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In this paper, we have to apply the Dirac-Weyl equation to find the analytical energy eigenvalues of the graphene 
quantum dot interacting in the presence of AB-flux field and external magnetic field. We find that the energy 
eigenvalue of the graphene quantum dot decreases with both magnetic and AB-flux field but the effect of AB-flux 
field is more dominant. By ameliorating the intensity of the AB-flux field and keeping the magnetic field constant, 
the quantum-dot states entangled to produce Landau Levels. We show that besides using the graphene sheet and 
external magnetic field, the Aharonov-Bohm AB-flux field could as well be used to manipulate the carriers state 
energies in graphene.
1. Introduction

Graphene can be described as a single layer of carbon atoms that 
are integrated together in a repeating pattern of hexagons. It is the 
thinnest substance ever made. It is the basic structural element of other 
allotrope, including charcoal, graphite and fullerenes carbon nanotubes. 
One could also consider it as an indefinitely large aromatic molecule. 
It has exceptional strength, thermal conductivity, and electric conduc-

tivity. The potential applications of graphene is not limited to faster 
computer chips, it also important in designing hyper-efficient solar 
cells, flexible touchscreens and desalination membranes [1]. It has also 
shown a promising future for nanoelectronics material. An important 
class of graphene nanomaterials with exceptional luminescence proper-

ties is graphene quantum dot.

Graphene quantum dots are kind of 0D material with characteris-

tics derived from both graphene and carbon dots [2]. It is becoming 
an advanced multifunctional material because of its unique optical, 
electronic, spin and photoelectric properties induced by the quantum 
confinement and edge effects. Graphene quantum dots are not single-

layer graphene domains, but multi-layer formations containing up to 10
layers of reduced graphene oxide ranging from 10 nm to 60 nm in size.

Manufacturing graphene-based quantum structures seems to be of 
great challenge for its potential application in electronic devices be-

cause of the Klein tunneling effect [3] which hinders the confinement 
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of the carriers. To overcome this difficulty, the carriers states energies 
in graphene can be manipulated either by using infinite graphene sheet 
or via external magnetic field which leads to the manifestation of Lan-

dau levels for an infinite graphene sheet [4].

Magnetic field induced confinement-deconfinement transition in 
graphene quantum dots was investigated in Ref. [5]. Schnez et al. [6] re-

ported analytical study on the energy spectrum of a graphene quantum 
dot in a perpendicular magnetic field. The magnetic field dependence of 
energy levels in gapped single-layer and bilayer graphene quantum dots 
have been studied analytically in terms of the Dirac equation by Recher 
et al. [7]. Electronic and optical properties of a circular graphene quan-

tum dot in a magnetic field were studied in Ref. [4].

It was found in Ref. [8] that energy spectrum of graphene with re-

spect to dot size and external magnetic field are quantitatively similar 
to one another. Energetic model to describe the edge elastic properties 
of defect-free single-layer graphene sheets was proposed in Ref. [9]. It 
was found in Ref. [10] that the optical properties of graphene quan-

tum dots are tuned by the size, the type of the edge, and the external 
magnetic field [10, 11].

Beside the graphene sheet and external magnetic field, we suggest 
that AB-flux field could also be used to manipulate the carriers state 
energies in graphene. We refer the readers to Ref. [12] for a more com-

prehensive study on AB-flux field. Moreover, Ribeir et al. [13] presented 
a magneto-photoluminescence study of type-II InP/GaAs self-assembled 
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quantum dots, revealing the Aharonov-Bohm-type oscillations for neu-

tral excitons when the hole ground state changes its angular momen-

tum.

Linearity in the behavior of energy spectrum of graphene at the 
Brillouin zone can be described by the Dirac-Weyl equation which is 
a characteristic of relativistic massless particles. The study of problems 
involving Dirac-Weyl Hamiltonian in continuous limit in graphene have 
been investigated in several literature [14, 15, 16, 17, 18, 19].

Motivated by the considerable interest in studying Dirac-Weyl 
Hamiltonian in continuous limit in graphene, in this paper, we use 
the Dirac-Weyl equation to find the energy eigenvalue of a circular 
graphene quantum dot under the influence of magnetic field and AB-

flux field. In section 2, we give a theoretical formulation of the problem. 
Bound state solution is presented in section 3. Finally, in section 4, we 
give a brief conclusion.

