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Objective: During the transition from normal to seizure and then to

termination, electroencephalography (EEG) signals have complex changes

in time-frequency-spatial characteristics. The quantitative analysis of EEG

characteristics and the exploration of their dynamic propagation in this paper

would help to provide new biomarkers for distinguishing between pre-ictal

and inter-ictal states and to better understand the seizure mechanisms.

Methods: Thirty-three children with absence epilepsy were investigated with

EEG signals. Power spectral and synchronization were combined to provide

the time-frequency-spatial characteristics of EEG and analyze the spatial

distribution and propagation of EEG in the brain with topographic maps. To

understand the mechanism of spatial-temporal evolution, we compared inter-

ictal, pre-ictal, and ictal states in EEG power spectral and synchronization

network and its rhythms in each frequency band.

Results: Power, frequency, and spatial synchronization are all enhanced

during the absence seizures to jointly dominate the epilepsy process. We

confirmed that a rapid diffusion at the onset accompanied by the frontal

region predominance exists. The EEG power rapidly bursts in 2–4 Hz through

the whole brain within a few seconds after the onset. This spatiotemporal

evolution is associated with spatial diffusion and brain regions interaction, with

a similar pattern, increasing first and then decreasing, in both the diffusion of

the EEG power and the connectivity of the brain network during the childhood

absence epilepsy (CAE) seizures. Compared with the inter-ictal group, we

observed increases in power of delta and theta rhythms in the pre-ictal group
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(P < 0.05). Meanwhile, the synchronization of delta rhythm decreased while

that of alpha rhythm enhanced.

Conclusion: The initiation and propagation of CAE seizures are related to

the abnormal discharge diffusion and the synchronization network. During

the seizures, brain activity is completely changed with the main component

delta rhythm. Furthermore, this article demonstrated for the first time that

alpha inhibition, which is consistent with the brain’s feedback regulation

mechanism, is caused by the enhancement of the network connection.

Temporal and spatial evolution of EEG is of great significance for the

transmission mechanism, clinical diagnosis and automatic detection of

absence epilepsy seizures.

KEYWORDS

childhood absence epilepsy, EEG, power spectral density, phase locking value, time-
frequency-spatial characteristics

Introduction

Childhood absence epilepsy (CAE) is the most common
childhood epilepsy syndrome in school-aged children,
accounting for 10–17% of all pediatric epilepsy (Matricardi
et al., 2014). CAE is clinically characterized by frequent and
transient impairment of consciousness (with sudden onset
and offset) and is accompanied by staring, spontaneous eye-
opening and random eye-blinking (Hirsch and Marescaux,
1994; Panayiotopoulos, 1997). The duration of the typical
CAE is about 5–30 s, with several to hundreds of attacks per
day (Penry et al., 1975). CAE, as age-dependent epilepsy, has
long been labeled “benign” because children usually achieve
an optimistic recovery with appropriate treatment (Tashkandi
et al., 2019). However, comorbidities such as cognitive,
behavioral, emotional disorders, and language barriers have
been reported in previous research (Caplan et al., 2008; Vega
et al., 2011; Verrotti et al., 2015). Due to the high frequency
and comorbidities of CAE, it can seriously affect children’s
lives. Electroencephalography (EEG) is an essential tool for
clinical diagnosis and treatment of epilepsy with advantages of
non-invasive, high time resolution and sustainable monitoring,
which is already widely used to detect seizures (Gao and Hu,
2013; Zhong et al., 2022). Ictal EEG in CAE is characterized
by a high-amplitude, generalized, bilateral, symmetrical, and
synchronous discharges of 3 Hz spike-and-waves, while the
inter-ictal EEG typically shows a normal background activity
(Fisher et al., 2017). The pathophysiology of CAE has been
extensively carried out in both animal and human models over
the past decade (Meeren et al., 2005; Sitnikova and Luijtelaar,
2006; van Luijtelaar et al., 2011). Dynamic changes in the
spatiotemporal course have been studied in CAE using EEG
(Kokkinos et al., 2013, 2017; Leitgeb et al., 2020). However, most

studies have focused on the generation and propagation of ictal
spike-wave discharges during seizures. Especially, quantitative
biomarkers from the temporal and spatial evolution of EEG
remains elusive. Therefore, this article not only analyzes
the time-frequency-spatial characteristics of EEG during the
whole process from normal to seizure states, but also further
investigates some quantitative EEG markers to distinguish
among normal, pre-ictal, and ictal states, which is helpful for
the diagnosis and early warning of CAE seizures.

