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This study aimed to demonstrate the added value of integrating prior in vitro data and
knowledge-rich physiologically based pharmacokinetic (PBPK) models with pharmacody-
namics (PDs) models. Four distinct applications that were developed and tested are
presented here. PBPK models were developed for metoprolol using different CYP2D6
genotypes based on in vitro data. Application of the models for prediction of phenotypic
differences in the pharmacokinetics (PKs) and PD compared favorably with clinical data,
demonstrating that these differences can be predicted prior to the availability of such
data from clinical trials. In the second case, PK and PD data for an immediate release
formulation of nifedipine together with in vitro dissolution data for a controlled release (CR)
formulation were used to predict the PK and PD of the CR. This approach can be useful
to pharmaceutical scientists during formulation development. The operational model of
agonism was used in the third application to describe the hypnotic effects of triazolam,
and this was successfully extrapolated to zolpidem by changing only the drug related
parameters from in vitro experiments. This PBPK modeling approach can be useful to
developmental scientists who which to compare several drug candidates in the same
therapeutic class. Finally, differences in QTc prolongation due to quinidine in Caucasian and
Korean females were successfully predicted by the model using free heart concentrations
as an input to the PD models. This PBPK linked PD model was used to demonstrate a
higher sensitivity to free heart concentrations of quinidine in Caucasian females, thereby
providing a mechanistic understanding of a clinical observation. In general, permutations
of certain conditions which potentially change PK and hence PD may not be amenable to
the conduct of clinical studies but linking PBPK with PD provides an alternative method of
investigating the potential impact of PK changes on PD.

Keywords: PBPK linked PD models, CYP P450 genotypes and response, heart drug concentration and QTc,

formulation effects on drug response, target site concentrations and response

INTRODUCTION
Physiologically based pharmacokinetic (PBPK) modeling provides
a mechanistic platform for the integration of the concentration-
time profile of the drug with realistic physiological and biological
processes in the body. This modeling approach offers an advan-
tage over traditional compartmental modeling approaches since it
potentially allows for extrapolation and further investigation into
conditions for which pharmacokinetic (PK) studies have not been
conducted, thereby informing and accelerating the drug develop-
ment process. Predictions on drug–drug interactions, first in man
dosing, optimal clinical study designs, dosage requirements for
drugs that are metabolized by polymorphic enzymes and dosage
adjustments in disease states are some of the PBPK applications
that could potentially be used during the drug development and
regulatory submission processes (Chen et al., 2012; Huang and

Rowland, 2012; Rostami-Hodjegan, 2012; Sinha et al., 2012; Zhao
et al., 2012; Rowland, 2013; Vieira et al., 2014).

Since the primary concern in drug development is the effi-
cacy and safety of the drug, PBPK linked pharmacodynamic (PD)
models can be very valuable, offering a platform for exploring
the effect of variability in various physiological, biochemical, and
formulation factors on the response to the drug, especially where
clinical studies have not or cannot be conducted. An important
advantage of PBPK linked PD models is the ability to link the
drug concentration at the probable site of action with toxicologi-
cal and/or therapeutic effect. This is especially important when the
plasma concentration is not a good surrogate for the concentration
at the site of drug action (Rostami-Hodjegan, 2013), as demon-
strated in a recent study with rosuvastatin, a cholesterol lowering
drug which is a substrate of the OATP1B1 influx transporter (Rose
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et al., 2014). A PBPK/PD model that used liver concentrations of
rosuvastatin demonstrated improved ability to capture the effect
of the OATP1B1 c.521T > C single nucleotide polymorphism on
the change in cholesterol synthesis rate in response to rosuvas-
tatin, compared to a model using plasma concentrations of the
drug. Based on significant plasma concentration differences, a
dosage adjustment in rosuvastatin may have been considered in
patients with the OATP1B1 c.521T > C polymorphism, but a clin-
ical study had shown no significant differences in response in the
two OATP1B1 phenotypes. However, using PBPK modeling with
a PD model driven by free liver concentrations of rosuvastatin, no
net difference in liver concentrations of the drug in patients with
the polymorphism was observed and their clinical response was
similar, suggesting that dosage adjustments were unnecessary.

