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Explosive advances in next-generation sequencer (NGS) and computational analyses

have enabled exploration of somatic protein-altered mutations in most cancer types,

with coding mutation data intensively accumulated. However, there is limited infor-

mation on somatic mutations in non-coding regions, including introns, regulatory

elements and non-coding RNA. Structural variants and pathogen in cancer genomes

remain widely unexplored. Whole genome sequencing (WGS) approaches can be

used to comprehensively explore all types of genomic alterations in cancer and help

us to better understand the whole landscape of driver mutations and mutational sig-

natures in cancer genomes and elucidate the functional or clinical implications of

these unexplored genomic regions and mutational signatures. This review describes

recently developed technical approaches for cancer WGS and the future direction

of cancer WGS, and discusses its utility and limitations as an analysis platform and

for mutation interpretation for cancer genomics and cancer precision medicine. Tak-

ing into account the diversity of cancer genomes and phenotypes, interpretation of

abundant mutation information from WGS, especially non-coding and structure vari-

ants, requires the analysis of large-scale WGS data integrated with RNA-Seq, epige-

nomics, immuno-genomic and clinic-pathological information.
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1 | INTRODUCTION

Cancer is essentially a disease of the genome which evolves and

progresses with accumulations of somatic mutations, including copy-

number alterations (CNA) and structural variants (SV), and epige-

nomic alterations with and without some hereditability (germline

variants).1,2 A number of familial cancer segregation studies and loss-

of-heterozygosity (LOH) analyses on cancer tissues have identified

germline and somatic mutations of several classical tumor suppressor

genes, such as RB1, TP53 and APC,2,3 and copy-number analysis has

found some oncogenes and underlying oncogenic activators, such as

HER2/ERBB2 and MYC.1,4 Some of these oncogenic mutations have

been successfully targeted for molecular therapy, and specific and

recurrent mutations of these oncogenes are now used to predict

sensitivity to therapy, prognosis and residual disease.1,2

Explosive advances in next-generation sequencer (NGS) and

computational analyses handling massive data have enabled us to

comprehensively analyze cancer genome profiles at research and

clinical levels, such as targeted sequencing for hundreds of genes,

whole exome sequencing (WES), RNA sequencing (RNA-Seq) and

whole genome sequencing (WGS).5,6 So far, to explore cancer geno-

mic alterations and their diversity, more than 50 000 cancer gen-

omes have been sequenced and accumulated worldwide, including

The Cancer Genome Atlas (TCGA)2,7 and The International Cancer
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Genome Consortium (ICGC),8 and hundreds of millions of cancer

patients will have their genome sequenced by 2030. In these pro-

jects so far, WES is the main platform for cancer genome sequencing

and vast amounts of mutational data in protein-coding regions have

been accumulated for all types of common and rare human tumors.

These systematic studies of these cancer genome data have reveled

scores of new cancer genes and pathways,2 and saturation analysis

suggests that most driver genes with frequent mutation in cancer

have been almost elucidated.9,10 Researchers are now focusing on a

“long tail” of rare mutated driver genes2,11 and rare variants of the

driver genes, in addition to validating these functional or clinical

implications by integrating with clinical data and using functional

assays. Pan-cancer analysis on WES data demonstrated that carcino-

gen-exposed cancer, such as melanoma and lung cancer, have far

higher numbers of somatic mutations in coding regions among com-

mon cancers, while pediatric tumors and leukemia have much fewer

mutations and only several protein-altered mutations are present in

their whole coding regions.12,13 TCGA and ICGC provide compre-

hensive mutational data of coding regions in more than 20 000 can-

cers and the COSMIC database14 has been extensively curating

mutations from targeted sequencing and WES, summarizing coding

mutations for more than 1 000 000 cancer samples. However, there

is limited information on somatic mutations in non-coding regions

spanning 98% of the human genome, which includes untranslated

regions (UTR), introns, promoters, regulatory elements, non-coding

functional RNA, repetitive regions and mitochondrial genomes.

