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A B S T R A C T   

Background: Hypoxia and large tumor volumes are negative prognostic factors for patients with head and neck 
squamous cell carcinoma (HNSCC) treated with radiation therapy (RT). PET-scanning with specific hypoxia- 
tracers (hypoxia-PET) can be used to non-invasively assess hypoxic tumor volume. Primary tumor volume is 
readily available for patients undergoing RT. However, the relationship between hypoxic volume and primary 
tumor volume is yet an open question. The current study investigates the hypotheses that larger tumors contain 
both a larger hypoxic volume and a higher hypoxic fraction. 
Methods: PubMed and Embase were systematically searched to identify articles fulfilling the predefined criteria. 
Individual tumor data (primary tumor volume and hypoxic volume/fraction) was extracted. Relationship be-
tween hypoxic volume and primary tumor volume was investigated by linear regression. The correlation between 
hypoxic fraction and log2(primary tumor volume) was determined for each cohort and in a pooled analysis in-
dividual regression slopes and coefficients of determination (R2) were weighted according to cohort size. 
Results: 21 relevant articles were identified and individual data from 367 patients was extracted, out of which 
323 patients from 17 studies had quantifiable volumes of interest. A correlation between primary tumor volume 
and PET-determined hypoxic volume was found (P <.001, R2 = 0.46). Larger tumors had a significantly higher 
fraction of hypoxia compared with smaller tumors (P<.01). The weighted analysis of all studies revealed that for 
each doubling of the tumor volume, the hypoxic fraction increased by four percentage points. 
Conclusion: This study shows correlations between primary tumor volume and hypoxic volume as well as primary 
tumor volume and the hypoxic fraction in patients with HNSCC. The findings suggest that not only do large 
tumors contain more cancer cells, they also have a higher proportion of potentially radioresistant hypoxic cells. 
This knowledge can be important when individualizing RT.   

Introduction 

Head and neck malignancies include cancer of the lips, oral cavity, 
larynx, pharynx, paranasal sinuses, the salivary glands and head and 
neck cancer of unknown primary. Globally, this group constitutes 4% of 
all cancers with an incidence of 930 000 cases every year with 80–90% 
of the tumors being squamous cell carcinomas (HNSCC) [1]. Radiation 
therapy (RT) is one of the cornerstones in the curative setting, with 
concurrent chemotherapy for high-risk patients [2]. 

Hypoxia within tumors is a negative prognostic factor associated 
with poor clinical outcome [3,4]. Hypoxia is a result of an imbalance 
between supply of, and demand for oxygen, and is present in about 60% 

of all head and neck tumors [5,6]. Methods to determine hypoxia 
include invasive Eppendorf pO2 histography, through indirect estima-
tions by using RNA sequencing data, and immunohistochemical staining 
of endogenous (e.g. carbon anhydrase IX, hypoxia-inducible factor-1 α) 
or exogenous (e.g. pimonidazole) markers [7-10]. Radiolabeled exoge-
nous markers (tracers) accumulating in hypoxic tissues can be detected 
by positron emission tomography (hypoxia-PET), providing a non- 
invasive method to assess intratumor hypoxia [11]. Tracers such as 
18F-fluoromisonidazole (FMISO) and 18F-fluoroazomycin-arabinofur-
anoside (FAZA) have been shown to be prognostic for patients with 
HNSCC treated with RT [12]. Hypoxia-PET is often combined with 
computed tomography (CT) enabling assessment of both the hypoxic 
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volume and the primary tumor volume. 
A large primary tumor volume is also a well-known negative prog-

nostic factor for patients with HNSCC [13-16]. However, the relation-
ship between the hypoxic volume and primary tumor volume has been 
addressed without any conclusive findings. Using Eppendorf histog-
raphy, Dunst et al. found a strong correlation between total tumor vol-
ume and hypoxic volume, and emphasized a need for newer and more 
precise methods for measuring hypoxic volume [17]. Chatterjee et al. 
used hypoxia-PET and showed a correlation between tumor volume and 
hypoxic tumor volume in a cohort of 18 HNSCC patients [18]. Contrary, 
Höckel et al. could not show any correlation between tumor oxygenation 
and tumor size when measuring hypoxia with the Eppendorf histog-
raphy in uterine cervical cancer [19]. Neither did Stadler et al. find a 
clear correlation between hypoxic fraction and tumor volume when 
examining patients with HNSCC using the Eppendorf histograph [3]. 
Thereby, the relationship between tumor volume and hypoxic volume in 
human patients has still not been convincingly established. 