Many other scenarios in drug development and clinical practice
can benefit from incorporating the prior systems knowledge into
PBPK models when these are linked to PD modeling. Four such
examples from distinct areas are presented in this paper to demon-
strate the wide range of applications of this approach. The first case
study considers CYP genotypes which can have a significant effect
on drug PK. This case study is a quantitative prediction of the vari-
ation in the clinical response (measured as heart rate) to standard
doses of metoprolol in ultrarapid metabolizers (UMs), extensive
metabolizers (EMs), and poor metabolizers (PMs) of CYP2D6.
The PBPK model used differences in CYP2D6 abundance obtained
from in vitro studies to simulate phenotypic differences in meto-
prolol PK. The second case study explores the potential for the
application of PBPK/PD modeling to predict the response to a
controlled release (CR) formulation using in vitro data for the
CR formulation. A PBPK/PD model was developed and verified
for a nifedipine immediate release (IR) formulation. It was then
used for prediction of the PK and PD profiles of the CR formu-
lation using only the dissolution profile of the CR formulation.
The third case study investigates the application of a PBPK model
linked to a semi-mechanistic PD model developed for one drug
to predict the response to a second drug based on clinical data
for the first drug that acts on the same target. A PBPK/PD model
was developed and verified for triazolam using an operational
agonism PD model. A zolpidem specific target binding parame-
ter obtained by in vitro studies was then used with the triazolam
model to predict response to zolpidem. Such models are useful
for comparing several potential drug compounds that belong to
the same therapeutic class, when clinical data is available for just
one of the compounds. In the fourth case study, the PD model is
driven by target site drug concentrations and used to gain a mech-
anistic understanding of a clinical observation. The differences in
the potential for QT prolongation by drugs such as quinidine in
Caucasian and Asian females are well known, although the reason
for this difference has not been established. Using PBPK models
with heart concentrations of quinidine as the input to PD mod-
els, a higher sensitivity to heart concentrations of quinidine was
demonstrated in Caucasian females.

MATERIALS AND METHODS
The Simcyp population-based simulator (V12 www.simcyp.com;
Jamei et al., 2009) was used in the development of the PBPK/PD
models and the simulations. Simcyp compound files (parameters

listed in Tables 1–4) that were validated previously (Howgate et al.,
2004; McGinnity et al., 2008; Polasek et al., 2010; Rowland Yeo
et al., 2004; Patel et al., 2014) and population data (Jamei et al.,
2014) available in Simcyp (V12) were used. Clinical data used
in the case studies were digitized from published clinical stud-
ies using the Getdata software. Simulations using the developed
models were verified by comparison with clinical data prior to
further predictive applications. Simulations were found to be
acceptable if the predicted parameters were within two fold of
the observed data (Guest et al., 2011) and visual predictive checks
showed observed data within the 5 and 95% percentiles of the pre-
dicted data. Methodological details relevant to the individual case
studies are described below.

CASE STUDY 1: ASSESSING THE IMPACT OF GENOTYPICALLY
CONTROLLED ELIMINATION
Although plasma concentrations of metoprolol and effects on
heart rate have been shown to correlate significantly with CYP2D6
metabolic phenotype in clinical studies (Kirchheiner et al., 2004;

Table 1 | Parameters used for the Metoprolol PBPK model (Simcyp

V12).

Parameter Value Unit

Molecular weight 267.4 g/mol

LogP 1.88

Compound type Monoprotic base

pKa 9.75

Blood:plasma 1.15

Fu plasma 0.88

Main binding protein albumin

Absorption First order absorption

fa 1

ka 1.43

Distribution Minimal PBPK model

Vss 3 L/kg

Elimination

CYP2D6:o-demethylation CLint 39.33 pmol/min/mg

microsomal protein

CYP2D6:alpha-OH CLint 8.7 pmol/min/mg

microsomal protein

CYP3A4:o-demethylation CLint 3.18 pmol/min/mg

microsomal protein

CYP3A4:alpha-OH CLint 0.39 pmol/min/mg

microsomal protein

CLR 5.23 L/h

PD model Simple Emax model

Emax –43.2 Beats/min

EC50 0.13 μM

Baseline 143 Beats/min
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Table 2 | Parameters used for the Nifedipine PBPK model (SimcypV12).

Parameter Value Unit

Molecular weight 346.3 g/mol

LogP 2.69

Compound type Monoprotic base

pKa 2.82

Blood:plasma 0.685

Fu plasma 0.039

Main binding protein albumin

Absorption First order absorption

for IR nifedipine

Mechanistic absorption

model (ADAM) for the

CR formulation

fa 1

ka 3.67 1/h

Distribution Minimal PBPK model

Vss 0.57 L/kg

Elimination

CYP3A4:oxidation Km 10.5 μM

CYP3A4:oxidation Vmax 22 pmol/min/mg

microsomal protein

CYP3A5:oxidation Km 31.9 μM

CYP3A5:oxidation Vmax 3.5 pmol/min/mg

microsomal protein

CLR (renal clearance) 0 L/h

PD model Dynamic binding

model with empirical

transduction

kon (rate constant for binding

of drug to receptor)

19 μM−1h−1

koff (first order rate constant

for dissociation of

drug-receptor complex)

0.15 1/h

Baseline 0

slope –33 mmHg

Sharma et al., 2005), the prevalence of some phenotypes may
not be adequately high in a study population to discern the
differences in PK and PD. Therefore, it would be of value to
use the prior in vitro information on metabolism together with
PK and PD information in prevalent phenotypes of CYP2D6
to conduct virtual clinical studies with a view to assess the
potential pharmacological differences in various less frequent phe-
notypes, prior to the conduct of clinical studies or in lieu of
such studies when the studies are not feasible and yet providing

Table 3 | Parameters used for the triazolam PBPK model (Simcyp V12).