Somatic structural variants (SV) including large deletions/insertions,

inversion, duplication, translocation and pathogen (virus) integration

in cancer genomes also remain widely unexplored (Figure 1A). WGS

approaches can cover all of these unexplored mutations (Table 1)

and help us to better understand the “whole” landscape of cancer

genomes and elucidate the functions of these unexplored human

genomic regions (Figure 1A). This approach combined with mathe-

matical analysis and other omics analysis can clarify the underlying

carcinogenesis and achieve molecular sub-classification of cancer,

which facilitates discovery of genomic biomarkers and personalized

cancer medicine. This review describes recent technical approaches

for cancer WGS and the future direction of cancer WGS, and dis-

cusses its utility and limitations as an analysis platform and for muta-

tion interpretation for cancer genomics and cancer precision

medicine.

2 | NEXT-GENERATION SEQUENCER
TECHNOLOGY AND WHOLE GENOME
SEQUENCING ANALYSIS

Detectable mutations by each of the genomic analysis platforms

(DNA chip, target sequencing for 100 genes, WES, RNA-Seq and

WGS) and their performances are summarized in Table 1. WES anal-

ysis captures protein-coding exons spanning approximately 50 Mb

(1%-2%) of the human genome by in-solution hybridization,15

microarray capturing or PCR amplification, and usually sequences

approximately 100 9 sequence depth for each sample, which is

more accurate than 30 9 WGS, because the accuracy of mutation

calling by NGS is primarily dependent on the sequencing depth.

However, some capturing bias expected is, for example due to diffi-

culty detecting complicated or repetitive genomic regions as well as

non-targeted regions. On the other hand, WGS is technically

straightforward. DNA is randomly fragmented by physical shearing,

and 30-509 sequence depth (90-150 Gb) of each human whole gen-

ome is usually sequenced for both cancer and normal genomes,5,6

which can cover 99% of the entire human genome. Common NGS

technology reads are 100-150 bp for both ends of a 500-600-bp

DNA fragment,16 but WGS by NGS is still dependent on PCR, with

PCR bias, indicating that GC-rich or AT-rich regions are difficult to

sequence. PCR-free protocol was recently developed, which shows

less GC bias and is more comprehensive than the PCR protocol,

although some lg DNA is required as an input for library prepara-

tion. The largest limitation of the present 2nd NGS technology (Illu-

mina SBS technology)16 is its short-read length (100-250 bp).

Around 50% of the 3-Gb human genome is occupied by repetitive

regions and pseudogenes in its 50%, and when short sequence reads

are aligned to the redundant reference genome, alignment errors can

occur around these repetitive or complicated regions, leading to

mutation calling errors.17 The 3rd generation NGS technologies such

as PacBio SMART single molecule sequencing18 and nanopore

sequencing19 can yield 10 kb and longer reads without PCR bias and

are promising for analysis for human WGS; however, they currently

suffer from a high error rate (5% and more) in each read and are still

prohibitively expensive for WGS analysis, considering that the cost

of human WGS was just below $1000 in 2017 (Table 1).

3 | COMPUTATIONAL ANALYSIS FOR
CANCER WHOLE GENOME SEQUENCING

One of the most challenging issues for cancer WGS is computational

analysis. Cancer WGS is required to produce more than 90-150 Gb

92 (cancer and normal DNA) of sequence data, corresponding to

approximately one terabyte for raw data. Large computer resources

are required to handle WGS datasets and to perform alignment and

variant calling promptly for thousands of cancer WGS. Academic

genome centers are usually increasing their computer resources for

WGS, but it would be not sufficient in these academia resources for

analysis on tens of thousands of WGS dataset. Cloud computing sys-

tems can solve these problems and facilitate the sharing of genomic

data globally, although there are technical problems with data trans-

fer and ethical and legal issues in some areas.20

A representative set of computational pipelines and the analysis

workflow for cancer WGS are shown in Figure 2. As an initial step,

raw sequence data (90-150 Gb 92) from NGS (FASTQ files) are

aligned to the 3-Gb human reference sequence (hg19 or new hg38)

by BWAmem and other programs, producing BAM files, and PCR

duplicates are removed from the BAM file (usually a few percent).