Power Spectrum has been applied to explore the intracranial
EEG patterns in 15 patients with partial epilepsy as early as
1995 (Alarcon et al., 1995). Spectral power of interictal EEG
was utilized as a biomarker for the diagnosis and treatment
of idiopathic generalized epilepsy (Pegg et al., 2020). A device
was designed to predict seizures using relative power spectral
of EEG and provide responsive electrical stimulation feedback
to interrupt seizures (Bandarabadi et al., 2015). Some other
researchers (Park et al., 2011; Zhang and Parhi, 2016; Peng et al.,
2021) extracted power spectral and the ratio of power spectral
and combined it with machine learning to predict seizures. In
previous studies (Park et al., 2011; Zhang and Parhi, 2016; Pegg
et al., 2020; Peng et al., 2021), power spectral density (PSD)
has been proven effective in detecting or predicting seizures.
In this article, PSD is conducted to explore the temporal
and spatial evolution of CAE EEG signals combined with the
topographic map.

In terms of spatial evolution, CAE is caused by synchronous,
generalized discharges, making it of great importance to pay
more attention to synchronization. Previous researches (van
Luijtelaar and Sitnikova, 2006; Westmijse et al., 2009; Gupta
et al., 2011; Gadad et al., 2018) have demonstrated that CAE
seizures originate from an activated brain area at the onset,
spread to other brain regions, and interact with each other,
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resulting in abnormal synchronous discharges throughout the
brain network. Synchronization which was used to quantify
interactions between different areas of the brain has been
reported in van Diessen et al. (2013), van Mierlo et al. (2014),
and Yaffe et al. (2015). The brain is considered to be a nonlinear
dynamical system, and the phase locking, as a nonlinear method,
can be used to analyze the nonlinear, non-stationary and chaotic
systems (Aydore et al., 2013). In addition, phase locking value
(PLV) is amplitude-independent (Piqueira, 2011), making it
more suitable for analyzing the EEG signals that are affected
by synchronous amplitude changes caused by eye movements
and other activities (Wang et al., 2020). Therefore, this article
employs PLV to assess the synchronization between a pair of
electrodes as the spatial characteristic of EEG and construct the
dynamic brain network connectivity.

In summary, PSDs and PLVs of the EEG and its rhythms
including the delta (1–4 Hz), theta (4–8 Hz), alpha (8–
12 Hz), beta (12–30 Hz), and gamma (30–70 Hz) bands
are calculated in this article. Combined with the topographic
map, this article realizes to visualize the spatial distribution of
PSD and dynamic network connectivity over time. To better
understand the dynamic changes and evolutionary patterns,
a comparative study of inter-ictal, pre-ictal, and ictal states
was carried out, which also helps to explore quantitative
biomarkers that distinguish among these three states. Therefore,
our research is beneficial for providing important EEG markers
for the detection and early warning of CAE seizures in the
clinical applications.

Materials and methods

Patients

In this study, we included 33 children (23 female and 10
male) with absence epilepsy. The age of the children ranged
between 5 and 12 years old (8.34 ± 2.17 years). The inclusion
criteria were as bellow: (1) diagnosed as absence epilepsy
according to the International League Against Epilepsy (ILAE);
(2) the duration of seizures lasted ≥4 s in EEG recordings with
3–4 Hz bilateral and synchronous spike and wave discharges;
(3) anti-seizure medication (ASM) has not been used in these
CAE patients; and (4) no other seizure types present and
normal neurologic development. The demographic data of these
recruited patients were collected from the Children’s Hospital
of Chongqing Medical University between December 2015 and
October 2017. This study was conducted by the Declaration of
Helsinki for experimentation in humans and was performed
with informed consent obtained from all subjects’ parents after
approval of the Ethical Committee of the Children’s Hospital of
Chongqing Medical University. The detailed clinic information
of the CAE patients are shown in Table 1.

Data recordings

The EEG was recorded by the Neurofax EEG-1200 version
(Nihon Kohden, Japan) system with a sampling frequency of
200 Hz. In total, 16 Ag/AgCl electrodes were placed on the
scalp (Fp1, Fp2, F7, F8, F3, F4, C3, C4, P3, P4, T3, T4, T5, T6,
O1, and O2) according to the international 10–20 system, using
monopolar montage with average reference. The impedances of
all EEG electrodes were kept below 10 k�. At least one clinical
absence epilepsy seizure should be recorded. If there was no
spontaneous seizure during the process of recording the EEG
signals, hyperventilation was performed to provoke a seizure.
Inter-ictal EEG acquisition lasted about 5 min, and the duration
of EEG was approximately 20 min including hyperventilation.
Multiple consecutive seizures occurred in some EEG recordings.
A total of 67 absence seizure events were recorded in 33 patients
with a minimum of one seizure and a maximum of six seizures.
All the seizures were annotated by physicians with the duration
ranging from 9 to 32 s. The EEG signals without artifacts in
the 30 s before epileptic seizures were selected as the pre-ictal
group. In the inter-ictal state, 30 s background EEG data were
chosen as the normal control group. Figure 1 is an example
of multi-channel EEG signals in inter-ictal, pre-ictal and ictal
states, respectively.