Parameter Value Unit

Molecular weight 343.2 g/mol

LogP 2.42

Compound type Ampholyte

pKa 1 10.52

pKa 2 2.91

Blood:plasma 0.625

Fu plasma 0.179

Main binding protein albumin

Absorption First order absorption

fa 1

ka 1.175 1/h

Distribution Minimal PBPK model

Vss 0.54 L/kg

Elimination

CYP3A4:1-OH metabolite: Km 15.6 μM

CYP3A4: 1-OH metabolite: Vmax 4.35 pmol/min/mg

microsomal protein

CYP3A5: 1-OH metabolite: Km 23.8 μM

CYP3A5: 1-OH metabolite: Vmax 8.18 pmol/min/mg

microsomal protein

CYP3A4:4-OH metabolite: Km 176.0 μM

CYP3A4: 4-OH metabolite: Vmax 11.5 pmol/min/mg

microsomal protein

CYP3A5: 4-OH metabolite: Km 142.0 μM

CYP3A5: 4-OH metabolite: Vmax 12.5 pmol/min/mg

microsomal protein

CLR (renal clearance) 0.274 L/h

PD model Operational

transduction model

Unit 1:

Emax 1.00

Dissociation constant 0.001

Baseline 0

Unit 2:

Maximum effect achievable in

the system (Em)

Slope of the occupancy effect

relationship (n)

Transducer ratio (τ)

2.08

1.81

1.76

a recommendation is more prudent than leaving a void in
prescribing information.

The reduction in heart rate due to a standard 100 mg dose
of metoprolol in virtual healthy Caucasian populations was
simulated and stratified for their CYP2D6 phenotypes. The
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Table 4 | Parameters used for the zolpidem PBPK model (Simcyp V12).

Parameter Value Unit

Molecular weight 307.39 g/mol

LogP 2.42

Compound type Monoprotic base

pKa 1 6.16

Blood:plasma 0.76

Fu plasma 0.08

Main binding protein albumin

Absorption First order absorption

fa 1

ka 2.25 1/h

Distribution Minimal PBPK model

Vss 0.68 L/kg

Elimination

CYP3A4:Metabolite 4: Km 340 μM

CYP3A4: Metabolite 4: Vmax 1.41 pmol/min/mg

microsomal protein

CYP3A4: Metabolite 11: Km 399 μM

CYP3A4: Metabolite 11: Vmax 6.86 pmol/min/mg

microsomal protein

CYP1A2:Metabolite 4: Km 40 μM

CYP1A2: Metabolite 4: Vmax 0.777 pmol/min/mg

microsomal protein

CYP2D6:Metabolite 4: Km 214 μM

CYP2D6: Metabolite 4: Vmax 4.68 pmol/min/mg

microsomal protein

CYP2C9:Metabolite 4: Km 81 μM

CYP2C9: Metabolite 4: Vmax 0.888 pmol/min/mg

microsomal protein

CLR (renal clearance) 0.18 L/h

PD model Operational

transduction model

Unit 1:

Emax 1.00

Dissociation constant 0.053

Baseline 0

Unit 2:

Maximum effect achievable in

the system (Em)

2.08

Slope of the occupancy effect

relationship (n)

1.81

Transducer ratio (τ) 1.76

Simcyp metoprolol compound file (Table 1) was used with a
minimal PBPK model, first order absorption and elimination
by enzyme kinetics. The study design was matched to that of

Table 5 | Parameters used for the Quinidine PBPK model (Simcyp V12).

Parameter Value Unit

Molecular weight 324.4 g/mol

LogP 2.88

Compound type Diprotic base

pKa 1 4.2

pKa 2 8.8

Blood:plasma 0.88

Fu plasma 0.203

Main binding protein albumin

Absorption First order absorption

fa 1

ka 3 1/h

Distribution Full PBPK model

Vss 1.16 L/kg

Elimination

CLiv 19.4 Caucasians

18.16 Chinese (Korean)

L/h

CLR 1.95 L/h

PD model Simple Emax model

Emax Parameter estimation used for

fitting to clinical data

ms

EC50 Parameter estimation used for

fitting to clinical data

μM

Baseline 443 Korean

445 Caucasian

ms

Kirchheiner et al. (2004). Simulated contribution of the CYP2D6
phenotypes (EM, PM, and UM) to metoprolol PK within Simcyp
is based on the propagation of the differences in CYP2D6 abun-
dance, obtained from in vitro data. Concentration-time profiles
published by Kirchheiner et al. (2004) and Sharma et al. (2005)
were compared with the predicted profiles and PK parameters.
PD differences in the different phenotypes were assessed by an
Emax model published by Kirchheiner et al. (2004) and assumed
to be the same regardless of CYP2D6 genotype. Based on this
direct effects PD model, response was propagated via changes in
the plasma concentration profile. PD simulations were compared
with clinical observations from the above two studies, to verify
that the model predicted the PD corresponding to the different
phenotypes adequately.

