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The pleiotrophic effects of angiotensin II (Ang II) play important roles in astrocyte growth and inflammatory responses.
We investigated whether Ang II induces astrocyte growth and interleukin-6 (IL-6) mRNA expression in rat cerebellar
astrocytes through Janus kinase 2-signal transduction activator of transcription (JAK2-STAT3). Ang II increased JAK2 and
STAT3 phosphorylation in a time- and a dose-dependent manner. One hundred nanomolar Ang II induced maximal
phosphorylation of both JAK2 and STAT3 between 15 min and 30 min. The Ang II-mediated phosphorylation of both
JAK2 and STAT3 was blocked by AG490, a selective JAK2 inhibitor. Losartan, a selective AT1 receptor antagonist, inhibited
Ang II-mediated JAK2 and STAT3 phosphorylation, while pretreatment with an AT2 receptor blocker, PD123319, was
ineffective. Ang II increased the mRNA expression of IL-6 in a concentration-and time-dependent manner. Maximal IL-6
mRNA expression occurred with 100 nM Ang II, and the peak effect occurred in a biphasic manner at 3 h and between 12
and 24 h. Moreover, pretreatments with AG490 attenuated Ang II-induced IL-6 mRNA levels, and Ang II-induced astrocyte
growth. This study has demonstrated that Ang II induced the phosphorylation of both JAK2 and STAT3 via the AT1
receptor in cerebellar astrocytes. In addition, our results suggest that JAK2 and STAT3 are upstream signals that mediate
Ang II-induced IL-6 mRNA expression and astrocyte growth. These findings represent a novel non-classical mechanism of
Ang II signaling in cerebellar astrocytes.

Introduction

The renin-angiotensin system (RAS) plays a major role in
regulating physiological processes of the cardiovascular system.
Angiotensin II (Ang II) is the primary effector peptide of the RAS
and it is produced by cleavage of the precursor molecule
angiotensinogen. Ang II has emerged as a critical hormone,
growth factor and proinflammatory molecule that affects the
function of virtually all organs and structures including heart,
kidney, the vasculature and the brain.1 In brain, the peptide
triggers a myriad of physiological responses such as increased salt
appetite, increased sympathetic outflow, and many other
responses implicated in physiological as well as pathological
consequences of the peptide.2,3 Centrally, astrocytes are the major
sources of angiotensinogen the precursor molecule of Ang II
suggesting an important role of astrocytes in central RAS effects.4

Ang II exerts its action through two pharmacological classes of
G protein-coupled receptors, known as the Ang AT1 and Ang
AT2 receptors.5,6 In astrocytes, Ang II interaction with the AT1
receptor causes activation of several intracellular signaling

pathways involving mitogen activated protein (MAP) kinases,
tyrosine kinases, protein kinase C (PKC), immediate early
response genes and others.7-12 These intracellular pathways are
involved in widely diverse effects of Ang II including cell growth,
proliferation and inflammatory actions.13,14 The Janus kinase-
signal transducer and signal transduction activator of transcrip-
tion (JAK-STAT) pathway is a characteristic signal transduction
pathway that plays a crucial role in development and homeosta-
sis.15 JAK-STAT signaling mediates several Ang II-induced
physiological and pathological responses.16-18 It has been shown
that Ang II, via AT1 receptor activation, stimulates JAK2, a key
member of the Janus family of kinases. This leads to phospho-
rylation and activation of a group of transcription factors
collectively called STATs.19 Phosphorylated STATS translocate
into the nucleus, where they bind to specific DNA sequences
called ST-domains that are present in the promoter regions of
targeted genes. These transcription factors have been shown to
mediate Ang II-specific vascular smooth muscle growth, migration
and remodeling as well as cardiac muscle hypertrophy.16,20 The
JAK-STAT signaling cascade was shown to be an important link
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between activation of the AT1 receptor and nuclear transcrip-
tional changes leading to cell growth.21