The aim of our study was therefore to investigate the relationship 
between primary tumor volume and the hypoxic volume as well as be-
tween primary tumor volume and the hypoxic fraction by extracting and 
compiling published individual patient data from multiple studies using 
hypoxia-PET in HNSCC patients. The hypothesis was that larger tumors 
contain both a larger hypoxic volume and a higher hypoxic fraction. 

Material and methods 

In this study a scoping review was conducted according to Arksey’s 
and O’Malley’s methodology from 2005, subsequently clarified and 
enhanced by Levac, Colquhoun and O’Brien in 2010 [20,21]. The 
research question was: “Does larger tumors contain a higher fraction of 
intratumoral hypoxia?”. The databases PubMed and Embase were 
searched with the help from a professional librarian using keywords and 
medical subject headings in combination. Search strategies were related 
to head and neck cancer, tumor hypoxia and PET-scanning, and a lim-
itation to English language was used (Supplementary Table 1 and 2). 
The records were imported to the reference management tool Endnote 
and further on to the screening and data extraction tool Covidence, 
where duplicates were automatically removed. The remaining titles and 
abstracts and subsequently full text articles were screened according to 
the predefined selection criteria (Supplementary Table 3). Several 
studies gave the appearance of possessing the coveted data for individ-
ual patients although not presenting it in the article nor in the supple-
mentary material. In these cases an email to the corresponding address 
was sent, kindly requesting the individual data. Individual patient data 
(primary tumor volume/primary gross tumor volume (GTV-T) and 
hypoxic volume) was extracted from all the relevant articles. 

Statistics 

Patient data was imported to Microsoft Excel and the hypoxic frac-
tion (defined as the hypoxic volume divided by the tumor volume) for 
each patient was calculated (if not already provided). Relationship be-
tween primary tumor volume and hypoxic volume was determined by 
linear regression. To increase the possibility of interpretation of the 
hypoxic fraction, tumor volumes were transformed to the binary loga-
rithms (log2). For each study cohort, hypoxic fraction vs. log2 (primary 
tumor volume) was plotted and the statistical relationship was deter-
mined by linear regression. The individual regression slopes and the 
coefficients of determination (R2) were weighted according to cohort 
size. Comparisons between two groups were determined using the 
Wilcoxon rank-sum test. In addition, a pooled analysis was conducted. 
To account for the different thresholds and methods used, we separately 
normalized the hypoxic fractions in all cohorts by defining hypoxic 
fractionArbitrary Unit = 1 at the median tumor volume. This was made by 
calculating Δy between the fitted linear regression-line and the arbitrary 
point y = 1 for tumor volume = 25 cm3 (median tumor volume). Δy was 

then added to the individual data points (hypoxic fractions), leaving the 
regression slope unaffected. A linear regression for the normalized 
hypoxic fractions was then performed. Different threshold for deter-
mining hypoxic fraction was investigated by Spearman’s rank correla-
tion coefficient (ρ) for a subset of patients with available data. Statistical 
calculations were performed in Microsoft Excel and in R (version 3.6.3) 
using RStudio (version 1.2.5042). P-values < 0.05 were determined 
statistically significant. 

Results 

Data acquisition 

The search in the databases PubMed and Embase resulted in 344 and 
248 records respectively which added up to 592 records in total (Fig. 1). 
Individual data was extracted from 21 articles who met the preset 
criteria, with a total number of 367 individual patients (Table 1). In 
three of the patients the hypoxic volume was larger than the primary 
tumor volume, generating a hypoxic fraction > 1. For these patients the 
hypoxic fraction was set to 1. In three studies the volumes measured 
could concern either the primary tumor or lymph nodes, therefore a 
decision was made to exclude these studies from the pooled analysis. 
The same was done for a study presenting tumor SUVmax / muscle 
SUVmean (T/M) instead of hypoxic volume. Finally, 17 studies with a 
total of 323 individual patients were included in the pooled analysis. 