CASE STUDY 2: ASSESSING THE CONSEQUENCES OF MODIFYING THE
DRUG FORMULATION
Nifedipine is a dihydropyridine calcium channel blocker com-
monly used in the treatment of hypertension and exerts its
hypotensive effect primarily through arterial dilation. CR formu-
lations are now recommended in the treatment of hypertension as
they have been shown to offer a number of clinical benefits over
IR nifedipine (Reitberg et al., 1987; Schug et al., 2002; Meredith
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and Elliott, 2004; Wonnemann et al., 2006). This study aimed to
integrate the PBPK models describing the plasma profile of IR and
that for the CR nifedipine (Shimada et al., 1996; Brown and Toal,
2008) with the PD model available for IR nifedipine (Shimada
et al., 1996), to identify whether it could be extrapolated to predict
the response to nifedipine GITS, a CR formulation that is reported
to achieve a zero order release rate sustained over 24 h, through an
osmotic release mechanism (Brown and Toal, 2008).

The PK and PD profiles for nifedipine in the treatment of
hypertension were simulated using the Simcyp nifedipine com-
pound file (Table 2), a minimal PBPK distribution model and
elimination by enzyme kinetics. To simulate the PK profile of
IR nifedipine the first order absorption model was used, while
for the nifedipine GITS [a CR formulation reported to achieve a
zero order release rate sustained over 24 h through an osmotic
release mechanism (Brown and Toal, 2008)] formulation effects
were described by a mechanistic absorption model within Simcyp
(ADAM) using in vitro data (dissolution data) for the CR profile
and intrinsic solubility of nifedipine (Janssen Therapeutics, 2013).
The PD model relating the nifedipine plasma concentration to the
change in systolic blood pressure was a dynamic binding PKPD
model, as described by Shimada et al. (1996). Parameters used
in the PD model are shown in Table 2. Simulated study design
was matched to that reported for clinical studies, including age,
proportion of females and fasted or fed state dosing. Ethnicity
was also matched to the clinical study using the built in Simcyp
Japanese and North European Caucasian populations. Where eth-
nicity of study subjects was not reported it was assumed based
on the location of the approved study site or the country of resi-
dence of the study authors. Using the developed PBPK/PD models,
concentration and response profiles were simulated for two differ-
ent doses of the GITS formulation and compared with clinical
data.

CASE STUDY 3: IN VITRO IN VIVO EXTRAPOLATION OF
DIFFERENCES IN PD
The third case study investigates the application of PBPK linked
to a semi-mechanistic PD model to predict the response to a drug
based on clinical data for a different drug that acts on the same
target. Such models are useful for comparing several compounds
that belong to the same therapeutic class. Semi-mechanistic PD
models combine mechanistic aspects of the PD relationship with
empirical features and are commonly used where the mecha-
nism of drug action is not fully understood or when there is
insufficient data available to develop a fully mechanistic model.
The operational model of agonism (equation 1) was developed
from receptor theory to describe in vitro pharmacology (Black
and Leff, 1983) and has also previously been applied in PKPD
modeling (Van der Graaf et al., 1997, 1999; Cox et al., 1998; Cle-
ton et al., 1999, 2000; Zuideveld et al., 2004; Jonker et al., 2005).

E = Em · τn · [A]n

(KA + [A])n + τn · [A]n
(1)

Mechanistic features are incorporated in terms of drug bind-
ing affinity (KA− which represents the binding affinity of drug
A to the receptor) and intrinsic efficacy (ε; proportional to
the transducer ratio τ), both drug-dependent parameters for

which information can be measured in vitro. The conver-
sion of receptor activation to the PD response is described
empirically by the system-dependent parameters Em, the max-
imum effect achievable in the system, n, the slope of the
occupancy effect relationship and τ, which is related to the
receptor concentration transduction properties of the tissue.
System-dependent parameters are shared for drugs with the
same mechanism of action in the same system. The operational
model of agonism has previously been used to describe the PD
effect of benzodiazepines in animal models (Cleton et al., 1999,
2000).

In this example, the operational model of agonism was used
to describe the hypnotic effects of triazolam, as measured by
change in beta-EEG amplitude, and to extrapolate the model
to zolpidem by changing only the drug related parameters of
the PBPK-PD model. The hypnotic effects of both zolpidem
and triazolam are mediated via the same binding site on α1
subunit containing GABAA receptors. Triazolam and zolpidem
were selected for two reasons. Firstly, the PD effect is related
to the concentration of the parent compound only; zolpidem
has no active metabolites, while, the active metabolite of tri-
azolam is rapidly metabolized and thus does not contribute
significantly to activity. Garzone and Kroboth (1989) Secondly,
several clinical PK and PD studies have been reported for both
compounds by the same group, which is important for the PD
response since there is no standardization of the measurement
and analysis of EEG recordings used as the PD effect mea-
sure, making it difficult to pool and compare data collected by
different research groups. In this example, clinical data is used to
establish the model for triazolam only, thus zolpidem is treated as
a compound in pre-clinical development, with published clin-
ical data used only to confirm the accuracy of the modeling
approach.