Somatic mutations are called by several algorithms specific to
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somatic mutation types, such as single nucleotide variants (SNV),

short indels, CNA and SV, which statistically compares variant allele

fractions (VAF) in the cancer genome with those in the normal gen-

ome.21-23 Accuracy is primarily dependent on the sequence depth in

each genomic region. The other important factor for accurate analy-

sis is considering alignment or mapping error. Taking account of the

complexity and redundancy of the human genome, especially non-

coding regions, alignment error can occur with high frequency when

short reads are aligned to repetitive and redundant regions.17,23 The

most serious problem of WGS is that its result is dependent on

these mutation call algorithm and each pipeline calls different somatic

mutations, especially in low-depth and complicated regions and

somatic short indels.23 The ICGC working group23 performed an

extensive benchmark exercise of more than 10 analysis pipelines all of

the world and evaluated the consistency of the mutation calling meth-

ods. Somatic indel calling showed a high level of inconsistency, while

SNV and SV calls showed comparative consistency among the pipeli-

nes, concluding that somatic mutation calling remains an unsolved

problem. The working group proposed guidelines for computational

analysis for cancer WGS.23 For germline variants which are related

with cancer risk and hereditary cancer diagnosis, another calling pipe-

line is required because only normal genome sequencing data is ana-

lyzed and VAF is around 50% basically. HaplotyperCaller of GATK

(https://software.broadinstitute.org/gatk/) is commonly used for

germline variant calling, including SNV and indels fromWGS.

4 | MUTATIONS IN CODING REGIONS AND
SPLICING SITES

Whole genome sequencing can detect somatic SNV and short indels

(1-10 bp) in coding regions and splicing sites near the exon-intron

F IGURE 1 A, Whole genome
sequencing (WGS) by next-generation
sequencer (NGS) can detect non-coding
mutations, structural variants (SV),
including copy number alterations (CNA),
mitochondria mutations and pathogen
detection, as well as protein-coding
mutations; B, A representative Circos plot
of cancer genome structure from WGS
analysis, which indicates SV and CNA in all
human chromosomes (1-22+XY).
Chromothripsis was observed in
chromosomes 1 and 14. SNV, single
nucleotide variants
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junctions as well as WES. WGS can detect somatic mutations in

intronic regions, whose impact is difficult to evaluate and inter-

pret.2,24 However, combined analysis with RNA-Seq data can

evaluate the impact of deep intronic and synonymous mutations and

investigate the transcriptional or functional consequences of the

genomic alterations (Figure 3).25,26 In addition to mutations in exon-

intron junction sites (the GU-AG consensus sites), mutations in deep

intronic regions can generate new splice-donor or acceptor sites, giv-

ing rise to new splicing forms. Synonymous mutations in coding

regions and intronic regions can alter exonic motifs that regulate

splicing and the functions of cancer-related genes.27 Systematic

combined analysis of WGS and RNA-Seq is required to interpret

these non-coding mutations.26

5 | MUTATIONS IN NON-CODING
REGIONS

Pre-mRNA of protein-coding genes usually contain extensive non-

coding sequences, in the form of introns, 50-untranslated regions (50-

UTR) and 30-untranslated regions (30-UTR) (Figure 3). They are

involved with regulation of RNA transcription, splicing and protein

translational processes.28 Mutations in 30-UTR tend to occur in can-

cer driver genes29 and are likely to control RNA stability and protein

translation through miRNA binding (Figure 3). The human genome

contains genes encoding approximately 20 000 non-coding RNA

(ncRNA), including tRNA, ribosomal RNA, microRNA and long non-

coding RNA (lincRNA).30 These functional ncRNA are expected to

contribute to chromatin structures, transcription regulation, RNA

TABLE 1 Detectable mutations by each analysis platform for
cancer genome

DNA
chip

Target-
Seq Exome

RNA-
Seq WGS

Coding SNV M ○ M ○

Coding indels M ○ M ○

Splicing alteration M ○ ○

Promoter mutation ○

Regulatory regions ○

Copy-number

alteration

○ M ○

Structural

variant

M (fusion) ○

Pathogen ○ ○

Mitochondria M M ○

Mutational

signature

M ○

Neo-antigen/

HLA

○ ○ ○

Sequence (Gb) — 0.5-1 10 5-10 90-150

Assay cost ($) 100 200-500 500 500 1000

SNV, single nucleotide variants; WGS, whole genome sequencing.