Methods of electroencephalography
signals analysis

Figure 2 shows a schematic illustration of the detailed
steps. First, the raw EEG signals were filtered by using
a fourth-order Butterworth bandpass filter (1–70 Hz) and
a notch filter (50 Hz) to reduce noise. Artifacts such as
eye movement, eye blink, muscle artifact were removed
by using independent component analysis (ICA) in the
EEGLAB toolbox (Delorme and Makeig, 2004) with the
guidelines (Urigüen and Garcia-Zapirain, 2015). Note that
artifacts that could not be removed by signal processing,
such as severe crying or head movements, were directly
excluded from the experimental sample data. The clean
EEG signals were divided into 1-s epochs with a group
of 1 s non-overlapping moving windows. The reason is
that literatures (Gupta et al., 2011; Wu et al., 2017) have
reported that the duration of 1-s is always corresponding
to the spike discharges and is essential for the network
connectivity synchronization. Then calculate the PSD and
PLV of these artifact-free epochs. Third, the time course
of these features (i.e., PSD and PLV) was analyzed to
explore the dynamic temporal and spatial evolution of EEG
signals during the whole process of the seizures. Lastly,
PSDs and PLVs of EEG and each rhythm were compared
pairwise between the three groups: inter-ictal group, pre-ictal
group, and ictal group. EEG analysis was performed with
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TABLE 1 Detailed information of the clinical CAE patients.

Patients Age (years) Gender No. of
seizures

Seizures are induced by
hyperventilation or spontaneous

Brain region of seizure origin

1 11.42 Male 1 Spontaneous Right frontal region

2 6.42 Female 4 Hyperventilation Frontal lobes

3 11.67 Male 1 Hyperventilation Prefrontal lobe

4 5.92 Female 5 Spontaneous Frontal lobe

5 6.25 Female 2 Hyperventilation Prefrontal lobe

6 5.92 Female 2 Spontaneous Frontal lobe

7 6.67 Male 1 Hyperventilation Whole brain (mainly the left central, occipital, and
middle temporal regions)

8 6.42 Female 6 Hyperventilation Occipital region

9 9 Male 3 Hyperventilation Frontal lobe

10 8.08 Female 1 Hyperventilation Prefrontal region

11 8.92 Male 1 Hyperventilation Left prefrontal lobe

12 9.33 Female 1 Hyperventilation Right mid-posterior temporal region

13 11.33 Male 1 Spontaneous Not found

14 8.92 Female 3 Hyperventilation Prefrontal lobe

15 8.5 Female 1 Hyperventilation Frontal lobe

16 6.17 Female 3 Spontaneous Frontal and temporal lobes

17 5.25 Female 1 Hyperventilation Not found

18 6 Female 3 Hyperventilation Right middle temporal region

19 9 Female 1 Spontaneous Frontal lobe

20 7.58 Male 1 Hyperventilation Prefrontal, frontal, and lateral frontal regions

21 8.75 Female 1 Hyperventilation Not found

22 10.75 Male 2 Spontaneous Frontal and temporal lobes

23 12.75 Female 5 Hyperventilation Frontal lobe

24 6 Female 3 Spontaneous Frontal lobe

25 10 Female 2 Hyperventilation Prefrontal region

26 10.25 Female 2 Spontaneous Frontal and temporal lobes

27 9.42 Male 1 Hyperventilation Prefrontal, frontal, and parafrontal regions

28 10 Female 1 Hyperventilation Not found

29 6.33 Female 1 Hyperventilation Left parietal region

30 6.83 Male 1 Spontaneous Left occipital and posterior temporal regions

31 12.5 Female 1 Hyperventilation Not found

32 6.58 Female 4 Hyperventilation Frontal lobe

33 6.42 Female 1 Hyperventilation Prefrontal and parafrontal regions

Total 8.34± 2.17 23 females, 10
males

67 21 seizures are occurred spontaneously and 46
seizures are induced by hyperventilation

22 patients with seizures originating from
frontal-related regions (including frontal,
prefrontal, lateral frontal, right frontal, left

prefrontal lobes, etc.)

the software package MATLAB R2016b (The MathWorks,
Inc., Natick, MA, United States) and its EEGLAB and
statistics toolbox.