Thus in peripheral systems, it is well established that the JAK-
STAT pathway is a key player in Ang II-mediated physiological
and pathological responses.19 In addition, Ang II-induced
activation of the JAK-STAT pathway regulates smooth muscle
function, leading to increased production of angiotensinogen and
IL-6.16,19,20 IL-6 is an inflammatory cytokine whose expression
in plasma is elevated through activation of the JAK-STAT
pathway.21 IL-6 has multiple biological activities such as induction
of cell growth and development, and inflammation; it also plays a
role in several disease processes as well.21,22 Ang II interaction with
the AT1 receptor and subsequent to IL-6 production may be a
critical factor contributing to many cardiovascular diseases
including heart attack, stroke and hypertension.17,23-27 Moreover,
central production of IL-6 mediates the synthesis of C-reactive
protein (CRP), an important risk factor for myocardial
infarction.23,27 Further, in cardiomyocytes and smooth muscle
cells, Ang II induces the upregulation of angiotensinogen via IL-6/
JAK-STAT-dependent mechanisms.1,28 Our previous studies
showed that in rat brainstem astrocytes, Ang II acts on AT1
receptors to induce the secretion of IL-6 via JAK2-STAT3
pathway.29 In this study, we examined the role of JAK2-STAT3
signaling on cell growth and IL-6 mRNA expression in cerebellar
astrocytes. Cerebellar astrocytes were selected since it has been
shown that Ang II activates distinct signaling pathways leading to
cellular proliferation, prostacyclin release, tyrosine kinase activa-
tion and other effects in cerebellar astrocytes.9,12

Results

JAK2 activation by Ang II. The optimum dose of the peptide to
cause JAK2 protein phosphorylation was determined by incubat-
ing cerebellar astrocytes for 15 min with Ang II ranging in
concentrations from 0.1 nM to 1 mM. Our study revealed that
phosphorylation of JAK2 protein by Ang II occurred in a
concentration-dependent manner (Fig. 1A). Maximal phospho-
rylation was observed with 100 nM Ang II (2.23 ± 0.2-fold
over basal). As shown in Figure 1B, significant phosphorylation
of JAK2 by Ang II occurred by 10 min and was maximal by
15 min. Selective Ang receptor blockers were used to identify
the receptor subtype that mediated the phosphorylation of JAK2
protein by Ang II. Pretreatment with the AT1 receptor blocker,
Losartan, followed by Ang II stimulation blocked Ang II-induced
JAK2 phosphorylation by 88% (Table 1). Pretreatment with
10 mM PD123319, the selective AT2 receptor antagonist failed
to prevent Ang II-mediated JAK2 phosphorylation (Table 1).

To determine the specificity of this Ang II effect, quiescent
astrocytes were pretreated for 15 min with 50 mM AG490, the
JAK2 inhibitor, followed by stimulation with Ang II. As shown in
Table 1, pretreatment with AG490 completely prevented Ang II-
induced JAK2 phosphorylation suggesting that this is a selective
effect of Ang II in cerebellar astrocytes to induce JAK2
phosphorylation.

STAT3 activation by Ang II. Cultured neonatal cerebellar
astrocytes were incubated with increasing concentrations of Ang II

(0.1 nM to 1 mM) for 15 min to determine whether the peptide
increased STAT3 phosphorylation in these cells. As shown in
Figure 2A, maximal phosphorylation was observed with 100 nM
Ang II. Treatment of cerebellar astrocytes with 100 nM Ang II for

Figure 1. Effect of concentration and time on Ang II-induced JAK2
protein phosphorylation. Quiescent monolayers of cerebellum astrocytes
were incubated for 15 min with increasing concentrations of Ang II (A)
or with 100 nMAng II for 5 min to 60min (B). JAK2 protein phosphorylation
was measured by western blot analysis using an antibody specific
for the phosphorylated form of JAK2. Protein loading was visualized
using a non-phosphorylated JAK2 antibody. The data were analyzed
by densitometry and the amount of phosphorylation was calculated as
the fold increase over basal in the presence of vehicle. Each value
represents the mean ± SEM of preparations of cerebellar astrocytes
isolated from six or more litters of neonatal rat pups. *denotes p , 0.05
as compared with basal levels for JAK2 phosphorylation in astrocytes
prepared from the cerebellum
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5 min to 60 min showed that Ang II stimulated STAT3
phosphorylation in a time-dependent manner (Fig. 2B) with
maximal Ang II phosphorylation observed at 15 min (1.71 ±
0.23-fold over basal). Taken together, these findings suggest that
Ang II induces both JAK2 and STAT3 phosphorylation in
cerebellar astrocytes.