Simulations of triazolam and zolpidem PK and PD were per-
formed in virtual Caucasian healthy volunteers (HVs) and the
Simcyp Triazolam (Table 3) and Zolpidem (Table 4) compound
files with the first order absorption model, minimal PBPK dis-
tribution model and clearance described by enzyme kinetics.
Unbound plasma concentration was used as the input to the PD
model.

Equilibrium dissociation constant (KA) values for triazolam
(1 nM) and zolpidem (53 nM) and relative intrinsic efficacy
of the two compounds (Equation 1) were identified from pub-
lished in vitro data (Garzone and Kroboth, 1989; Hadingham
et al., 1993; Van der Graaf et al., 1999; Zuideveld et al., 2004).
Since triazolam and zolpidem have comparable efficacy, the
transduction ratio (τ) was assumed to be the same for both com-
pounds. Simcyp Parameter Estimation module (using weighted
least square objective function and Nelder–Mead optimization
methods) was used to determine the values of τ, Em and n
in addition to the effect compartment elimination rate (keo)
to account for hysteresis in the response, using published data
(Smith et al., 2001; Sancar et al., 2007). The weighted mean
of the estimated values of each parameter was used in the
simulations.

The quality of these parameter estimates to predict the PD
response to triazolam was tested by the ability of the model to
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predict the PD response following interaction with the CYP3A
inhibitor ketoconazole (von Moltke et al., 1996; Greenblatt et al.,
1998). Thereafter, the dose of zolpidem predicted to produce
the equivalent response to 0.25 mg oral triazolam (based on the
maximal response and the area under the effect curve between 0
and 12 h) using the PBPK-PD model developed for triazolam
and the KA and intrinsic efficacy for zolpidem, was identified
using the Simcyp automated sensitivity analysis module for the
dose range 0.01–1000 mg oral zolpidem. This was then compared
with the clinically applicable dose for verification of the PBPK/PD
model.

CASE STUDY 4: UNDERSTANDING THE COVARIATES DETERMINING PD
VARIABILITY
The fourth case study explores the ethnic differences in the QTc
prolongation by quinidine using the target tissue (heart) drug
concentrations. It has been suggested that in specific situations,
PBPK/PD models are more likely to allow a better understanding
of true PD variability versus variability resulting from drug dispo-
sition alone (Rostami-Hodjegan, 2013), which is usually reflected
by plasma concentrations. Quinidine is known to cause lengthen-
ing of the QT interval in the electrocardiogram (ECG), with greater
potential for QT prolongation in females (Benton et al., 2000; El-
Eraky and Thomas, 2003; Shin et al., 2007). Ethnic differences in
QT prolongation have also been demonstrated (Shin et al., 2007),
with greater QT prolongation observed in Caucasian females than
in Korean females, despite no significant differences in plasma
concentrations. These differences in QT prolongation may be of
significance clinically since lengthening of the QT interval cor-
rected for heart rate (QTc) that is >500 ms is believed to be a
contributory factor to the life-threatening side effect of Torsades
de pointes observed with some drugs (Bednar et al., 2001).

Traditional PK/PD models linking plasma concentrations
to QT changes in Caucasians and Koreans have reported a
higher Emax (the maximum value of QTc changes) values in
Caucasian females with similar EC50 (concentration of quini-
dine required to produce 50% of the maximum response)
values in both ethnic groups, suggesting similar sensitivity
to quinidine concentrations in the two groups (Shin et al.,
2007). PBPK/PD modeling using free heart concentrations of
quinidine that may be more relevant to the QT prolongation
effect of the drug may have a greater potential to provide an
understanding of the ethnic differences in the observed QTc
changes.

Data from the study by Shin et al. (2007) were used to develop
the PBPK/PD model, with virtual Caucasian HV and virtual Chi-
nese HV (to represent Korean). The Simcyp compound file for
quinidine (Table 5), a full PBPK distribution model with first
order absorption and clearance of quinidine of 19.4 (CV 38%)
L/h in Caucasians and 18.16L/h (34%) in Koreans was used. This
PBPK model was verified by comparison of the plasma concen-
tration versus time profile with clinical data. The Emax model
used the measured mean baseline QTc of 443 ms for Koreans and
445 ms for Caucasians (Shin et al., 2007). Input to the PD model
was predicted free heart concentrations and parameter estimation
was used to estimate �Emax and EC50. EC50 was used as a marker
of sensitivity and compared in the two groups of virtual subjects.

RESULTS
CASE STUDY 1
In general both PK and PD profiles were predicted successfully,
as is evident from Table 6 that summarizes the PK and PD
parameters and Figure 1 where the simulated data has been super-
imposed on observed data (Shimada et al., 1996; Kirchheiner et al.,
2004). These models successfully simulated PK and PD profiles of
metoprolol and support the potential for prediction of genetic
differences in PD once the PKPD relationship is established in
wild-type genotypes.