Power spectral analyses
As a non-parametric method based on periodogram, the

Welch method is superior to other parametric approaches due
to the availability of efficient Fast Fourier transform algorithms
(Zhang and Parhi, 2016), with the advantages of fast calculation

speed and multiple windows for selection. In accordance with
Welch’s periodogram method, the PSD of EEG signals in each
frequency band were calculated by using 1-s hamming windows.
The PSD can be estimated by the following steps (Welch, 1967):

First, the signal x(n),n={0,1...N−1} is divided into L segments.
Each segment has M points and the data in the i-th segment can
be expressed:

xi(n) = x(n+ iM −M), 0 ≤ n ≤ M, 1 ≤ i ≤ L (1)
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Then take the fast Fourier transforms of these sequences and
the i-th periodogram is:

Ii(ω) =
1
U

∣∣∣∣∣
M−1∑
n=0

xi(n)w(n)e−jwn
∣∣∣∣∣
2

, i = 1, 2 . . . ,M − 1 (2)

where U = 1
M
∑M−1

n=0 w2 (n) .
Finally, the PSD is obtained as:

PSD
(
ejw)
=

1
L

L∑
i=1

Ii(ω) (3)

The average power spectrum can be calculated as:

E
[
PSD

(
ejω)]

=
1

2π

π

∫
−π

Pxx
(
ejw)W (

ej(n−w)
)
dw (4)

where

W
(
ejω)
=

1
MU

∣∣∣∣∣
M−1∑
n=0

w(n)ejω
∣∣∣∣∣
2

(5)

Pxx
(
ejω
)
=

∞∑
m=−∞

rx(m)e−jωm (6)

rx(m) is the autocorrelation function of the x(n).
Mathematically, the spectral power in the frequency bands

(delta, theta, alpha, beta, and gamma) is calculated as (Zhang
and Parhi, 2016):

Pi = log
∑

ω∈ band i

PSDs (ω) , { i = delta, theta, alpha, beta, gamma.}

(7)

Synchronization analyses
Phase locking value, as an independent of amplitude, is

suitable to measure the phase synchronization of EEG signals,
which can be computed as follow (Lachaux et al., 2015):

PLV(t, f ) =
1
N

∣∣∣∣∣
N∑

n=1

exp
(
j
{
18(t, f )

})∣∣∣∣∣ (8)

where 18(t, f ) is the instantaneous phase difference between a
pair of EEG channels at time t and frequency f. Taking channels
1 and 2 for example, 18(t, f ) is calculated as:

18(t, f ) = 8ch1(t, f )−8ch2(t, f )(8)

where 8ch1(t, f ) and 8ch2(t, f ) are the instantaneous phases
of the EEG signals in channel 1 and channel 2, respectively.
Instantaneous phase φ(t) is obtained by the Hilbert transform.
The absolute value for PLVs ranges from 0 to 1, where 0
corresponds to no synchrony and 1 corresponds to maximum
synchrony. In this article, PLVs were converted into binary
matrices to construct the dynamic brain network by setting PLV
>0.6, which means a strong correlation.

Statistical analysis

After assessment of normality, a Kruskal–Wallis H-test was
used to compare the EEG PSD and PLV of five frequency bands
(delta, theta, alpha, beta, and gamma) across the three groups
(inter-ictal, pre-ictal, and inter-ictal groups). P < 0.05 indicates
a statistically significant difference (two-sided). All statistical
analyses and computations were performed in SPSS version 22.0
for Windows software (SPSS Inc., Chicago, IL, United States).

Results

Results include two parts: (1) the time course of the variables
(PSD and PLV) during the whole process of a seizure to
explore the dynamic temporal and spatial evolution of EEG
signals and the common characteristics that exist during the
CAE seizures for all patients. (2) In order to better discover
EEG biomarkers and understand the dynamic mechanism
of epilepsy, the statistical analysis to compare among inter-
ictal, pre-ictal, and ictal groups in EEG power spectral and
synchronization.

Dynamic temporal and spatial
evolution

Power spectral analysis
Time-frequency analysis of epileptic EEG signals was carried

out by a series of 1s time-scale power spectral constructed by
PSD. We found that for all seizures power in 2–4 Hz is the
highest especially in 3 Hz. Both the high frequency and EEG
power increase extremely during the seizures, but delta as the
slow-wave rhythm is the main component of EEG signals. To
further analyze the trend of PSD during seizures, the average
PSD of 16 channels was calculated, as shown in Figure 3.
Figure 3A shows that average PSD increases rapidly at the onset,
reaching the maximum within 3 s, but then gradually decreases
during this seizure (shown in blue line). However, the average
PSD of the subsequent seizure in this sample decreases and then
increases as shown in Figure 3B. These results show that the
trend of PSD in two seizures for the same patient is different.
In general, no gradual increase occurs throughout the seizure
process in this experiment.