2. Background

In this section, we give theoretical formulation of the problem. In 
order to achieve our aim of this study, we shall solve the Dirac-Weyl 
equation in cylindrical coordinate by taking into accounts, the homoge-

neous magnetic and AB-flux fields perpendicular to the graphene sheet. 
Thus, the Hamiltonian for this problem becomes

𝐻 = 𝑣(𝑝+ 𝑒𝐴) ⋅ �⃗� + 𝜏𝑉 (𝑥, 𝑦)𝜎𝑧, (1)

where vector potential 𝐴 = 𝐴1 + 𝐴2 [20] with 𝐴1 = (𝐵𝑟∕2)�̂�, 𝐴2 =
𝜙𝐴𝐵∕(2𝜋𝑟)�̂�. �⃗� = 𝐵�̂�, ∇⃗ × 𝐴1 = �⃗�. 𝐴2, ∇⃗ ⋅ 𝐴2 = 0. Thus 𝐴 = ((𝐵𝑟∕2) +
𝜙𝐴𝐵∕(2𝜋𝑟))�̂�. Fermi velocity is denoted by 𝑣 = 106 m∕s and 𝜏 = ±1
distinguishes the two valleys 𝐾 ′ and 𝐾 . �⃗� = (𝜎𝑥, 𝜎𝑦) are Pauli’s spin 
matrices which act on sublattice components  and  of the spinor 
wave function. It is necessary to transform the Hamiltonian to cylindri-

cal coordinates. To do this, firstly, we write 𝜎𝑥, 𝜎𝑦 and 𝜎𝑧 in cylindrical 
coordinates as:

𝜎𝑟 =
(

0 𝑒−𝑖𝜑

𝑒𝑖𝜑 0

)
, 𝜎𝜑 = 𝑖

(
0 −𝑒−𝑖𝜑
𝑒𝑖𝜑 0

)
and 𝜎𝑧 =

(
1 0
0 −1

)
, (2)

respectively with ℏ = 1. Hence, the Hamiltonian becomes

𝐻 = 𝑣

(
−𝑖 𝜕

𝜕𝑟
�̂�− 𝑖

𝑟

𝜕

𝜕𝜑
�̂�− 𝑖

𝜕

𝜕𝑟
�̂�+ 𝑒𝐵𝑟

2
�̂�+

𝑒𝜙𝐴𝐵

2𝜋𝑟
�̂�

)
⋅ (𝜎𝑟�̂�+ 𝜎𝜑�̂�) , (3)

and the confinement potential becomes 𝑉 (𝑥, 𝑦) = 𝑉 (𝑟) with 𝑟 =
√
𝑥2 + 𝑦2. 

To confine the carriers inside quantum dot, we consider the circular 
well potential which is defined as 𝑉 (𝑟) = 0 for 𝑟 ≤ 𝑅 and 𝑉 (𝑟) = ∞ for 
𝑟 > 𝑅. Thus for 𝑉 (𝑟) = 0, we can find the eigenvalue of the problem via 
𝐻Ψ = 𝐸Ψ, where Ψ = (Ψ1(𝑟, 𝜑), Ψ2(𝑟, 𝜑)) is the two-component spinor 
with Ψ1(𝑟, 𝜑) = 𝑒𝑖𝑚𝜑𝜒𝐴 and Ψ2(𝑟, 𝜑) = 𝑖𝑒𝑖(𝑚+1)𝜑𝜒𝐵 . Since the Hamilto-

nian commutes with the operator of total angular momentum, then 
the energy eigenspinors take the form Ψ = [𝑒𝑖𝑚𝜑𝜒𝐴, 𝑖𝑒𝑖(𝑚+1)𝜑𝜒𝐵]𝑇 , where 
𝑚 = 0, ±1, ±2, ... denotes the total angular momentum quantum number. 
The two components of the wave function 𝜒𝐴 and 𝜒𝐵 correspond to sub-

lattice  and . Substituting this expression into the Dirac equation, we 
find the following coupled differential equations:

𝑣
𝑑𝜒𝐵(𝑟)
𝑑𝑟

+ 𝑣

(
𝑚+ 1
𝑟

+ 𝑒𝐵𝑟

2
+

𝑒𝜙𝐴𝐵

2𝜋𝑟

)
𝜒𝐵(𝑟) =𝐸𝜒𝐴,

−𝑣
𝑑𝜒𝐴(𝑟)
𝑑𝑟

+ 𝑣

(
𝑚

𝑟
+ 𝑒𝐵𝑟

2
+

𝑒𝜙𝐴𝐵

2𝜋𝑟

)
𝜒𝐴(𝑟) =𝐸𝜒𝐵. (4)

On solving equations (4) simultaneously, we obtain the following 
Schrödinger-like differential equation satisfying 𝜒𝐴

𝑑2𝜒𝐴(𝑟)
𝑑𝑟2

+ 1
𝑟

𝑑𝜒𝐴(𝑟)
𝑑𝑟

(5)

−

(
(𝑚+ 𝜍)2

𝑟2
+ 𝑚+ 𝜍 + 1

𝑙2
− 𝑘2 + 𝑟2

4𝑙4

)
𝜒𝐴(𝑟) = 0,
𝛽 𝛽

2

where we have introduced parameters 𝜍 = 𝜙𝐴𝐵∕𝜙0 with 𝜙0 = ℎ𝑐∕𝑒 for 
simplicity and 𝑙𝛽 = (𝑒𝐵)−1∕2 denotes the magnetic length. The wave 
vector 𝑘 is related to the energy via the expression 𝑘 = 𝐸∕(𝑣ℏ). Fur-

thermore, a similar equation satisfying 𝜒𝐵 can be obtained as

𝑑2𝜒𝐵(𝑟)
𝑑𝑟2

+ 1
𝑟

𝑑𝜒𝐵(𝑟)
𝑑𝑟

(6)

−

(
(𝑚+ 𝜍 + 1)2

𝑟2
+ 𝑚+ 𝜍

𝑙2
𝛽

− 𝑘2 + 𝑟2

4𝑙4
𝛽

)
𝜒𝐵(𝑟) = 0.

3. Calculation

In this section, we utilize the formula method (FM) [21] to solve 
equations (5) and (6). One of the calculation tools employed in solving 
the Schrödinger-like equation including the centrifugal barrier and/or 
the spin-orbit coupling term is FM. This method was proposed re-

cently in Ref. [21]. For a given potential, the idea is to convert the 
Schrödinger-like differential equation into the form given by equation 
(1) of Ref. [21], i.e.

Φ′′(𝑠) + (𝑘1 − 𝑘2𝑠)∕(𝑠− 𝑘3𝑠
2)Φ′(𝑠)

+(1𝑠
2 +2𝑠+3)∕(𝑠2(1 − 𝑘3𝑠)2)Φ(𝑠) = 0, (7)

via an appropriate coordinate transformation of the form 𝑠 = 𝑠(𝑟). If the 
problem is exactly solvable, then, the corresponding wave function can 
be obtained, via

Φ(𝑠) =𝑁𝑛𝑠
𝑘4 (1−𝑘3𝑠)𝑘5 2𝐹1

(
−𝑛, 𝑛+ 2(𝑘4 + 𝑘5) + 𝑘2∕𝑘3 − 1; 2𝑘4 + 𝑘1, 𝑘3𝑠

)
(8)

and

lim
𝑘3→0

Φ(𝑠) =𝑁𝑛𝑠
𝑘4𝑒𝑥𝑝(−𝑘5𝑠) 1𝐹1

(
−𝑛,2𝑘4 + 𝑘1, (2𝑘5 + 𝑘2)𝑠

)
,

with
2 − 𝑘4𝑘2 − 𝑛𝑘2
2𝑘4 + 𝑘1 + 2𝑛

= 𝑘5, (9)

where

𝑘4 =
(1 − 𝑘1) +

√
(1 − 𝑘1)2 − 43
2

lim
𝑘3→0

𝑘4 =
(1 − 𝑘1) +

√
(1 − 𝑘1)2 − 43
2

and

𝑘5 =
1
2
+

𝑘1
2

−
𝑘2
2𝑘3

+

√√√√[
1
2
+

𝑘1
2

−
𝑘2
2𝑘3

]2
−

[
1

𝑘23

+
2
𝑘3

+3

]
,

lim
𝑘3→0

𝑘5 = −
𝑘2
2

+

√(
𝑘2
2

)2
−1, (10)