Relationship between primary tumor volume and hypoxic volume 

Hypoxic tumor volumes as determined by hypoxia-PET was corre-
lated to primary tumor volume (Fig. 2A). Using linear regression, a 
significant positive correlation between hypoxia-PET determined hyp-
oxic volume and primary tumor volume for the 323 included patients 
was found (P <.001, R2 = 0.46). Within the individual studies, signifi-
cant correlations were found for 15 out of 17 studies (Table 1). 

Fig. 1. Flow chart of the study selection process. * Individual patient data was 
requested by e-mail to 25 corresponding authors and resulted in 18 non- 
responders, 3 responders but data not provided, and 4 authors provided data 
(of which 1 had overlapping data and not included). 
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Table 1 
Characteristics of the 21 studies.         

Hypoxic volume vs. 
tumor volume 

Hypoxic fraction vs. log2(tumor 
volume)   

Author Year # of 
patients 

Tracer 
used 

Cut-off Range GTVT 
(min–max) 

Range hypoxic 
fraction 

Linear 
regression 
coefficient 

P-value R2 Linear 
regression 
coefficient 

P-value R2 REF  

Silvoniemi, A 2018 10 EF5 TMR 
threshold 1.5 

8.9–73.5 0.01–0.43  0.403  0.002  0.70  0.0615  0.21 0.19 [43]  

Mönnich, D 2017 21 FMISO TMR 
threshold 1.4 

15.9–209.3 0–0.71  0.104  0.09  0.10  − 0.0327  0.54 0.020 [44]  

Kazmierska, J 2020 35 FMISO TMR treshold 
1.6 

0.2–174.3 0–0.14  0.043  <0.001  0.27  0.0075  0.022 0.15 [45]  

Löck,S 2019 42 FMISO TBR treshold 
1.6 

5.06–177.85 0–1  0.307  <0.001  0.36  0.0726  0.056 0.09 [46]  

Zegers, C 2016 20 HX4 TMR treshold 
1.4 

2.4–46.6 0–0.32  0.132  0.008  0.29  0.0377  0.049 0.20 [47]  

Bollineni, V. R 2014 6 FAZA TBR treshold 
1.4 

26–50 0.05–0.85  1.320  0.049  0.58  0.6382  0.068 0.61 [48]  

Chang, J 2013 8 FMISO TMR treshold 
1.5 

14.5–52.4 0.05–0.16  0.088  0.027  0.52  − 0.0142  0.56 0.06 [49]  

Grosu, A 2007 18 FAZA TMR 
threshold 1.5 

18.8–115 0–0.51  0.290  0.007  0.34  0.0541  0.12 0.14 [50]  

Komar, G 2014 22 EF5 TMR of 1.5 0.98–45 0–0.998  0.089  <0.001  0.72  0.1053  0.026 0.22 [51]  
Lehtiö, K 2004 19 FETNIM N/A 1.4–401.6 0.095–0.64  0.659  <0.001  0.95  0.037  0.14 0.13 [52]  
Lin, Z 2008 7 FMISO TBR threshold 

1.3 
23.45–140.8 0.03–0.48  0.417  0.21  0.15  0.0429  0.52 0.09 [53]  

Saksø, M 2020 40 FAZA TMR 
threshold 1.6 

1.6–144.6 0–0.84  0.086  <0.001  0.37  0.0151  0.45 0.02 [54]  

Servagi-Vernat, 
S 

2015 12 FAZA TMR ratio 1.6 2.4–73 0–0.54  0.497  <0.001  0.72  0.0873  0.021 0.43 [55]  

Simoncic, U 2017 6 FMISO TMR 
threshold 1.4 

11.6–48.5 0.01–0.72  0.418  0.22  0.17  − 0.133  0.48 0.13 [56]  

Bittner, M 2016 16 FMISO TMR 
threshold 1.4 

9–99 0.05–0.99  0.754  <0.001  0.88  0.0068  0.94 0.004 [57]  

Nehmeh, S 2021 18 FMISO TBR treshold 
1.2 

3.9–34.9 0.003–1  0.657  <0.001  0.74  0.1164  0.28 0.07 [58]  

Sato, J 2018 23 FMISO TMR 
threshold 
1.25 

0.3–36.1 0–1  0.153  <0.001  0.58  − 0.0229  0.37 0.04 [59]    

323      0.27 § <0.001 § 0.46 § 0.045 † <0.001* 0.12 †

Reason for 
exclusion 

Dirix, P 2009 12 FMISO TBR treshold 
1.2 

14.5–85 0–0.46  0.095  0.17  0.09  − 0.0307  0.603 0.028 [60] lymph nodes or 
primary tumor 
volume 