Dynamic spatial propagation of EEG power was combined
with topography, as shown in Figure 4. The distribution of
the PSD before the seizure onset is almost the same as that
after the seizures (subfigure 1 vs. subfigure 16), and PSD of
the whole brain region is low at these moments. PSD in the
seizure state is much higher and distributed more widely than
that in the pre-ictal and post-ictal states. The pattern of spatial
evolution in this sample was first transmitted to the prefrontal
lobe (subfigure 4 and subfigure 5), spread to the upper part
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FIGURE 1

An example of multi-channel EEG signals in inter-ictal, pre-ictal, and ictal states.

FIGURE 2

A schematic illustration shows the detailed steps of the study.

of the brain (subfigure 6), then covered the most range of the
brain (subfigures 7–10), finally gradually decreased until the
seizures stopped (subfigures 11–13). Note that the topographic
map can not represent the power over time. The average PSD

in this sample tends to decrease gradually during this seizure
(Figure 3A). Still, there is a process of first increasing and
then decreasing in the spatial distribution, indicating that the
evolution of power and distribution is inconsistent. For a total
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FIGURE 3

The average power spectral density of 16 channels during seizures. The trend of PSD in two seizures in the same patient is different.

FIGURE 4

An example of the topographic distribution of the EEG power. Color bar scale of the six topographies on the left of the gray dotted line is
0–1,000 and the scale of the rest topographies on the right is 0–5000 due to an enormous increase in PSD during seizures. –20 s: The average
of PSD in 20 s before seizure start; +20 s: The average of PSD in 20 s after seizure stopped. There was a process of first increasing and then
decreasing in the spatial distribution of PSD for all seizures.

of three seizures in this patient, the average PSDs varies in trend,
while the spatial distribution evolution is consistent.

Network connectivity synchronization analysis
Figure 5 depicts an example of the time courses of

synchronization and dynamic network connectivity. With the
development of this CAE seizure, synchronization and network
connectivity show a progressive increase at the onset, then
extend to a wider range of brain regions, reaching its maximum
at 6 s, and finally decrease. We found that the strongest
connectivity (subfigure 8 of Figure 4B) just corresponds
to the maximum value of the PLVmean. At this moment,
comprehensive connections have been observed, indicating
a generalized seizure throughout the brain. Moreover, the
pattern of the evolution of network synchronous connectivity is

consistent with the spatial diffusion range (Figure 4), both first
increasing and then decreasing.

Comparison among inter-ictal,
pre-ictal, and ictal groups in
electroencephalography power
spectral and synchronization

Spatial distribution and rhythms analysis of
electroencephalography power spectral

Figure 6 compares the spatial distribution through single-
subject’s PSD topographies in inter-ictal, pre-ictal, and ictal
groups. PSD topographies of all samples are provided in
Supplementary material. The experimental results show that
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FIGURE 5

Time courses of the synchronization. (A) The average of PLV during the seizure. (B) Dynamic network connectivity distributions. The strongest
connectivity in (B) just corresponded to the maximum value of the PLVmean (at 6 s after onset in this seizure). The pattern of the evolution of
network synchronous connectivity is consistent with that of the spatial diffusion range, both first increasing and then decreasing.

EEG PSD’s spatial distribution varies greatly among individuals.
Compared to the pre-ictal and inter-ictal groups, PSD in the
ictal group was significantly enhanced in the entire brain.
We also found that most patients have the similar spatial
distribution of multiple consecutive seizures. Compared to the
inter-ictal state, EEG power spectral in the pre-ictal group
is higher than that in the inter-ictal group, and the spatial
distribution has also changed. More importantly, compared to
the ictal period, the PSD value was much lower in the preictal
period; nevertheless, the spatial distribution showed a similarity
for some patients.

Figure 7 compares the different rhythmic activities (delta,
theta, alpha, beta, and gamma) among the inter-ictal, pre-
ictal, and ictal groups. As the frequency gradually increases
from delta, theta, alpha, beta to gamma rhythm, PSD shows
a decreasing trend in these three groups. The statistical
results show that all the frequency bands in the ictal
group are significantly increased compared to the other two

groups (P < 0.001, P < 0.001). Although high-frequency
components do enormously increase in the ictal group, low-
frequency components, delta band, are still dominant. In
contrast to the inter-ictal group, the delta and theta rhythms
in low-frequency bands are significantly increased in the
pre-ictal group (H = 103.259, P = 0.042; H = 103.842,
P = 0.036) with the degrees of freedom m = 2, but
there is no significant difference in alpha, beta, and gamma
rhythms.