F IGURE 2 A representative set of computational tools for cancer whole genome sequencing (WGS) analysis. As an initial step, raw
sequence data (90-150-Gb 92: FASTQ files) from next-generation sequencer (NGS) of cancer genome and normal genome are aligned to the
3-Gb human reference sequence (3 Gb), producing BAM files. PCR duplication is removed from the BAM file (usually a few percent). Somatic
mutations are called by several types of algorithms specific to mutation types (SNV, short indels, CNA, SV and others), comparing variant allele
numbers in cancer genomes with those in normal genomes by statistical analysis and creating a list of somatic mutations (VCF files). Germline
variant call including SNV and indels is commonly performed from sequencing data of normal genomes using other software, HaplotypeCaller
of GATK. SNV, single nucleotide variants; SV, structural variants
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splicing and the translational machinery.30,31 Some studies32,33 report

that somatic mutations are accumulated in lincRNA NEAT1 and

MALAT1, which are located nearby and are involved with cancer

invasions. Furthermore, intergenic regions contain various regulatory

element sequences that are crucial to regulate gene expression and

associated chromatin structure. Genome-wide association studies

(GWAS) for cancers have identified several hundreds of cancer-pre-

disposing loci and germline variants, many of which are located in

intergenic regions, expecting that they are involved with regulatory

elements controlling gene expression around these loci.34 Extrapola-

tions from the ENCODE project,35 Roadmap Epigenomics Consor-

tium36 and FAMTOM30 suggest that 20%-40% of the human

genome could be regulatory elements. Efforts have shifted toward

finding interactions between genomic variants and regulatory pro-

teins by ChIP-Seq, or open chromatin elements (structures), which

can indicate where there are active regulatory sequences in a cell

type-specific or cancer-specific manner.35,36

Whole genome sequencing analysis in melanoma samples

revealed hotspot mutations in the TERT promoter, located �124 bp

and �146 bp upstream from the translation start ATG site and con-

ferred enhanced TERT promoter activity.37 These promoter muta-

tions were frequently detected in glioblastoma, bladder cancer,

thyroid cancer, liver cancer and melanoma, although the strength of

association between these TERT promoter mutations and TERT

expression is variable among cancer types.38 In a subset of T-cell

ALL, somatic mutations in non-coding regions introduced binding

motifs for the MYB transcriptional factor and created a super-enhan-

cer upstream of the TAL1 oncogene.39 Recent systematic or statisti-

cal analysis for non-coding somatic mutations using WGS datasets

from TCGA and ICGC indicated that several non-coding regions are

frequently mutated, such as the promoters or regulatory elements of

PLEKHS1, WDR74, TFPI2 and BCL6.32,40,41 There are a lot of CTCF/

cohesion-binding sites (CBS) across the human genome, which

function as insulators to regulate gene expression of nearby genes.

Multiple cancer types accumulate CBS mutations42 and these muta-

tions may be involved in the generation of double-strand breaks and

SV as well.43 To identify non-coding mutations and to interpret their

impacts and consequences, more systematic approaches are required

by integrating many datasets targeting non-coding regulatory

regions, such as ENCODE,34 FANTOM,30 ChIP-Seq datasets (epige-

nomic data) and gene expression datasets (RNA-Seq).

6 | COPY NUMBER ALTERATIONS

Copy number alterations (CNA), affecting large DNA segments

(10 kb and more), are one of the most common landmarks of cancer

genomes, and lead to activation of oncogenes and inactivation of

tumor suppressor genes located in focal CNA. The CNA-associated

oncogenes and tumor suppressors include the focal amplifications of

8q24.21 (MYC), 11q13.3 (CCND1), 7p11.2 (EGFR), 17q12

(ERRB2 = HER2) and 7q31.2 (MET), whereas focal deletion involved

13q14.2 (RB1), 9p21.3 (CDKN2A) and 10q23.31 (PTEN).44,45 Array

CGH and DNA or SNP chip analyses efficiently detect gain or loss

of CNA in cancer genomes and we should discuss CNA in a compre-

hensive cancer genome analysis. The challenge is to identify the

oncogene and tumor suppressor gene targets of the driver CNA,

which often encompass many genes and elucidate the functional

roles of CNA.44,45 CNA affect not only protein-coding genes: copy

number gains of noncoding regions harboring super-enhancers near

some oncogenes such as KLF5 and MYC are associated with overex-

pression of these cancer-related genes.46 Computational tools for

WES can detect CNA, but its resolution is not high and sometimes it

is difficult to detect specific CNA because exon capturing does not

cover many recurrent CNA regions and there is some bias. On the

other hand, WGS can analyze CNA in a non-biased way by counting

F IGURE 3 Non-coding mutations and
gene expression in whole genome
sequencing (WGS) and RNA-Seq. Intronic
mutations can affect splicing forms.
Mutations in 50UTR and promoter regions
can alter transcriptional activity, and
regulatory elements such as enhancers,
silencers or insulators in intergenic regions
can affect chromatin structure and
transcriptional activity. Mutations in 30UTR
can alter RNA stability and protein
translation through changes in miRNA
binding and other mechanisms. Mutations
in non-coding RNA, especially miRNA and
lincRNA, may change the interaction of
coding RNA/proteins and regulatory
elements, and alter chromatin structure
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reads mapped to specific genomic regions in cancer/normal DNA.