with 𝑁𝑛 being the normalization constant. In order to apply this 
method, we now introduce a new transformation of the form 𝑠 = 𝑟2

through which equation (5) becomes

𝑑2𝜒𝐴(𝑠)
𝑑𝑠2

+ 1
𝑠

𝑑𝜒𝐴(𝑠)
𝑑𝑠

− 1
𝑠

(
(𝑚+ 𝜍)2

𝑠
+ 𝑚+ 𝜍 + 1

𝑙2
𝛽

− 𝑘2 + 𝑠

4𝑙4
𝛽

)
𝜒𝐴(𝑠) = 0.

(11)

Thus, comparing equation (11) with (7), we found that 𝑘1 = 1, 𝑘2 = 𝑘3 =
0, 1 = −1∕(16𝑙4

𝛽
), 2 = 𝑘2∕4 − (𝑚 + 𝜍 + 1)∕(4𝑙2

𝛽
), 3 = −(𝑚 + 𝜍)2∕4 and 

hence, using equation (9), we obtain the solution as

𝜒𝐴(𝑠) =𝑁𝑚𝑠
𝑚+𝜍
2 exp

(
− 𝑠

4𝑙2
𝛽

)
1𝐹1

(
𝑚+ 𝜍 + 1 −

𝑘2𝑙2
𝛽

2
,𝑚+ 𝜍 + 1, 𝑠

2𝑙2
𝛽

)

= 𝑚𝑠
𝑚+𝜍
2 exp

(
− 𝑠

4𝑙2

)
𝐿

(
𝑘2𝑙2

𝛽

2
− (𝑚+ 𝜍 + 1),𝑚+ 𝜍,

𝑠

2𝑙2

)
, (12)
𝛽 𝛽
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Fig. 1. (a) Energy spectrum of graphene quantum dot as a function of magnetic field for 𝜁 = 2. The same as (a) but for 𝜁 = 2. (c) Energy spectrum of graphene 
quantum dot as a function of AB-flux field for 𝐵 = 5. The same as (a) but for 𝐵 = 1.
where we have utilized the following relation between Laguerre poly-

nomial and hypergeometric functions, specifically the confluent hyper-

geometric functions

𝐿𝛼
𝑛 (𝑥) =

(
𝑛+ 𝛼

𝑛

)
𝑀(−𝑛, 𝛼 + 1, 𝑥) =

(𝛼 + 𝑛)𝑛
𝑛! 1𝐹1 (−𝑛, 𝛼 + 1, 𝑥) . (13)

We refer the readers to Ref. [21, 22, 23] for more details and general 
examples involving the application of formula method. From equation 
(4), we have

𝜒𝐵(𝑠) = − 𝑣

𝐸

[
𝜒 ′
𝐴
(𝑠)𝑑𝑠

𝑑𝑟
−

(
𝑚+ 𝜍√

𝑠
+

√
𝑠

2𝑙2
𝛽

)
𝜒𝐴(𝑠)

]

= 𝑖

𝑘𝑙2
𝛽

𝑚𝑠
𝑚+𝜍+1

2 exp

(
− 𝑠

4𝑙2
𝛽

)[
𝐿

(
𝑘2𝑙2

𝛽

2
− (𝑚+ 𝜍 + 1),𝑚+ 𝜍,

𝑠

2𝑙2
𝛽

)

+𝐿

(
𝑘2𝑙2

𝛽

2
− (𝑚+ 𝜍 + 2),𝑚+ 𝜍 + 1, 𝑠

2𝑙2
𝛽

)]
. (14)

Using equations (12) and (14), Ψ1(𝑟, 𝜑) and Ψ2(𝑟, 𝜑) can be determined, 
respectively. Now, we use the boundary condition that the outward cur-

rent at the graphene edge is zero [24], i.e. Ψ2(𝑟, 𝜑)∕Ψ1(𝑟, 𝜑) = 𝑖𝜏𝑒𝑖𝜑, leads 
to the energy expression