Henriques de 
Figueiredo 

2015 10 FMISO See 
publication 

306–518** 0.01–0.14  0.07  0.31  0.02  0.0048  0.926 0.0011 [61] lymph nodes or 
primary tumor 
volume 

Zegers, C 2015 7 HX4 TBR treshold 
1.2 

2.6–79.9 0–0.15  0.05  0.01  0.70  0.0053  0.739 0.0241 [62] lymph nodes or 
primary tumor 
volume 

Minagawa, Y 2011 15 62Cu-ATSM 1.2–76.5 1.61–10.94***     1.9564  0.168  0.1406 [63] No volume 
available 

Original and analyzed data for the 21 included studies. For each study cohort, the statistical relationship between primary tumor volume and hypoxic volume (light grey columns) as well as between primary tumor volume 
(binary logarithm) and hypoxic fraction (dark grey columns) were determined. The bottom four studies were excluded from the pooled analysis. GTVT: primary tumor volume, TMR: tumor-to-muscle ratio, TBR: tumor-to- 
blood ratio. 
* Result of the pooled analysis of normalized data according to Fig. 2B. 
** Values representing clinical target volume (CTV) instead of GTVT. 
*** (T/M) tumor SUVmax/muscle SUVmean. 

§ Result of the pooled analysis. 
† Sum of individual analyses, weighted according to cohort size. 
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Sensitivity analyses by dichotomizing the cohort at different primary 
tumor volumes and separately analyzing smaller and larger tumors for 
correlations between primary tumor volume and hypoxic volume 
revealed similar and significant results throughout (e.g. for primary 
tumors smaller or larger than 10 cm3 the regression slope was 0.29 and 
0.28, respectively with P <.001 in both subgroups). 

Relationship between primary tumor volume and hypoxic fraction 

We next investigated the hypoxic fraction in relationship to primary 
tumor volume. Four of the 17 individual studies showed a positive sig-
nificant correlation between primary tumor volume and hypoxic frac-
tion (Table 1 and Supplementary Figure S1). In the weighted analysis of 
all studies a positive correlation between hypoxic fraction and primary 
tumor volume was found. For each doubling of the primary tumor vol-
ume, the hypoxic fraction increased by an average of four percentage 
points, with a weighted R2-value of 0.12. The median hypoxic fraction 
for patients with a primary tumor volume less than median was 6% 

(interquartile range [IQR] 0–25) compared with 13% (IQR 2–39) for 
patients with a primary tumor volume equal to or larger than the median 
tumor volume (P <.01). Moreover, in the pooled analysis of normalized 
hypoxic fractions, a correlation between hypoxic fraction and primary 
tumor volume was found with a positive slope of 0.042 (95% confidence 
interval 0.027–0.058, P <.001), corresponding to an average increase of 
the hypoxic fraction by four percentage points for each primary tumor 
volume doubling (Fig. 2B). Likewise, the non-normalized pooled anal-
ysis showed a positive relationship between hypoxic fraction and pri-
mary tumor volume (Supplementary Fig S2). In a subset of 114 patients 
the correlation between hypoxic fraction and tumor volume was 
investigated at different thresholds for defining hypoxia (i.e. tumor-to- 
muscle ratio 1.4–2.0). Significant correlations were found for all 
hypoxia-defining thresholds, with a tendency towards stronger corre-
lations for higher thresholds (Table 2). 

Discussion 

In this pooled analyses of 323 HNSCC patients from 17 different 
studies using hypoxia-PET we have found a correlation between the 
primary tumor volume and the hypoxic volume. Moreover, the hypoxic 
fraction correlated with the primary tumor volume, and increased 
significantly with increasing primary tumor volume. Thereby, patients 
who present with a large tumor have, in general, both a larger volume of 
hypoxic cells as well as a higher proportion of hypoxic cells compared to 
patients with a smaller tumor. 

The present results add substantial knowledge to earlier diverging 
findings. Similar to the current findings, positive correlations between 
tumor volume and hypoxic volumes have been found using hypoxia-PET 
and for Eppendorf histography [17,18,22]. In contrary, Saksø M. et al. 