Even low-depth WGS (90.1) can efficiently detect CNA in cancer

genomes.47 The theological base of non-invasive prenatal genetic

testing (NIPT) is that CNA of a fetus are detected in plasma of preg-

nant women,48 and this method of low-depth WGS is applied to

cancer patients as a liquid biopsy or ctDNA (circulating tumor DNA)

analysis. Indeed, NIPT by WGS can detect CNA of cancer in low-

depth WGS of plasma from cancer-bearing pregnant women.49

7 | STRUCTURE VARIANTS

Distinct rearrangements or SV in leukemia and sarcoma lead to the

activation of proto-oncogene products or creation of cancer-specific

fusion genes, some of which are clinical diagnostic tools, such as

STY-SSX1 fusion in synovial sarcoma and EWS-FLI1 fusion in Ewing

sarcoma.50 Philadelphia chromosome in CML,51 translocation

between chromosome 9q34 and 22q11 gives rise to the BCR-ABL

fusion gene, to which the ABL kinase inhibitor imatinib for first time

successful targeted in CML. A small inversion on 2p creates the

EML4-ALK fusion gene, which is found in 1%-2% of lung adenocarci-

nomas, and kinase inhibitors are targeting such a kinase fusion gene

as ALK in lung cancer.52 SV involving ROS1 at 6q22 (mainly translo-

cation) and RET1 at chromosome 10q11.2 (mainly inversion) were

also identified in a small percentage of lung cancers with unique clin-

ical and pathological features. They produce fusion kinases as driver

genes and are molecular targets for lung cancer53,54; 40%-70% of

prostate cancers were found to have SV involving ERG at 21q22 and

multiple ETS family genes, producing TMPRSS2-ERG and ETS family

gene fusions.55 Recent analysis for medulloblastoma found recurrent

SV activated GFIB proto-oncogene by enhancer hijacking.56 In liver

and kidney cancers, the promoter regions of TERT are frequently

affected by SV, inducing TERT overexpression.32 SV affects CD274

(PD-L1) genes in specific types of lymphoma,57 inducing the stability

of PD-L1 and associated with immune escape of cancer cell.

8 | MUTATIONAL ANALYSIS IN REPEAT OR
REPETITIVE REGIONS

Repetitive sequences comprise approximately 50% of the human

genome. These sequences are highly variable and have been used

for genome linkage mapping and diagnosis of cancer with DNA mis-

match-repair deficiency as a microsatellite instability (MSI) test. It is

still difficult to analyze mutations and variants in such repetitive

regions using WGS and NGS approaches because of alignment

issues for short-read sequences. A recent study analyzed MS muta-

tions in approximately 1000 WGS data across 23 cancer types and

identified genes in DNA repair and oncogenic pathways recurrently

subject to MSI and uncovered non-coding loci that frequently display

MSI.58 Transposable genetic elements, which are an abundant com-

ponent in the human genome, can replicate and insert copies of

themselves at other locations.23 These transposons played a major

role in a driving force for genomic evolution and diversity.59 Several

studies have analyzed transposon-mediated somatic mutations and

SV by using cancer WGS data and have identified 4-5 somatic retro-

transposon insertions per tumor.59,60 These somatic retrotransposon

insertions tend to occur in genes that are commonly mutated in can-

cer and can change their expressions.

9 | PATHOGEN DETECTION AND
INTEGRATION

Viral and bacterial infection and following chronic inflammation are

the strongest etiological factors of cancer development. Hepatitis B

virus (HBV) or hepatitis C virus (HCV) infection are linked to liver

cancer. Human papillomavirus (HPV) infection initiates and promotes

carcinogenesis of the cervix. Helicobactor pylori and Epstein-Barr

virus (EBV) infection are involved with gastric cancer development.