To determine the receptor mediating Ang II phosphorylation
of STAT3, quiescent astrocytes were pretreated with either 10 mM
Losartan (AT1 receptor antagonist) or 10 mM PD123319, the
selective AT2 receptor antagonist. As shown in Table 2, Losartan
treatment inhibited by over 75% Ang II-mediated STAT3
phosphorylation. On the other hand, inhibition of the AT2
receptor by PD123319 did not significantly affect Ang II
phosphorylation of STAT3. These findings suggest that Ang II
induce STAT3 phosphorylation through activation of the AT1
receptor.

Previous studies showed that activation of JAK2 leads to
phosphorylation of STAT proteins.18,19 Thus, in these studies we
determined whether JAK2 mediates Ang II phosphorylation of
STAT3. Quiescent astrocytes were pretreated for 15 min with
50 mM AG490, the selective JAK2 inhibitor. Astrocytes were
subsequently stimulated with 100 nM Ang II for 15 min.
Pretreatment with the JAK2 inhibitor completely abolished Ang
II-induced phosphorylation of STAT3 (Table 2). These findings
suggest that JAK2 is an upstream mediator of Ang II-induced
STAT3 phosphorylation.

Ang II upregulation of IL-6 expression. IL-6 mRNA is
expressed in activated astrocytes30 and our previous studies have
shown that activation of the JAK-STAT pathway leads to
stimulation of IL-6 release from astrocytes isolated from
brainstems.29 Thus in these studies, using qPCR, we determined
whether Ang II induces the expression of IL-6 mRNA in
cerebellar astrocytes. Quiescent cerebellar astrocytes were treated
with Ang II ranging in concentrations from 0.1 nM to 1 mM
range. As shown in Figure 3A, Ang II upregulated IL-6 mRNA
expression in a concentration-dependent manner. Maximal IL-6

Table 1. Effects of AG490, Losartan and PD123319 on Ang II-induced JAK2
phosphorylation

Treatment Fold over basal

100 nM Ang II 2.3 ± 0.42

10 mM Losartan 1.20 ± 0.03

10 mM Losartan + 100 nM Ang II 1.16 ± 0.2*

10 mM PD123319 1.0 ± 0.4

10 mM PD123319 + 100 nM Ang II 1.9 ± 0.4

50 mM AG490 1.2 ± 0.4

50 mM AG490 + 100 nM Ang II 0.95 ± 0.3*

*Denotes p , 0.05 as compared with Ang II stimulation of JAK2
phosphorylation. Basal and stimulated astrocytes were treated with
DMSO, the vehicle for the inhibitors. Data were quantified by densitometric
analysis and are the results of individual experiments of 6 or more
preparation of astrocytes.

Figure 2. Effect of concentration and time on Ang II-induced STAT3 protein
phosphorylation. Quiescent cerebellar astrocytes were incubated with
increasing concentrations of Ang II for 15 min (A) or with 100 nM Ang II
for 5 min to 60 min (B). STAT3 protein phosphorylation was measured
by western analysis using an antibody specific for the phosphorylated form
of STAT3. Protein loading was visualized using a non-phosphorylated STAT3
antibody. The data were analyzed by densitometry and the amount of
stimulation was calculated as the fold-increase over basal in the presence
of vehicle. Each value represents the mean ± SEM of preparations of
cerebellum astrocytes isolated from 6 or more litters of neonatal rat pups.
*denotes p, 0.05 as compared with basal levels for STAT3 phosphorylation
in astrocytes prepared from the cerebellum.
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mRNA expression of 2.2 ± 0.2 fold over basal was observed
with 100 nM Ang II. Quiescent cerebellar astrocytes were also
pretreated with 100 nM Ang II for time periods ranging from
15 min to 24 h. Ang II increased IL-6 mRNA expression in a
biphasic manner with peak effects occurring at 3 h, and over a 12
to 24 h time period (Fig. 3B). These findings suggest that Ang II
may act in a proinflammatory manner to induce IL-6 mRNA
expression in these cells.

