while the role of facial sEMG 
parameters was comparatively less significant, according 
to the correlation analysis presented in Fig. 6. Neverthe-
less, the sEMG parameters still contributed to the param-
eter matrix classification as the number of them increased 
(Figs. 8, 10).

Secondly, as the median matrix showed generally higher 
relevance to pain intensity level, the processed parame-
ters led to better pain intensity pattern and classification 
results, as shown in Fig. 7. The average classification accu-
racy of 83.3% with the median matrix was prior to study 
[35], with comparative lighter computation, and was close 
to the non-linear regression performance in [15] between 
multiple physiological parameters and an index combining 
both stimulus level and analgesic effect. In this study, the 
TPR of moderate/severe pain was of higher than average 
accuracy in both median matrix and parameter matrix clas-
sifications. Although there are data size limits, it is worth 
digging further into physiological parameter patterns with 
subdivided VAS in moderate/severe pain.

Thirdly, individual difference appeared as the classifi-
cation accuracy difference in leave-one-subject-out cross-
validation, as shown in Fig. 11. In addition, the overall 
performance of the classification with leave-one-subject-
out cross-validation was inferior to the classification with-
out cross-validation, comparing Fig. 9 to Fig. 7. Similarly, 
the performance difference between classification without 
cross-validation and classification with leave-one-subject-
out cross-validation was also observed in [34, 36].

The classification of the parameter matrix was to imi-
tate real-time continuous pain intensity monitoring. The 
basic competence of pain intensity prediction has been 
shown in this study. On the basis of these results, there 
is room for performance improvement in several aspects. 
One is using more dimensions of information in signal 
processing other than a simple statistical median. For 
example, the number of fluctuations, features of stationar-
ity, entropy, similarity [15, 35, 37] and features in the fre-
quency domain can be further applied. In the continuous 
monitoring manner, a time window with a fixed length can 
be added to streaming data. Data within the time window 
is processed and features are extracted for classification in 
the next step. Another aspect is the optimization of learn-
ing algorithm where classifier parameter optimization and 

feature selection can be applied. The use of deep learning 
may also contribute to performance improvement. A third 
aspect is the post-processing of classification results. For 
example, when looking into the results in a time span, 
some misclassification behaves such as swings between 
two classes and the results in this time period can be pol-
ished in order to be steady and accurate.

4 � Discussion

The results show the possibility of automatic pain monitor-
ing by the classification of multiple physiological param-
eters. Furthermore, the results of parameter matrix classi-
fication show the potential of continuous pain monitoring, 
where physiological parameter samples were classified in 
every second. These physiological parameters are either 
clinically accessible or available from wearable devices 
[38, 39] and are appropriate for continuous and long-term 
monitoring. Besides, this monitoring method may help 
clinicians and nurses read patients’ acute pain and hence 
treat it more efficiently, especially for the patients unable 
to communicate verbally.

The exploring of automatic pain assessment mark-
ers was conducted by observing the autonomic nervous 
system activities [8, 9, 40] and brain responses [11]. It 
was indicated that a combination of several parameters 
with regression is more promising than any single one 
[14] and which was further validated in a clinical setting 
[15]. Additionally, the BioVid heat pain database [41] was 
established to analyze people’s reactions to experimental 
heat pain stimulus from a psychobiology point of view. 
Their following studies focused on feature extraction in 
data pre-processing and the fusion of facial expression 
video images with physiological parameters [34, 35, 42, 
43]. This study proceeded to the continuous assessment of 
experimental pain from the continuous changing of physi-
ological parameters.

Like most of the methods developed from experimen-
tal pain tests, there are challenges when this method is 
applied in clinical settings. One challenge can be the dif-
ferent truth-value of pain intensities or stimulus intensities 
defined across studies. In experimental pain studies, self-
report is available with either VAS scale or pain threshold 
and pain tolerance due to the individual differences in the 
subjective experience of pain [44]. Self-report is inacces-
sible in some clinical settings where anesthesia is applied, 
and therefore either nociception levels are defined and used 
instead as the truth-value [15], or the objective of the moni-
toring is altered into nociception-antinociception balance 
instead [45]. Another challenge is the potential psychologi-
cal state difference when experience experimental pain and 
clinical pain, where psychological factors have an important 
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influence on pain perception [46, 47] and modulate physi-
ological signals differently. Other challenges of applying 
this method to clinical monitoring may include the regula-
tion or unavailability of physiological parameters as a result 
of medications and disease symptoms. This, however, can 
also be an advantage of using multiple parameters where the 
unregulated and available ones may compensate the absence 
of the others, which needs further exploration.