Table 2 
Correlation between hypoxic fraction and tumor volume for different thresholds 
to define hypoxia. Values in subscript (1.4-2.0) denote the tumor-to-muscle ratio 
(TMR) for defining hypoxia. Data for 114 patients from [12] including the data 
from [44,46,55] and 39 additional patients.   

Spearman correlation P-value 

Hypoxic fraction1.4  0.34  <0.001 
Hypoxic fraction1.6  0.37  <0.001 
Hypoxic fraction1.8  0.38  <0.001 
Hypoxic fraction2.0  0.42  <0.001  

Fig. 2. A) The hypoxic volume determined by hypoxia-PET as a function of tumor volume for the 17 cohorts included in the pooled analysis. Every cohort is 
presented in a unique color, and each point represents one individual patient. Lines denote the linear regression of each cohort and thick black dashed line illustrates 
the linear regression of 323 patients (with regression coefficients in the figure, P <.001). 
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did not observe any correlation between hypoxia and tumor volume in 
human head and neck cancer when using both Eppendorf histography 
and FMISO-PET [23]. Important to note is that their measurements were 
made in single lymph nodes rather than in primary tumors, which may 
have affected the result. Neither did Stadler et al. find a clear correlation 
between tumor volume and hypoxic fraction using Eppendorf histog-
raphy [3]. These measurements were performed either in the primary 
tumor or a lymph node metastasis for each patient, which potentially 
could have affected the outcome. Vaupel et al. did not observe any 
correlation between the occurrence of hypoxia and tumor size 
(comparing T1-2 with T3-4 tumors) when using Eppendorf histography 
in breast cancer tumors, however these observations were only made in 
a small cohort of 15 patients [24]. 

A relationship between tumor volume and hypoxia was demon-
strated in animal models already in the 60/70′s [25-27], although the 
presence of tumor hypoxia and the relationship to tumor volume may be 
cell line dependent [28,29]. For six different squamous cell carcinoma 
models, no relationship between tumor volume and hypoxic fraction 
was found when hypoxia was assessed after ten fractions of RT [30]. The 
current study suggests a relationship between tumor volume and tumor 
hypoxia before start of RT in human HNSCC. Considering that hypoxic 
tumor cells are more radioresistant, an increased number of hypoxic 
tumor cells is likely to contribute to the poorer outcome seen in larger 
tumors. Our results suggest that when a tumor doubles in size, the 
hypoxic fraction increases by four percentage points. 

Several imaging parameters are obtained through hypoxia-PET and 
consensus for its use is lacking. Cut-off values for defining hypoxic 
volumes (e.g. 1.4 or 1.6 times the background level in muscle) and 
normalization methods (e.g. comparing to background level in blood, 

muscle or cerebellum) differ between studies. Parameters such as 
SUVmax (the maximum of the Standardized-Uptake-Value) and presence 
of tumor-to-muscle ratio > 2 have proven informative [12,22]. Image 
acquisition is typically obtained through static scans, but dynamic scans 
can provide additional information of perfusion and tracer retention 
[31]. Hypoxia-PET measured after 1–2 weeks of RT could be more 
informative compared with before RT [22,32]. In addition, several 
tracers with different characteristics are available. Thereby, the optimal 
usage of hypoxia-PET in HNSCC is yet to be defined. Encouragingly, the 
prognostic value of hypoxia-PET was recently confirmed in a large meta- 
analysis, and the two most commonly used tracers (FMISO and FAZA) 
were found to provide equivalent results [12]. One of the advantages of 
using hypoxia-PET is its ability to non-invasively visualize hypoxic 
volumes, enabling direct comparisons with CT-determined tumor vol-
ume. Eppendorf histography has been extensively used in the past and 
can be sampled through tumors, thus providing spatial distribution of 
hypoxia, but requires an invasive procedure [17,24]. RNA-sequencing 
using hypoxic profiles can be used to identify hypoxic tumors and 
have been shown to be prognostic for patients with HNSCC treated with 
RT [33,34]. However, no spatial information is provided. Interestingly, 
an interaction between CT-determined tumor volume and RNA-seq- 
based hypoxic profiles was described by Linge et al., and the gene pro-
file was only prognostic for patients with small tumors [33]. 