To determine whether the JAK-STAT pathway is involved in
Ang II-induced IL-6 mRNA expression, quiescent astrocytes were
also pretreated for 15 min with 50 mM AG490, followed by
stimulation with 100 nM Ang II. The JAK2 inhibitor completely
abolished Ang II-induced IL-6 mRNA expression (Table 3).
These findings suggest that the JAK-STAT pathway is involved in
Ang II induction of IL-6 mRNA expression in these cells.

JAK2 mediates Ang II-induced astrocyte growth. To deter-
mine whether JAK2 mediates Ang II astrocyte growth, subconfluent
quiescent astrocytes were pretreated for 15min with 10 mMAG490,
followed by a 48 h treatment with 100 nM Ang II. As shown
previously,29 it is necessary to use a lower concentration of AG490,
since higher levels of the inhibitor significantly reduced basal
3H-thymidine incorporation. 3H-thymidine was added during the
last 24 h of treatment to determine DNA synthesis as an index of
astrocyte growth. As we have shown previously, Ang II significantly
stimulated growth of cerebellar astrocyte (Table 4). The JAK2
inhibitor, AG490, significantly prevented (by 86%) Ang II-
mediated astrocyte growth. These findings suggest a role for JAK2
in Ang II growth effects.

Discussion

Our results demonstrated that Ang II induced JAK2 phosphoryla-
tion in a time- and concentration-dependent manner in rat
cerebellar astrocytes. Our study also revealed that Ang II induces

Table 2. Effects of AG490, Losartan and PD123319 on Ang II-induced STAT3
phosphorylation

Treatment Fold over basal

100 nM Ang II 1.66 ± 0.2

10 mM Losartan 0.91 ± 0.1

10 mM Losartan + 100 nM Ang II 1.16 ± 0.3*

10 mM PD123319 0.9 ± 0.1

10 mM PD123319 + 100 nM Ang II 1.41 ± 0.2

50 mM AG490 0.84 ± 0.13

50 mM AG490 + 100 nM Ang II 0.80 ± 0.2*

*Denotes p , 0.05 as compared with Ang II stimulation of STAT3
phosphorylation. Basal and stimulated astrocytes were treated with
DMSO, the vehicle for the inhibitors. Data were quantified by densitometric
analysis and are the results of individual experiments of six or more
preparation of astrocytes.

Figure 3. Effect of Ang II on IL-6 gene expression. Quiescent monolayers
of cerebellar astrocytes were incubated with increasing concentrations
of Ang II (A) or with 100 nM Ang II for 6 h to 48 h (B). IL-6 mRNA
expression was analyzed by quantitative PCR. The amount of Ang II-
stimulated IL-6 secretion was calculated as the fold-increase over basal.
Each value represents the mean ± SEM of preparations of cerebellar
astrocytes isolated from six or more litters of neonatal rat pups.
*denotes p , 0.05 as compared with basal levels for IL-6 mRNA
expression in astrocytes prepared from the cerebellum.

Table 3. Effects of AG490, Losartan and PD123319 on Ang II-induced IL-6
mRNA

Treatment Fold over basal

100 nM Ang II 2.60 ± 0.07

50 mM AG490 0.76 ± 0.06

50 mM AG490 + 100 nM Ang II 0.76 ± 0.09*

*Denotes p , 0.05 as compared with Ang II-mediated IL-6 mRNA
expression. Basal and stimulated astrocytes were treated with DMSO, the
vehicle for the inhibitor. Values are calculated based on individual
experiments of six or more preparation of astrocytes.