𝑅

𝑙𝛽

𝐿

(
𝑘2𝑙2

𝛽

2
− (𝑚+ 𝜍 + 1),𝑚+ 𝜍, 𝑅2

2𝑙2
𝛽

)
+𝐿

(
𝑘2𝑙2

𝛽

2
− (𝑚+ 𝜍 + 2),𝑚+ 𝜍 + 1, 𝑅2

2𝑙2
𝛽

)
𝐿

(
𝑘2𝑙2

𝛽

2
− (𝑚+ 𝜍 + 1),𝑚+ 𝜍, 𝑅2

2𝑙2
𝛽

)
= 𝜏𝑘𝑙𝛽 . (15)

The above expression can be numerically solved for 𝐸 using the stan-

dard root finding methods. We have used Wolfram Mathematica 11 for 
3

this and the result has been shown in Fig. 1 where we have considered 
variable magnetic and AB-flux field. We found that there some gaps in 
the energy which is as a consequence of the infinite mass boundary con-

ditions. The energy spectrum decreases with both magnetic and AB-flux 
field but the effect of AB-flux field is more dominant. By ameliorat-

ing the intensity of the AB-flux field and keeping the external magnetic 
field constant, the quantum-dot states integrate to produce Landau Lev-

els. Now we proceed to the study of limit 𝑅∕𝑙𝛽 →∞. It should be noted 
that 𝑅∕𝑙𝛽 monitors the transition from a region where the energies of 
the electrons are dominated by confinement to Landau levels. In this 
case, it is necessary to obtain the series expansion of Laguerre polyno-

mials in equation (15). We achieve this via:

𝐿(𝑛, 𝛼, 𝑥) = (𝑛+ 𝑎)!
𝛼!𝑛!

Γ(𝛼 + 1)
Γ(−𝑛)

𝑒𝑥𝑥−(𝑛+𝛼+1)
[
1 +

(
1|𝑥|
)]

, (16)

and consequently, we have(
𝑘2𝑙𝛽2

2 − 1
)
!Γ(𝑚+ 𝜍 + 1)(

𝑘2𝑙𝛽2

2 −𝑚− 𝜍 − 1
)
!Γ

(
𝑘2𝑙𝛽2

2 +𝑚+ 𝜍 + 1
)

=

(
𝑘2𝑙𝛽2

2 − 1
)
!Γ(𝑚+ 𝜍 + 2)

(𝑚+ 𝜍 + 1)
(

𝑘2𝑙𝛽2

2 −𝑚− 𝜍 − 2
)
!Γ

(
− 𝑘2𝑙𝛽2

2 +𝑚+ 𝜍 + 2
) , (17)

which yields analytical expression for the graphene energy in the pres-

ence of AB-flux and external magnetic fields as

𝐸𝑚 = 𝑣

𝑙𝛽

√
2(𝑚+ 𝜍 + 1). (18)

When 𝜍 = 0, equation (18) reduces to Landau levels for graphene.
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4. Discussion & conclusion

In this paper, we have described a way of confining Dirac-Weyl 
quasiparticles in graphene. The energy level of the graphene quantum 
dot has been obtained in the presence of an external magnetic field and 
AB-flux field. In Fig. 1, we have plotted the energy spectrum as a func-

tion of 𝑚 = −4 ∶ 1 ∶ 4 for various magnetic filed intensity and AB-flux 
field.

The series of crossing and anticrosings that appear in the plot of en-

ergy spectrum is as a consequence of the interplay between AB-flux, 
magnetic field and the quantum dot. We have found that the energy 
spectrum of the graphene quantum dot decreases with both magnetic 
and AB-flux field but the effect of AB-flux field is more dominant. By 
ameliorating the intensity of the AB-flux field and keeping the magnetic 
field constant, the quantum-dot states integrate to produce Landau Lev-

els. We also found that the energy gap would be closed with increasing 
AB-flus field if we shift the degeneracy that appear in the energy lev-

els via the magnetic field. The reversal symmetric are broken by the 
magnetic ordering.

The mathematical method utilized in this paper is very efficient and 
easy to use. We hope that our theoretical work will influence experi-

mental efforts on the effects of AB-flux field and magnetic barriers on 
Dirac fermions.
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