There are a number of limitations in the current study. First, being 
retrospective, this study naturally has a lower degree of evidence. We 
strived to minimize the risk for selection bias by using beforehand 
defined inclusion- and exclusion criteria. The cohorts used different 
tracers and assessment methods leading to heterogeneity in the pooled 
analysis. Despite this heterogeneity, a statistically highly significant 

Fig. 2. (continued). 
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relationship was found in the pooled analysis. Moreover, the study fo-
cuses on hypoxia in primary tumors and relies on the volumes as iden-
tified in the original target delineations. Hypoxia-PET assessments may 
underestimate hypoxia in small tumors, which would affect the current 
analyses [35]. We therefore conducted the sensitivity analyses described 
above, with similar correlations for small and large tumors. Inherent 
disabilities, such as partial volume effects, for detecting hypoxia with 
hypoxia-PET in smaller tumors might still be present and would then 
contribute to inflate the current results [36]. It has previously been 
shown that human papillomavirus (HPV)-positive cell lines respond 
differently to hypoxia [37], and a recent clinical trial investigated the 
use hypoxia-PET to de-escalate RT for patients with HPV-positive 
oropharyngeal HNSCC [38]. We could, however, not investigate the 
subgroup of HPV-associated HNSCC since HPV-status was only available 
for a small subset of patients. It should be noted that the term hypoxia 
refers to features identified by the specific hypoxia-PET tracers and are 
therefore only surrogate markers of the underlying hypoxia The analyses 
do not investigate any relationships to clinical outcome after RT. Lastly, 
the results refer to hypoxia before start of RT, and changes during RT or 
by physiological changes over time are outside the scope of the current 
study, and it could be noted that hypoxia measured during RT might 
provide more prognostication than baseline hypoxia [22,32]. 

Looking into the future, our result may be useful for individualizing 
RT in HNSCC-patients. Since hypoxia refers radioresistance, treatment 
intensification such as dose-escalation or addition of hypoxia-sensitizing 
agents could be indicated for patients with larger tumors. We have 
previously described that intensified RT was more beneficial in patients 
with large tumors [16,39]. Similar results were found in other HNSCC 
and lung cancer trials [40-42]. Our present results could suggest that the 
underlying mechanism for the increased efficacy of intensified RT in 
large tumors might be related to tumor hypoxia. In addition, since 
hypoxia-PET is relatively expensive, time consuming and associated 
with potential patient discomfort due to long imaging and post acqui-
sition times, primary tumor volume might be used as a screening method 
for further hypoxia imaging. 

Conclusion 

This study shows significant positive correlations between primary 
tumor volume and both hypoxic volume as well as hypoxic fraction in 
human head and neck cancers. The findings suggest that not only do 
large tumors contain more cells, they also have a higher proportion of 
potentially radioresistant hypoxic cells. This knowledge may be of value 
in the development of a more individualized radiation therapy. Our 
findings will need to be validated in another cohort and by using other 
methods to assess tumor hypoxia. 
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[12] Zschaeck S, Löck S, Hofheinz F, Zips D, Saksø Mortensen L, Zöphel K, et al. 
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[37] Göttgens E-L, Bussink J, Ansems M, Hammond EM, Span PN. AKT inhibition as a 
strategy for targeting hypoxic HPV-positive HNSCC. Radiother Oncol 2020;149: 
1–7. https://doi.org/10.1016/j.radonc.2020.04.048. 
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Evaluation of tumour hypoxia during radiotherapy using [(18)F]HX4 PET imaging 
and blood biomarkers in patients with head and neck cancer. Eur J Nucl Med Mol 
Imaging 2016;43(12):2139–46. 

[48] Bollineni VR, Koole MJB, Pruim J, Brouwer CL, Wiegman EM, Groen HJM, et al. 
Dynamics of tumor hypoxia assessed by 18F-FAZA PET/CT in head and neck and 
lung cancer patients during chemoradiation: Possible implications for radiotherapy 
treatment planning strategies. Radiother Oncol 2014;113(2):198–203. 

[49] Chang JH, Wada M, Anderson NJ, Lim Joon D, Lee ST, Gong SJ, et al. Hypoxia- 
targeted radiotherapy dose painting for head and neck cancer using 18F-FMISO 
PET: A biological modeling study. Acta Oncol (Madr) 2013;52(8):1723–9. 
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[52] Lehtiö K, Eskola O, Viljanen T, Oikonen V, Grönroos T, Sillanmäki L, et al. Imaging 
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