Comparisons among the three groups in
synchronization

Figure 8 shows the comparison among inter-ictal, pre-ictal,
and ictal groups of PLV in synchronization. PLV is extremely
heightened during seizures, and the main range of its values (the
interquartile of the boxplot) only overlapped with the outliers
in the pre-ictal group, are much larger than that in the other
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FIGURE 6

Comparisons among the three groups in the spatial distribution of EEG power. The spatial distribution of EEG PSD varies among individuals,
while most patients have a similar spatial distribution of multiple consecutive seizures as shown in (A). (B) For some patients, the spatial
distribution of the pre-ictal state showed similarities to the ictal state.

two groups. The boxplots between the pre-ictal and the inter-
ictal groups are similar, with a slightly higher median in the pre-
ictal group. The obvious difference is that there were much more
outliers in the pre-ictal group (the red “+” represents outliers).

Figure 9 compares the synchronization of these five
rhythms among the inter-ictal, pre-ictal and ictal groups. The
synchronization of all the rhythms in the ictal group is obviously
higher than that in the other two groups (P < 0.001, P < 0.001).
Compared to the inter-ictal group, the synchronization of the
delta band in the pre-ictal group is significantly decreased
(Hdelta = 18.569, P < 0.05), while the alpha band is enhanced
(Halpha = 29.517, P < 0.01). There is no significant difference
in theta, beta, and gamma rhythms between pre-ictal and inter-
ictal groups.

Discussion

This study aimed to provide biomarkers through analysis
time-frequency-spatial information of EEG signals on the
initiation and propagation of childhood absence seizures by
power spectrum analysis and network connectivity analysis.
This is helpful to investigate dynamic spatial and temporal
changes of EEG signals in CAE epileptic seizures. We found
that generalized seizures throughout the brain happen within

seconds of the onset of seizures in all patients, and the pattern
of spatial and temporal evolution is consistent in the range
of network connectivity and the distribution of EEG power
spectrum. We also compared the EEG power spectrum and
synchronization in different frequency bands among the inter-
ictal, pre-ictal and ictal states. In this present study, we found
excessively elevated PSD and PLV in all frequency bands
especially the delta band in the ictal group. Moreover, there are
some differences in EEG power and synchronicity between the
pre-ictal and inter-ictal groups, suggesting some early warning
signals for seizure detection.

Temporal and spatial dynamic
evolution

Electroencephalography power spectrum increased
significantly after the onset, reaching a peak of about 2–
5 seconds, then decreased due to the attenuation of power
(Figure 3). For each patient, EEG power at the frequency band
of 2–4 Hz exhibited a clear prevalence during the seizures. This
delta band, especially 3 Hz, agrees with the results reported
in CAE seizures by the review (Matricardi et al., 2014). In the
previous studies, each participant showed the spectral power
explosion about the ictal-onset 3-s in CAE (Sun et al., 2020)
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and the critical source locations from pre-ictal-2-s to onset-2s
had been found in CAE generation (Wu et al., 2017). For all
67 seizures in this work, the seizure discharges spread from
the local to the global brain area is about 2–5 s, indicating
rapid discharges’ diffusion. We study the evolution of EEG
power distribution during the seizure process from pre-ictal
to postictal states by using the topography shown in Figure 4.
The results show that abnormal discharges originate from the
local area and have a gradual spatial diffusion process with
a specific spatial-temporal evolution pattern, the ranges of
spatial diffusion first increases and then decreases. An early
topographic EEG research explored the evolution of spike and
wave discharges demonstrated that the origin of abnormal
discharges was localized (Lemieux and Blume, 1986). Similar
spatial diffusion of the discharges has also been observed in
previous scalp EEG, EEG-fMRI, and MEG studies (Westmijse
et al., 2009; Gupta et al., 2011; Qiu et al., 2017; Leitgeb et al.,
2020; Sun et al., 2020). We found that most seizures generate
from the frontal-related regions (including frontal, prefrontal,
lateral frontal, right frontal, left prefrontal lobes, etc.) as shown
in Table 1. The epileptic seizures of 22 patients originated
from the frontal area, reaching 66.7% (22/33). The frontal
discharges have been observed in these subjects. Furthermore,
Figure 4 shows the observed PSD enhancement in the frontal
region at the onset of seizures. Studies in patients with absence
epilepsy have already reported the importance of the frontal
cortex (Szaflarski et al., 2010; Gupta et al., 2011; Sysoeva et al.,
2016), and local discharges are mainly predominant in the
frontal area (Blume and Lemieux, 1988; Wu et al., 2017).
The onset of CAE was characterized by high associations at
the left and right frontal regions (Westmijse et al., 2009).
Therefore, frontal dominance may play an important role
in the initiation of seizures. In addition, we found that the
temporal-spatial distribution of PSD was consistent in the
continuous multiple episodes of most patients, but varied a lot
among different patients. The reason may be that the abnormal
discharges in each patient have the same location of origin and
transmission route.