Table 4. Effects of AG490 on Ang II-induced astrocyte DNA synthesis

Treatment Fold Over Basal

100 nM Ang II 2.14 ± 0.3

10 mM AG490 0 0.72 ± 0.4

10 mM AG490 + 100 nM Ang II 1.16 ± 0.2*

*Denotes p , 0.05 as compared with Ang II-stimulated thymidine
incorporation. Basal and stimulated astrocytes were treated with DMSO,
the vehicle for the inhibitor. Values are calculated based on individual
experiments of five or more preparation of astrocytes.
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JAK2-STAT3 phosphorylation in cerebellar astrocytes via the
AT1 receptor. Furthermore, pretreatment of astrocytes with the
selective JAK2 antagonist, AG 490, not only prevented the Ang
II-induced JAK2 phosphorylation, but also the phosphorylation
of its downstream transcription factor STAT3 (Tables 1 and 2).
The JAK-STAT signaling pathway is considered as a stress-
responsive signaling cascade that transduces signals from cell
surface receptors to the nucleus, thereby modulating gene
expression. Ang II interacts with Ang AT1 receptors leading to
activation of the JAK-STAT signaling pathway, to cause various
cellular responses such as proliferation, differentiation, migration
and apoptosis.16-18 This is the first study to show that both JAK2
and STAT3 are activated by Ang II in cerebellar astrocytes. We
have previously shown a similar effect of the peptide in astrocytes
isolated from the brainstem.29 Astrocytes, isolated from the
brainstem and cerebellum, are responsive to Ang II. Although our
studies showed that brainstem astrocytes were more responsive to
Ang II, in terms of JAK2 phosphorylation, than cerebellar
astrocytes, this was a small effect which was not significant. These
findings suggest that Ang II has similar effects in different areas of
the brain.

There are three STAT isoforms, STAT1, STAT2 and STAT3
that are known to mediate Ang II effects.18,19 While STAT1 and
STAT2 promote growth arrest and apoptosis, STAT3 protects
against apoptosis and enhances cell proliferation,31 and thus we
targeted this isoform in our studies. Our study showed that
100 nM Ang II induced cell proliferation in cerebellar astrocytes
(Table 4). We further showed that inhibition of JAK2 prevented
Ang II-mediated astrocyte proliferation. In terms of cellular
proliferation, astrocytes isolated from the brainstem29 and the
cerebellum (Table 4) reacted similarly to Ang II. Ang II
stimulated the proliferation of rat astrocytes through the Ang
AT1 receptor, an effect mediated by MAP kinase pathways, the
endogenous tyrosine kinase Src, and membrane bound tyrosine
kinases.8,9 These findings suggest that along with other
intracellular pathways that the JAK2-STAT3 pathway is also
involved in Ang II growth promoting effects and identifies this
pathway as a mediator of Ang II proinflammatory effects.

IL-6 is an important cytokine involved in Ang II effects.32 This
cytokine has multiple biological activities such as induction of cell
proliferation, inflammation and differentiation.21 Ang II regulates
IL-6 secretion and gene expression in many cell types,17,23-27 and
we have recently shown in brainstem astrocytes that Ang II
induces IL-6 secretion.29 In this study, we investigated whether
Ang II increased IL-6 mRNA expression in rat cerebellar
astrocytes. Our study revealed that IL-6 mRNA expression was
upregulated by Ang II in a concentration- and time-dependent
manner in these cells. Maximal IL-6 mRNA expression was
observed with 100 nM Ang II (Fig. 3A). Ang II-induced IL-6
mRNA expression was biphasic with two peak effects observed at
3 h and between 12 and 24 h (Fig. 3B). Similar to our findings, a
biphasic effect of Ang II to induce IL-6 secretion and mRNA
levels was observed in vascular smooth muscle cells.33 Since Ang II
induces several known growth factors, it was suggested that this
may be the cause of the biphasic effect in vascular smooth muscle
cells. Nevertheless, the reason(s) for this biphasic effect in

astrocytes is uncertain but suggests that Ang II has proinflamma-
tory effects in these cells and may regulate short-term (the initial
increase) and long-term (24 h increase) release of IL-6.