The simulated CL (Dose/AUC) of the UM group was found to
be 16- and 2-fold higher than that of PM and EM groups, respec-
tively, suggesting that UMs may not achieve adequate therapeutic
response on a standard dose of 100 mg metoprolol. Simulated
mean PD profiles showed that the area under the effect curve in
PMs was 4-fold higher than that in UMs, and 2-fold higher than
that in EMs. The simulated/observed ratios for the maximum
reduction in heart rate and absolute area under effect curve are
0.94 and 1.2 for PMs, 1.0 and 0.94 for EMs, and 0.96 and 0.73 for
UMs groups, respectively.

It is clear from these results that the status of CYP2D6 phe-
notype has an impact on the reduction in heart rate. PMs are of
particular interest as the PD effect is higher and takes longer to
return to the initial point. In comparison with EMs, and UMs, the
longer action of metoprolol in PMs is a result of residence of drug
in the body (see plasma concentration profile for PMs), which is
caused by the lower clearance of metoprolol in PMs group. These
differences indicate significant effects on metoprolol dosing in the
corresponding groups of patients which could have been predicted
a priori.

Simulation results showed consistency with clinical observa-
tions in terms of significant differences of metoprolol PK/PD pro-
files between PMs and UMs with a marginal change between EMs
and UMs. UMs may not achieve optimal target concentrations of
metoprolol, which can lead to a lower benefit from the standard
100 mg dose of the drug compared with PMs.

CASE STUDY 2
Predicted PK and PD profiles for IR nifedipine in Japanese
hypertensive subjects suggested that the model was successful in
recovering the clinical data (Kikuchi et al., 1982). Comparison
of the PK and PD parameters (Cmax and Rmax respectively)
showed that the predicted Cmax/observed Cmax and predicted
Rmax/observed Rmax are within the 2-fold acceptability criteria
(Table 7).

Both the magnitude and sustained plateau (>24 h) of the
PK and PD profiles were well captured for 60 mg nifedip-
ine GITS formulation, with mean clinical data falling within
the range of the mean values of simulated trials (Figure 2).
The comparative PK and PD ratios in Table 7 also confirm
the successful prediction of the PK/PD profile of the 60 mg
GITS formulation, for which a rich in vitro data set was
available.

However, for a 30 mg multi-dose study of nifedipine GITS,
visual inspection suggests that PK and PD is overpredicted
(Figure 2), although the majority of observed values are within
the 5 and 95% percentiles of the predicted profiles. Based on
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Table 6 | Observed vs. predicted “PRED” Metoprolol PK/PD parameters in healthy volunteers by CYP 2D6 metabolizer status.

PM EM UM

PRED Observed Ratio PRED Observed Ratio PRED Observed Ratio

PK parameters

AUC (ug/L/h) 4,938 3,921 1.26 586 839 0.70 304 273 1.1

Tmax (h) 1.82 1.63 1.12 1.18 1.35 0.88 1 1 1.1

Cmax (ug/L) 305 363 0.84 112 178 0.63 69 67 1.0

CL/F (L/h) 20 24 0.85 171 139 1.22 329 367 0.9

PD parameters

Rmax (beat/min) 142 151 0.9 142 149 1.0 142 148 1.0

Rmin (beat/min) 103 109 0.9 109 116 0.9 113 119 0.9

t(Rmin) (h) 1.9 2 1.0 1.2 2 0.6 1.2 2 0.6

AUC (beat.h/min) 831 685 1.2 328 363 0.9 223 308 0.7

FIGURE 1 | Predicted and observed metoprolol plasma concentration

profile in EMs (A), PMs (C), UMs (E), PD response in EMs (B), PMs (D),

and UMs (F). Simulations are presented as the mean of 10 trials (bold black

line) and 95% confidence interval (dashed line). Solid circles indicate
observed values reported by Kirchheiner et al. (2004) and squares represent
values reported by Sharma et al. (2005).
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Table 7 | Comparison of the predicted and observed Cmax and maximum reduction in systolic blood pressure (Rmax) for the different nifedipine

formulations and doses.

10 mg IR nifedipine 60 mg nifedipine GITs 30 mg nifedipine GITS

first dose

30 mg nifedipine GITS

final dose

Pred Obsa Ratio

Pred/

Obs

Pred Obsb Ratio

Pred/

Obs

Pred Obsc Ratio

Pred/

Obs

Pred Obsc Ratio

Pred/

Obs

Cmax

(ng/ml)

127.8 ± 53.6 132.5 ± 23.7 0.96 44.3 ± 22.6 31.0 1.42 38.1 ± 31.5 16.9 ± 10.2 2.25 56.6 ± 51.1 30.7 1.84

Rmax

(mmHg)

–30.9 ± 3.6 –32.9 ± 9.9 0.94 –25.1 ± 5.5 –23.0 1.09 –24.3 ± 7.8 –13.7 ± 15.6 1.77 –26.0 ± 5.1 –19 1.37

Data are reported as the mean ± SD (where reported). Observed values are from (a) Shimada et al. (1996), (b) Meredith and Elliott (2004), and (c) Brown and Toal
(2008).