Epilepsy is caused by abnormally increased synchronization
of brain networks (Fisher et al., 2005). The synchronization
of neurons in brain regions may regulate the transmission of
information between cortical regions on the coupled temporal
and spatial scale, which is essential for consciousness and
cognition (Hughes, 2009) and is associated with the transient
loss of consciousness in CAE patients. In this article, dynamic
network connectivity was performed to explore the interaction
among brain regions. Figure 5 shows that the brain network
connectivity increases gradually at the onset of a seizure,
reaches the maximum, and then declines until it returns
to normal, which is consistent with the spatial distribution
evolution of EEG power spectral. Particularly, the maxima
of these two characteristics almost emerge simultaneously
for the same seizure. The essential reason is that the CAE

seizures are generated from the local epileptic discharges,
and the diffusion leads to a larger range of these abnormal
discharges, and then mutual interaction among brain regions
results in the enhancement of synchronization. Therefore, the
synchronization connectivity of the brain network reaches the
strongest when the epileptic discharges spread to the maximum
range of the brain area. This result confirms that the spread
of CAE is caused by the spread of epileptic discharges and
their subsequent interaction with brain regions. Our study
confirmed the enhanced synchronization of the brain network
and found an intrinsic link between EEG power and brain region
synchronization.

Comparison among inter-ictal,
pre-ictal, and ictal groups

The results showed a significant increase of EEG PSD
in the ictal group and its distribution in brain area is quite
different from the other two groups as shown in Figure 6.
The homeostasis system in the brain regulates the excitability
of the neurons, keeping the brain activity in the normal range
and preventing it from excessive discharges (Stefan and Da
Silva, 2013). Any slight disturbance that exceeds the normal
range can result in a huge transition to the pathological states,
such as seizure or coma. Thus, the results indicated that brain
activity is completely altered during the seizure by breaking the

FIGURE 7

Comparisons among the three groups of PSD in five frequency
bands (∗P < 0.05, ∗∗P < 0.001). These five frequency bands
(delta, theta, alpha, beta, and gamma) in the ictal group were
significantly increased compared with pre-ictal and inter-ictal
groups, respectively (Hdelta = 103.259, Htheta = 103.842,
Halpha = 100.364, Hbeta = 101.648, Hgamma = 100.785,
P < 0.001). Compared with inter-ictal group, delta and theta
rhythms were significantly increased in the pre-ictal group
(Hdelta = 17.132, P = 0.042; Htheta = 18.403, P = 0.036) with the
degrees of freedom m = 2.
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FIGURE 8

Comparisons among the three groups in synchronization
(inter-ictal vs. pre-ictal, inter-ictal vs. ictal, and pre-ictal vs. ictal).
Boxplots of PLV in three groups; PLV was extremely heightened
during the seizures. There were much more outliers in the
pre-ictal group than inter-ictal group (the red “+” represents
outliers).

FIGURE 9

Comparisons among inter-ictal, pre-ictal, and ictal groups in
synchronization of five frequency bands (∗P < 0.01, ∗∗P < 0.001).
The synchronization of all the rhythms in the ictal group was
higher than inter-ictal and pre-ictal groups (P < 0.001).
Compared with the inter-ictal group, the synchronization of the
delta band in the pre-ictal group was significantly decreased
(Hdelta = 18.569, P < 0.05), while the alpha band is enhanced
(Halpha = 29.517, P < 0.01) with the degrees of freedom m = 2.

homeostasis of the brain. Even for the same type of epilepsy,
EEG PSD’s spatial distribution varies greatly among individuals.
But for the same patient, similarity occurs in the spatial
distribution of multiple consecutive seizures. This could explain
the better performances of epilepsy prediction or detection can
be achieved by using subject-specific method. Furthermore,
Figure 8 that the outliers in the pre-ictal group were overlapped
with the main range of the ictal group, revealing that the
network connectivity would strengthen at certain moments
before the onset. These findings can distinguish between pre-
ictal and inter-ictal states, providing a basis for using PSD and
its spatial distribution as features for seizure prediction.