Ang II is a multifunctional peptide with a myriad of effects in
the body, including proinflammatory effects.14,34-36 IL-6 is a
potent inflammatory cytokine which has been shown by us,29 and
others33,37 to be induced by Ang II through actions at the AT1
receptor. These findings suggest that IL-6 may be an important
cytokine involved in Ang II effects. In this study, we showed that
Ang II induces IL-6 mRNA expression suggesting that this maybe
one mechanism involved in Ang II proinflammatory effects. The
JAK-STAT pathway mediates Ang II-induced IL-6 production.38

Previously in brainstem astrocytes, we showed that inhibition of
the JAK-STAT pathway with AG490 inhibited IL-6 secretion.29

In the current study, we showed for the first time in cerebellar
astrocytes that Ang II induces IL-6 mRNA expression, an effect
mediated by the JAK-STAT pathway. Here, we have demon-
strated in a different area of the brain which also exhibits a high
concentration of Ang II receptors and distinct Ang II signal
transduction pathways, that Ang II has proinflammatory effects
mediated by the Ang AT1 receptor and the JAK-STAT pathway.

Activated astrocytes contribute to central inflammatory effects
and tissue repair39; thus, it is important to study the pathways that
lead to local immune responses (here, IL-6 production and
astrocyte proliferation) in the brain. In addition, centrally
produced Ang II may be involved in inflammation. There is a
significant increase in the production of brain angiotensinogen,
the precursor molecule for Ang II, during an inflammatory
response.40 Moreover, it has been shown in angiotensinogen-
deficient mice that during cold injury, there is attenuation of
GFAP expression and decreased laminin levels in astrocytes,
resulting in an incomplete reconstitution of the blood brain
barrier.41 These findings suggest that during inflammation or
physical trauma to the brain, there is an increase in Ang II, which
may act in a paracrine fashion to stimulate growth and
proliferation of astrocytes triggering astrocyte activation. Our
studies have shown that Ang II increases the mRNA expression
and release of the proinflammatory cytokine IL-6 from astrocytes,
effects that are mediated by the JAK-STAT pathway. Thus,
studies such as these and our previous studies,29 are important in
delineating the non-classical Ang II pathways leading to the
activation of inflammatory responses in areas of the central
nervous system known to express Ang receptors and associated
signaling pathways. Finally, increases in central IL-6 and/or
peptides of the RAS are associated with diseases such as stroke,
Alzheimer disease, heart failure and hypertension. Thus, our
findings support the relevance of the brain RAS, in particular the
role of astrocytes.

Materials and Methods

Ang II was obtained from Bachem. The JAK2 inhibitor AG490
was purchased from Cal Biochem. PD123319, the selective AT2
receptor inhibitor was obtained from Sigma, and Losartan (AT1
receptor inhibitor) was kindly provided by DuPont Merck. The
PhosphoSTAT3, STAT3, PhosphoJAK2 and JAK2 antibodies
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were purchased from Cell Signaling Technology. Western
blotting supplies were purchased from either GE Health Care
or Biorad Laboratories or from Pierce Biotechnology. The BCA
protein kit was obtained from Pierce Biotechnology. Quantitative
PCR products including the primer sets for IL-6 were obtained
from Applied Biosystems. All other chemicals were purchased
from either VWR International or Sigma.

Astrocyte preparation. Timed pregnant Sprague-Dawley rats
were obtained from Charles River Laboratories and maintained
in the ALAAC-accredited animal facility of Nova Southeastern
University. During the astrocyte isolation procedure, care was
taken to minimize pain and discomfort to the animals. Primary
cultures of astrocytes were prepared from the cerebellum of 2–3 d
old neonatal rat pups by physical dissociation as previously
described.12 Cells were maintained in DMEM/F12 with 10%
FBS, 100 mg/mL penicillin and 100 units/mL streptomycin at
37°C in a humidified incubator (5% CO2 and 95% air). Cultures
were fed every 3 to 4 d until confluent. Confluent monolayers
were placed in DMEM/F12 containing 10 mM Hepes, pH 7.5,
10% FBS and antibiotics and shaken overnight to remove
oligodendrocytes. Astrocytes were detached with trypsin/EDTA
(0.05% trypsin, 0.53 mM EDTA), replated at a ratio of 1 to 10,
and grown to approximately 80% to 90% confluency prior to use.
Isolated cells were about 95% pure astrocytes showing a positive
immunoreactivity with an antibody against glial fibrillary acidic
protein (GFAP) and negative immunoreactivity with markers for
neurons, or oligodendrites.