One limitation of the study was the contamination of 
electrical stimuli pulses of facial sEMG signals. Adaptive 
noise elimination can remove a considerable part of the 
noise. However, the muscle activity from frontalis could be 
considered as noise and be eliminated from the other facial 
sEMG channels as well. Another limitation of this study 
was the choice of no pain data, where 30 s before applying 
experimental the pain stimulus was considered but data after 
removing the pain stimulus was not taken into account. In 
addition, there was no stimulation in the no pain control 
condition, which would be more appropriate if had applied 
a non-painful stimulus.

To conclude, the classification of multiple physiologi-
cal parameters can be a solution to automatic pain intensity 
assessment. The method is potential to provide monitoring 
in a continuous manner (e.g. with a time resolution of one 
second). In the continuous monitoring, a combination of 
parameters is superior to a single parameter in terms of clas-
sification performance, especially in mild pain whose data 
overlapped greatly with the other two categories. Neverthe-
less, this method should be further improved in its adaptivity 

to a fresh subject, as the classification performance varies in 
subject level in leave-one-subject-out cross-validation.
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Table 3   Median matrix 
classification without cross-
validation, compared to Fig. 7a

All tests Test 1 Test 2 Test 3 Test 4

Data size 348 87 87 84 90
Average accuracy (%) 83.3 46.0 (− 37.3) 87.0 (+ 3.7) 84.5 (+ 1.2) 72.2 (− 11.1)
TPR of no pain (%) 86.2 44.8 (− 41,4) 93.1 (+ 6.9) 82.1 (− 4.1) 70.0 (− 16.2)
TPR of mild pain (%) 78.4 93.1 (+ 14,7) 82.8 (+ 4.4) 78.6 (+ 0.2) 66.7 (− 11.7)
TPF of moderate/severe pain (%) 85.3 0.00 (− 85.3) 86.2 (+ 0.9) 92.9 (+ 7.6) 80.0 (− 5.3)
AUC of no pain 0.96 0.91 (− 0.05) 0.99 (+ 0.03) 0.95 (− 0.01) 0.94 (− 0.02)
AUC of mild pain 0.90 0.51 (− 0.39) 0.94 (+ 0.04) 0.94 (+ 0.04) 0.78 (− 0.12)
AUC of moderate/severe pain 0.97 0.20 (− 0.77) 0.97 (0.00) 0.97 (0.00) 0.91 (− 0.06)

Table 4   Parameter matrix 
classification without cross-
validation, compared to Fig. 7b

All tests Test 1 Test 2 Test 3 Test 4

Data size 12,509 2801 2972 3398 3338
Average accuracy (%) 70.6 72.4 (+ 1.8) 70.6 (0.0) 78.1 (+ 7.5) 72.4 (+ 1.8)
TPR of no pain (%) 70.9 80.1 (+ 9.2) 75.1 (+ 4.2) 74.9 (+ 4.0) 72.1 (+ 1.2)
TPR of mild pain (%) 65.6 53.9 (− 11.7) 68.9 (+ 3.3) 76.2 (+ 10.6) 73.6 (+ 12.0)
TPF of moderate/severe pain (%) 70.6 82.2 (+ 11.6) 68.4 (− 2.2) 82.6 (+ 10.0) 73.2 (+ 2.6)
AUC of no pain 0.91 0.93 (+ 0.02) 0.94 (+ 0.03) 0.94 (+ 0.03) 0.91 (0.00)
AUC of mild pain 0.78 0.78 (0.00) 0.79 (+ 0.01) 0.86 (− 0.08) 0.82 (+ 0.04)
AUC of moderate/Severe pain 0.89 0.91 (+ 0.02) 0.89 (0.00) 0.94 (+ 0.05) 0.89 (0.00)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Appendix

The classification results from the models built with one test 
per subject (“Test 1”/“Test 2”/“Test 3”/“Test 4”) are com-
pared to the results from the model built with all tests per 
subject (“All tests”). “All tests” represents the model built 
with all the four tests from each subject. “Test 1” represents 
the model built with the first test from each subject. “Test 
2”, “Test 3” and “Test 4” are similarly defined. The results of 
“All tests” in each table are copied from the main body of the 
paper. The result difference between “Test 1”/“Test 2”/“Test 
3”/“Test 4” and “All tests” is calculated and presented in the 
brackets (Tables 3, 4, 5, 6).
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