Hence, it is important in cancer genomes to detect DNA or RNA

sequences derived from known and unknown pathogens (virus and

bacteria) leading to chronic inflammation and WGS can detect geno-

mic integrations of pathogens to the host human genome. Techni-

cally, unaligned reads to the human genome sequences are extracted

and accumulated from WGS or RNA-Seq data and they can be

matched to known pathogen genome sequences with or without

pre-assembling. Especially for tumors in digestive organs, bacteria

detection and metagenome analysis of gut flora are important for

understand the genome-environmental interaction in tumor develop-

ment and therapy resistance, such as Fusobacterium in colorectal

cancer61 and Gammaproteobacteria in pancreatic cancer.62 WGS of

liver cancers detected several integration sites of the HBV DNA gen-

ome (3 kb), which preferentially integrated to the genomic regions of

the TERT and MLL4 loci.32,63 The HPV DNA genome and its integra-

tions are detected by WGS for cervical cancer64 and head and neck

cancer. Several rare cancers have a strong viral component, such as

EBV in Burkitt lymphoma65 and nasopharyngeal carcinoma, and RNA

retrovirus HTLV-1 in adult T-cell leukemia/lymphoma.66 Adeno-asso-

ciated virus (AAV) is also reported to be integrated in liver cancer

genome,32 although its pathogenesis is unclear. These viral integra-

tions/interactions are likely to lead to local genomic instability fol-

lowed by copy number changes, overexpression around the

integration sites, and human-human or human-virus gene fusion

events, in addition to oncoproteins derived from viral genome.

10 | MUTATIONS IN MITOCHONDRIA
GENOME

Whole exome sequencing is not designed to capture the 16-kb mito-

chondria genome, which includes 13 protein-coding genes that are

equipped with all the elements necessary for their own protein syn-

thesis.67 The proteins encoded by mitochondrial DNA (mtDNA)

genes work with other nuclear genes to form the respiratory chain

complexes that are the main energy production system in cells. The
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involvement of mitochondria in carcinogenesis has long been sus-

pected and altered energy metabolism is a common feature of can-

cer.68 Some studies have examined mtDNA copy numbers in

individual cancer types68 or from a collection of WES data69 and

demonstrated that there is selective pressure against deleterious

coding mutations in mtDNA, supporting that functional mitochondria

are required in tumor cells. These studies also observe a strong

mutational strand bias, compatible with endogenous replication-

coupled errors as the major source of mutations. Transmission of

mtDNA to the nuclear genome occurs in neoplastically transformed

cells and mitochondrial-nuclear genome fusions occur at a similar

rate per base pair of DNA as interchromosomal nuclear SV.70

11 | MUTATIONAL SIGNATURE

Somatic mutations in cancer are the consequence of multiple mutational

processes, including the intrinsic infidelity of the DNA replication

machinery, exogenous or endogenous mutagen exposures, enzymatic

modification of DNA, and defective DNA repair. Different mutational

processes generate unique combinations of mutation types, termed

“mutational signatures.”12 Each of the mutational signature patterns is

associated with each cancer etiology in a tissue-specific manner. For

example, C>A/G>T transversions such as R293S are the most frequent

substitutions in the TP53 gene in liver cancer developed through afla-

toxin exposure.71 Unlike WES, WGS detects thousands of somatic SNV

in common cancers, and recent comprehensive mutational searches and

non-negative matrix factorization mathematical analysis have extracted

more than 30 mutational signatures for cancer genomes, which are

shown in the COSMIC database (http://cancer.sanger.ac.uk/cosmic/sig

natures). Researchers have attempted to implicate each of these muta-

tional signatures in biological and epidemiological aspects.12 Among

these established mutational signatures, some are established to be

associated with specific mutational processes. Signature 1 represents a

clock-like mutational process (aging) and is observed in all types of can-

cer.72 Signature 24 represents the signature associated with afla-

toxin,32,71 Signature 22 with aristolochic acid (which is contained in

Chinese herbal products),73 Signature 4 with smoking exposure,32,74

Signature 3 with the defect of DNA double-strand break repair associ-

ated with BRCA1/2 mutation, and Signature 6 with DNA-mismatch

repair defects (Figure 4).75 By observing genome-wide somatic muta-

tional signatures from cancer WGS data, we may presume the etiologi-

cal factors for individual cancer development among the multiple

internal (aging and intrinsic DNA repair) and external (environmental

exposure) etiological steps in carcinogenesis.