Cell lysate preparation. Cultured astrocytes were made
quiescent by a 48 h treatment with serum-free media and all
treatments were conducted in serum-free media. Immediately
following treatments, cell lysates were prepared by washing cells
with phosphate-buffered saline containing 0.01 mM NaVO4

followed by solubilization in supplemented lysis buffer (100 mM
NaCl, 50 mM NaF, 5 mM EDTA, 1% Triton X-100, 50 mM
TRIS-HCl, 0.01 mM NaVO4, 0.1 mM PMSF and 0.6 mM
leupeptin, pH 7.4). The supernatant was clarified by centrifuga-
tion (12,000x g for 10 min, 4°C) and the protein concentrations
of the cell lysates were measured by the BCA method.

Western blot analysis. Solubilized proteins were separated
in 10% polyacrylamide gels and transferred to nitrocellulose
membranes. Nonspecific binding to the membranes was pre-
vented by incubation with 5% Blotto (5% evaporated milk, 1%
Tween-20 in Tris-buffered saline). Subsequently, membranes
were probed with the following antibodies that specifically
recognized the activated phosphorylated form of the proteins:
JAK2 (1:1000 in Tris-buffered saline containing 1% BSA);
STAT3 (1:1000 in Tris-buffered saline containing 5% BSA).
After incubating with primary antibodies, the membranes were
probed with goat anti-rabbit antibody coupled to horseradish
peroxidase. The immunoreactive bands were visualized using ECL
reagents and the data quantified by densitometry.

To visualize non-phosphorylated forms of JAK2 and STAT3,
solubilized proteins were separated by electrophoresis in 10%
polyacrylamide gels. The proteins were subsequently transferred

to nitrocellulose membranes and then nonspecific binding was
minimized by blocking with 5% Blotto. The membranes were
then incubated with an anti-STAT3 antibody or with an anti-
JAK2 antibody. The membranes were subsequently probed with
goat anti-rabbit antibody coupled to horseradish peroxidase. The
immunoreactive bands were visualized using ECL reagents and
quantified by densitometry.

Total RNA extraction and IL-6 mRNA expression. Total
RNA was extracted from astrocytes using the trizol method. Total
RNA concentrations were determined using Biorad SmartSpecTM

spectrophotometer. Two micrograms of total RNA from each
sample were reverse transcribed into the complementary strand
DNA using a high capacity reverse transcription reagent kit
(Applied Biosystems). Quantitative PCR (qPCR) was performed
using TaqMan Universal master mix, and the TaqMan gene
expression assay for rat IL-6 all supplied by Applied Biosystems.
Samples were assayed in triplicates in 96-well plates using the
StepOneTM plus Real time PCR system from Applied Biosystems.
The widely accepted comparative Ct (threshold cycle) method
was used to perform relative quantification of qPCR results.42

An arithmetic formula (fold difference = 2-DDCt) was used to
calculate the relative IL-6 mRNA expression in Ang II-stimulated
astrocyte cultures as compared with the unstimulated controls,
after normalization to levels of the housekeeping control gene,
β-actin. Data are thus expressed as fold change in IL-6 mRNA
expression as compared with basal IL-6 mRNA expression in
unstimulated cells.

Measurement of DNA synthesis. Astrocytes growing in
24-well plates were made quiescent by a 48 h treatment with
serum-free media. Individual wells were then treated for 48 h
with 100 nM Ang II in the presence and absence of 10 mM
AG490. 3H-thymidine (0.25 Ci/mL culture medium) was
added during the last 24 h of treatment. Basal and Ang II-
induced DNA synthesis was measured in the presence of DMSO
which was used to dissolve AG490. Newly synthesized DNA
was precipitated with 5% TCA, dissolved in 0.25 N NaOH,
and quantified by liquid scintillation spectrometry as previously
described.43

Statistical analysis. All data are expressed as the mean ± SEM of
4 or more experiments, as indicated. T-tests or repeated measures
one-way analysis of variance (ANOVA) with Dunnett’s post
test was used to compare treatment groups with control, using
PRISM (GraphPad). The criterion for statistical significance was
p , 0.05.
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