FIGURE 2 | Predicted and observed (A) plasma concentration profile

and (B) change in systolic blood pressure after a single dose of

nifedipine 60 mg GITS in North European hypertensive subjects

(Meredith and Elliott, 2004). Predicted and observed (C) plasma

concentration profile and (D) change in systolic blood pressure after
the initial dose and daily dosing of nifedipine 30 mg GITS for
15 days in North European hypertensive subjects (Brown and Toal,
2008).
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comparative ratios (Table 7) Cmax was marginally overestimated
after the first dose, with a Cmax (predicted)/Cmax (observed) ratio
of 2.25 and the other parameters within 2-fold of the observations.

It is notable that in this study no parameter fitting based on
clinical data was used, with the aim of mimicking a situation in
which prediction of the formulation effect is based on the use of

in vitro data for propagation and the prediction of the PK and PD
profiles.

CASE STUDY 3
Fitted values of Em, τ, n, and keo were 20.6, 1.0, 0.93, and
2.0 respectively. The resulting model was able to predict the

FIGURE 3 | Predicted and observed (A,C) triazolam plasma

concentration profile and (B,D) pharmacodynamic response to (A,B)

0.125 mg or (C,D) 0.25 mg oral triazolam in the absence (closed

circles and blue lines) or presence (open circles and green lines) of

ketoconazole. Observed data are from (A,B) von Moltke et al. (1996) and
(C,D) Greenblatt et al. (2000) and the simulated study designs were
matched to these studies. Predicted maximal observed response (PD

Rmax; E) and area under the response curve (AUCR0−12; F) for a range
of doses of oral zolpidem. The mean value of the response measure for
0.25 mg oral triazolam is indicated by the horizontal black line and was
used to estimate the dose of zolpidem resulting in the equivalent
measure of PD response. (G) Predicted mean PD response to 10 mg oral
zolpidem. Observed data points are from Greenblatt et al. (2000; closed
circles) and Greenblatt et al. (2006; open circles).
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PD response to 0.125 and 0.25 mg triazolam with and without
ketoconazole DDI reasonably well as seen in Figure 3, although
the PD response was underestimated at the highest plasma
concentrations of triazolam (Figure 3D).

A dose of ∼10–13 mg zolpidem was predicted to result in the
same maximal response (Rmax) and area under the effect curve
as a 0.25 mg dose of triazolam (Figures 3E,F). Visual inspection
of the concentration – effect curve shows a good prediction of
the maximum effect of zolpidem but the duration of the effect
is overestimated (Figure 3G) compared with the clinical data
(Greenblatt et al., 2000, 2006).

CASE STUDY 4
The PBPK model predicted clinically observed plasma PK profiles
of quinidine in Caucasian and Korean (represented by Chinese
HVs) females (Shin et al., 2007) adequately as verified by visual
predictive checks (Figures 4A,B). Simulations of free heart
concentrations of quinidine over time for both groups are shown
in Figures 4C,D.

Estimated Emax and EC50 values were 190.0 ms and 1.53 μM
respectively in Caucasian females and 175.19 ms and 1.80 μM
respectively in Korean females. Visual predictive checks of the
simulations suggested that these PD models recovered the greater
QTc prolongation observed clinically (Kim et al., 2007; Shin et al.,
2007) in Caucasian females adequately (Figure 5).

The estimated sensitivity parameters (EC50) showed a Cau-
casian:Korean ratio of 0.85, indicating a greater sensitivity to heart
quinidine concentrations in Caucasian females. This suggests that
a standard dose of quinidine has the potential to produce QTc in
more Caucasian females than in Korean females because of this
difference in sensitivity.

DISCUSSION
Recent advances in IVIVE coupled PBPK models have facilitated
informed covariate recognition of the observed PK variability.
Further, these models allow connecting response to the unbound
drug concentrations at the site of action which in turn improves
our ability to link the concentration-response relationships

FIGURE 4 | Simulated plasma concentrations in Asian females (A) and

Caucasian females (B). Solid lines represent mean values; dotted lines
represent the upper and lower confidence intervals and solid circles represent

observed data (Shin et al., 2007). Predicted free heart concentrations in Asian
females (C) and Caucasian females (D). Solid lines represent mean values;
dotted lines represent the upper and lower confidence intervals.
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FIGURE 5 | Predicted QTc changes in Asian females (A) and Caucasian

females (B). Solid lines represent profiles in virtual individuals. Solid circles
represent observed data (Shin et al., 2007) in Caucasians and Asians. Solid
squares represent observed data (Kim et al., 2007) in Asians.

beyond merely relying on the plasma concentration as the
response’s driving force. Connecting PD models, even empirical or
semi-mechanistic ones, to PBPK models is the natural progression
after developing predictive PK models.

To illustrate the added value in utilizing PBPK/PD models
four case studies are presented here. These have demonstrated
that linking a PD model to a PBPK model allows the prediction
of the effects of a change in metabolizing enzyme phenotype,
drug formulation, drug receptor binding, or ethnic differences
in sensitivity to the drug on the PD response through propa-
gation of the change in PK. Such models may assume that the

concentration-response relationship remains unchanged when
the PK changes occur. It is recognized that this is not always
the case, and any mismatch between predictions and obser-
vations may provide additional information about the mech-
anism of action of a drug and covariates relevant to the PD
responses. Such factors can then be investigated and built into the
models.