The occurrence of the enhanced EEG rhythms seems to
be associated with various brain activities or brain diseases.
In order to further explore the feature changes of EEG
rhythms in CAE patients, this article compared the PSD and
PLV of each rhythm among the inter-ictal group, the pre-
ictal group, and the ictal group in Figures 7, 9, respectively.
Results showed a significant increase of all frequency bands
in both PSD and PLV during the seizure period, in line
with the results of some previous studies (Piqueira, 2011;
Wu et al., 2017; Leitgeb et al., 2020). In this study, we
noticed the significantly increased delta and theta power in
the pre-ictal group compared to the inter-ictal group. Delta
rhythm is the main component during the CAE seizures. The
increased delta power in the pre-ictal groups may reflect the
generation of epileptic slow-wave discharges before the onset
of the seizure. Increased theta activity may reflect frequent
discharges before seizures (Li et al., 2018). Glaba et al. (2020)
presented the evidence to support the hypothesis that the
increased theta rhythm power in CAE patients is a manifestation
of cortical hyperexcitability (Vestal and Blumenfeld, 2010).
Therefore, we concluded that the coalescence of delta and
theta rhythm enhancement is conducive to the occurrence
of seizure events in CAE. This interpretation is corroborated
by the previous study that found the increased delta and
theta power preceded seizures in WAG/Rij rats of absence
epilepsy (Sitnikova and van Luijtelaar, 2009). Since some
patients in this study used hyperventilation-induced seizures,
some previous studies (Clemens, 2004) have shown that
hyperventilation can also enhance delta and theta rhythms.
Therefore, we performed a statistical analysis of 21 seizures
in 10 patients with spontaneous absence seizures (shown in
Supplementary material). It was found that the phenomenon
of delta and theta rhythm enhancement still existed before
the seizure onset.

In terms of PLV, the synchronization of delta rhythm
decreased while the alpha rhythm increased in the pre-ictal
group compared with the inter-ictal group. Altered rhythm
regulations were demonstrated relating to diffuse activation
and hypersynchrony in patients with epilepsy (Clemens, 2004).
Delta diffusion exists before the epileptic seizure, leading to the
enhanced delta rhythm power. However, the synchronization
of delta rhythm decreased in the pre-ictal states. Therefore, the
results indicated that the frequency of delta rhythm is increased
but the occurrence of delta rhythm is not synchronous in
each electrode. Alpha rhythm, associated with the remarkable
inhibitory effects (Qin et al., 2020; Pellegrino et al., 2021), can
reduce cortical excitability (Sauseng et al., 2009) and maintain
the functional integrity of brain networks (Waldhauser et al.,
2012; Pellegrino et al., 2021), which is a safety mechanism to
protect the brain and prevent transition to seizure (De Curtis
and Avanzini, 2001; Badawy et al., 2010). Our results showed
increased synchronization of alpha rhythm in the pre-ictal
group, while there was no difference in alpha PSD between the
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inter-ictal and pre-ictal groups. Therefore, synchronization of
alpha rhythm is a good feature to classify these two groups.

Limitations

Several limitations should be considered in the present
study. Firstly, EEG with low spatial resolution is hard to detect
the exact profile of the spatial location. Thus, in the future,
we will combine with other multi-modal imaging technologies
to improve spatial resolution. Secondly, CAE is a kind of age-
dependent epilepsy. Children’s age has a great influence on EEG
signals in CAE patients, but the relatively small sample size
in the current study is not amenable to further subdivision
according to different age groups. Lastly, the results may be
affected by artifacts from EEG signals, although a filter has been
used to minimize these artifacts. Further work, these factors will
be considered to obtain more reliable results.

Conclusion

Combining time-frequency and time-space analysis of
the EEG provides comprehensive information to describe
the dynamic spatial and temporal changes in CAE patients.
Despite the fact that CAE is classified as a generalized type
of epilepsy, we confirmed the existence of a rapid diffusion
process (within seconds) in the localized pattern of activation
with frontal dominance. Our results found that the patterns
in the distribution of EEG PSD are consistent with that in
the spatial synchronization connectivity during the seizures,
suggesting that the initiation and propagation of CAE seizures
are the results of the combination of the abnormal discharges
diffusion and brain regions synchronization. In terms of the
comparison among inter-ictal, pre-ictal, and ictal groups, the
ictal group is different from the other two groups, herein brain
activity is completely changed. Our study also confirmed that
epileptiform discharges may occur prior to epileptic seizures due
to the increased delta and theta power in the pre-ictal group,
which seem to be good biomarkers. Individual differences bring
difficulties to the clinical diagnosis and detection of epilepsy.
Still, the similarity of the EEG PSD spatial distribution among
multiple seizures in the same sample can be used to predict
epilepsy clinically. Taken together, our results provide a new
window on the dynamic spatial and temporal evolution of EEG
signals in CAE and contribute to understanding the origin and
transmission mechanism.
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