12 | GENOMIC INSTABILITY AND CELL-
OF-ORIGIN PREDICTION BY MUTATIONAL
SIGNATURE

Whole genome sequencing analysis of cancer revealed a distinct sig-

nature pattern, termed chromothripsis,76 in which, 1 or a few

chromosomes in 1 cell produce dozens to hundreds of clustered SV

(Figure 1b). The mechanism for such complicated SV is that at 1 or

more carcinogenic stage, distinct chromosomes or genomic regions

become fragmented into many segments which are then pieced

together inaccurately by DNA repair mechanisms.76 Chromothriptic

signatures were detected in cancers arising from patients with inher-

ited p53 mutations,77 suggesting that this event is associated with

the functions of p53 and genomic stability in various DNA damage

response signaling pathways. WGS analysis for breast, ovarian and

pancreatic cancers indicated that signatures were related with inacti-

vation of DNA maintenance genes (BRCA1, BRCA2 and PALB2), and

also related with high response to DNA-damaging agents and PARP

inhibitors.75,78 Recent studies have demonstrated that somatic sub-

stitution, insertion/deletion and SV patterns, or “mutational signa-

tures,” are associated with BRCA1/BRCA2 dysfunction. By combining

this signature information from WGS, homologous recombination

deficiency associated with BRCA1/2 deficiency was evaluated79.

Polak et al80 predicted cell-of-origin (COO) from WGS data for can-

cer by comparing the genomic distribution and signature of somatic

mutations to 424 epigenetic features that were measured by the

Epigenome Roadmap consortium,36 which were derived from 106

different cell types. The genomic distribution of chromatin features

corresponding to the tumor’s cell type of origin is strongly associated

with local mutation density, and they chose the tissue showing the

most significant enrichment as the most likely tissue of origin for

individual cancer whole genome.

13 | IMMUNO-GENOMIC ANALYSIS FROM
CANCER GENOME SEQUENCING

Immunotherapy using immune checkpoint inhibitors and emerging

new therapies have already shown great promise in some types

of cancers. Genomic biomarkers have been extensively investi-

gated by genome sequencing analysis on pre-treated or recurrent

cancer specimens. The overexpression or genetic alteration of PD-

L1 (CD274) is likely to be associated with response to anti-PD-1/

PD-L1 agents in some types of cancer, such as lymphoma.57,81

Mutation load at whole genome level, which is associated with

greater neo-antigen presentation, is a good genomic marker in

melanoma, lung cancer and MSI-positive colorectal cancer. Gen-

ome-wide CNA pattern, aneuploidy, was reported to be correlated

with reduced infiltrating immune cells with tumor, which was eval-

uated by RNA-Seq, and with reduced response to immunother-

apy.82 Several mutations involved with IFN-gamma pathway and

HLA presentations such as HLA, B2M, JAK1/283,84 are likely to be

related to the resistance of immune check-point inhibitors, but

tumor immunology and mechanisms of immune check-point inhibi-

tors are quite complicated and diverse. To understand immuno-

genomics of cancer and to explore genomic markers to predict

the response of immune therapy, comprehensive immune “signa-

ture” analysis, including the quantity and quality of immune cells

and neoantigen signatures, is required from WGS and RNA-Seq
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data on a number of pre-treatment and post-treated tumor speci-

mens and immune cells.

14 | CONCLUSION AND FUTURE
DIRECTION OF CANCER WHOLE GENOME
SEQUENCING

As sequencing costs continue to decrease and computer resources

expand, WGS analysis for cancer genome research and clinical utili-

ties will become more common and more sophisticated. Cancer

WGS provides abundant information to understand the biology

underlying the cancer genome and the function of unexplored non-

coding regions and SV in the human genome. There is much poten-

tial for transcriptional or functional consequences of SV and non-

coding mutations and they should be further explored by integrative

analysis of RNA-Seq and multi-omics analysis with DNA methylation

data,78 protein expression data, and chromatin structure85 or epigen-

ome data to interpret mutational consequences and to understand

the biology and immunology of cancer. Taking into account the

diversity of cancer genomes and phenotypes, interpretation of the

mutational data from cancer WGS will also require the analysis of

much more WGS data and integration with multi-omics data, func-

tional data, immuno-genomic data and clinic-pathological data in a

larger sample set.
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