The first case study illustrates the potential for prediction of
genetic differences in PD once the PKPD relationship is established
in wild-type genotypes. Although population pharmacokinetic
(POPPK) studies have been valuable in informing investigators
of PKPD differences associated with different phenotypes, these
studies need to be powered adequately to recognize such differ-
ences. Clinical trial simulations similar to the one shown in this
case study can also be used to investigate the design of studies and
their power to ensure that less frequently occurring phenotypes
that are predicted to be relevant to dose evaluation are included. It
is noteworthy that such simulations can be used in lieu of clinical
studies to inform drug labels. (Janssen Therapeutics, 2013).

The second case study demonstrates that integration of a PBPK
model that accounts for differences in formulation effects with a
dynamic PKPD binding model predicts differences in clinical PD
observations reasonably well, a feature that is very challenging
to implement in classical compartmental approach. Prediction of
the formulation effect based on in vitro data is propagated to the
prediction of the PK and PD profiles, without the use of param-
eter fitting to observed data. The marginal over-prediction of the
plasma profile can, in a large part, explain the over-prediction
of the PD response that was observed in the study by Brown
and Toal (2008). Overestimation of the plasma profile and PD
response to 30 mg nifedipine GITS in this study may relate to
differences in the dissolution profile of the batch of 30 mg GITS
tablets used in the clinical study (which was not reported), com-
pared to the dissolution profile used for simulation. In the absence
of a published dissolution profile for the 30 mg GITS tablets, a
dissolution profile proportional to the 60 mg GITS tablets were
assumed for the simulations. It might have been expected that
a PD model for the hypotensive response to nifedipine devel-
oped for and IR would underestimate the response to CR of
nifedipine. Rate of increase in the plasma nifedipine concentra-
tion has been shown to influence the haemodynamic response,
with a more rapid increase associated with increased sympathetic
nervous system activation, increased heart rate and a diminished
reduction in blood pressure response (Kleinbloesem et al., 1987;
Meredith and Elliott, 2004; Brown and Toal, 2008). This may
not have been the case since no increase in heart rate in hyper-
tensive subjects was observed in the study from which Shimada
et al. (1996) took the nifedipine PK and PD data to develop the
PKPD model that was used in this case study (Kikuchi et al.,
1982).

In the third example, by changing only the PBPK model input
and the KA value for zolpidem, a good estimate of the dose require-
ment of zolpidem was obtained in HVs. The dose estimated using
this PBPK/PD model is in agreement with the recommended dose
of 10 mg zolpidem in adults. However, when compared to clin-
ical data (Greenblatt et al., 2000, 2006), although the maximal
response to zolpidem was predicted reasonably well, the duration
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of the response was overestimated. A possible explanation could be
the clockwise hysteresis observed in the clinical data for zolpidem,
suggesting acute tolerance effects to zolpidem, as has previously
been proposed (de Haas et al., 2010). However, clockwise hystere-
sis is not observed for triazolam, suggesting that differences in
the mechanism of action between zolpidem and triazolam may
not be fully accommodated by the model. This example demon-
strates the application of a combined PBPK and semi-mechanistic
PD model in predicting the response to a compound based on
clinical data for a different compound that acts at the same
target.

Results in the fourth example demonstrate that the PBPK/PD
model that used unbound heart concentrations of quinidine to
drive the changes in QTc prolongation was effective in recover-
ing the clinically observed ethnic difference in QTc prolongation.
This model, which was of greater physiological relevance than
previously published models, enabled us to gain a plausible mech-
anistic explanation for the observed ethnic differences in QTc
prolongation, despite the similarities in the measured plasma con-
centrations in the two population groups. The higher EC50 in
Asian females illustrate that this group is less sensitive to the
QTc prolongation effects of quinidine and require higher free
concentrations of quinidine at the target site to produce an equiv-
alent change in QTc prolongation. Further studies to elucidate
the mechanistic basis for the differences in sensitivities and also
to investigate the potential contribution of 3-hydroxy quinidine
(a primary metabolite that may contribute to pharmacological
activity) are warranted.

Knowledge of inter-patient variability in response to drugs
is crucial during drug development and clinical practice.
PBPK/PD models such as the ones presented above pro-
vide a seamless framework to assess the propagation of key
PK variables resulting from differences in physiology, genet-
ics, demographics, concurrent medications, different formula-
tions, etc. through to PD effects. Predicting such variability
using the ‘bottom up’ approach prior to planning clinical tri-
als enables researchers to optimize study design and predict
results that are likely to be more reflective of the general pop-
ulation using the drug. Furthermore, when measured plasma
concentrations cannot be reliably correlated with PD effects,
PBPK/PD offer a valuable alternative to traditional compartmental
modeling.
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