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ABSTRACT
Antibody drugs should exhibit not only high-binding affinity for their target antigens but also favorable 
physicochemical drug-like properties. Such drug-like biophysical properties are essential for the success
ful development of antibody drug products. The traditional approaches used in antibody drug develop
ment require significant experimentation to produce, optimize, and characterize many candidates. 
Therefore, it is attractive to integrate new methods that can optimize the process of selecting antibodies 
with both desired target-binding and drug-like biophysical properties. Here, we summarize a selection of 
techniques that can complement the conventional toolbox used to de-risk antibody drug development. 
These techniques can be integrated at different stages of the antibody development process to reduce 
the frequency of physicochemical liabilities in antibody libraries during initial discovery and to co- 
optimize multiple antibody features during early-stage antibody engineering and affinity maturation. 
Moreover, we highlight biophysical and computational approaches that can be used to predict physical 
degradation pathways relevant for long-term storage and in-use stability to reduce the need for 
extensive experimentation.
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Introduction

Antibodies and antibody-derived proteins are immensely suc
cessful as therapeutics. In 2021, we witnessed the 100th market 
approval of an antibody drug by the U.S. Food and Drug 
Administration (FDA).1 It is expected that this number will 
expand quickly in the coming years fueled by the hundreds of 
antibodies in clinical development.1 Impressively, there are 
also 800 antibody-based molecules with international nonpro
prietary names (INNs), approximately half of which were 
listed in the past 5 years.2 Most of these drugs have 
a conventional immunoglobulin G (IgG) structure, but there 
is an increasing interest in modalities such as bispecifics, anti
body-drug conjugates, nanobodies and other immunoglobulin 
classes.2–6

Owing to decades of research, the antibody technology has 
matured to a stage where new monoclonal antibodies (mAbs) 
can be developed and manufactured at unprecedented speed.7 

For instance, several new antibody therapeutics for the treat
ment of COVID-19 became available to patients only 10– 
24 months after the start of the pandemic.8

Notwithstanding these successes, there are still many out
standing challenges in antibody development. For example, 
antibodies with desired antigen specificity can exhibit poor 
physicochemical properties and low stability that hinder their 
development as therapeutics.9,10 Some issues (e.g., poor solu
bility, high viscosity) can sometimes be solved by formulation 

development,11 while others (e.g., non-specific binding) can 
only be mitigated by modifying the antibody molecule.12 

Therefore, it is crucial that, in addition to functionality, the 
right antibody candidate with suitable drug-like biophysical 
properties is selected as early as possible. As a response to this 
requirement, the concepts of developability assessment and 
drug-like antibodies emerged.13–17

Traditional antibody development starts with the isolation 
of many mAbs with desired antigen specificity, followed by 
candidate characterization to identify leads that should move 
forward to lead validation or optimization.18–20 Often, an 
optimization step is necessary – either to increase the binding 
affinity or to mitigate physicochemical issues intrinsic to the 
lead candidates.21 The challenge is to identify and optimize 
mAbs that combine desired binding affinity, high specificity, 
excellent stability, and other favorable physicochemical 
properties.22

The toolbox used in developability assessment and opti
mization of antibodies has rapidly expanded over the past 
decade.18,19 However, standard approaches to antibody drug 
development still have drawbacks. For example, it is possible 
that none of the isolated candidates exhibits all desired 
drug-like properties and that optimization efforts result in 
iterative cycles where mutations in the molecule improve 
one property but hamper another.22,23 In addition, it is still 
impossible to measure all physicochemical and stability 
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issues in mAbs with the scarce material available during 
early-stage development. This aspect is further challenged 
by the fact that all the physiochemical and stability problems 
are not intrinsic properties of the protein sequence but 
strongly depend on the formulation and the different stres
ses experienced during the production and life cycle of the 
drug. It is therefore highly desirable to integrate new meth
ods into antibody development.

Here, we summarize a selection of emerging techniques 
that can complement the conventional toolbox used in 
antibody therapeutic development. These approaches can 
bring several improvements such as (i) increasing the like
lihood of discovering target-specific antibodies that also 
have favorable physicochemical properties, (ii) rational co- 
optimization of multiple antibody features (i.e., binding 
affinity, specificity, stability), (iii) prediction of physical 
degradation pathways relevant for long-term storage and 
in-use stability, and (iv) reduction of the number of lab 
experiments by using rapid computational methods that 
have no material requirements.

Drug-like properties of antibodies

Drug-like antibodies exhibit suitable features for development, 
manufacturing, and administration in patients. Some desired 
physicochemical properties will depend on the target product 
profile (TPP).24 For example, an antibody that requires sub
cutaneous administration of large doses to achieve therapeutic 
effect must exhibit excellent solubility and low viscosity at high 
concentrations.25 In contrast, the viscosity at high concentra
tions will be less important for antibodies administered 
intravenously.26 Unfortunately, the TPP is not always clear 
during the early stages of antibody discovery and development 
which complicates the definition of all important physico
chemical features.

Despite the product-related differences, there are some 
general requirements that apply for most antibody drug 
candidates.20,22 For example, high binding affinity to the phar
macological target is a requirement for antagonist antibodies, 
while the absence of toxicity, low immunogenicity, and high 
binding specificity will be important for most antibody drug 
candidates.20 Similarly, high production yields are desirable for 
all antibody drugs. Next, the candidates should exhibit good 
aqueous solubility and high colloidal stability manifested as low 
tendency for self-association and aggregation. For example, 
high self-interactions are correlated to formulation issues 
such as opalescence or elevated viscosity at high protein 
concentrations27 and aggregation during long-term storage.28 

Colloidal stability will also play a role during standard produc
tion steps such as tangential flow filtration and 
upconcentration.29 In addition, it is important that the candi
dates have sufficient conformational stability that ensures that 
the unfolded state populations will be minimal at ambient 
conditions for biomanufacturing, storage, and postproduction 
handling, and also because unfolded molecules are non- 
functional and often immunogenic.30 Unfolded states, by 
exposing to the solvent hydrophobic patches typically buried 
in the native structure, are particularly prone to aggregation 
and therefore even small populations of them can result in 

substantial formation of aggregates over time.31 A drug-like 
antibody ideally exhibits low heterogeneity after secretion from 
mammalian cells, as well as sufficient resistance to aggregation 
and unfolding at low pH that is used to elute the bound 
antibodies during affinity chromatography and for subsequent 
viral inactivation.32 In addition, interfacial stability related to 
adsorption and unfolding at different interfaces is not only 
important during manufacturing but also for the so-called “last 
mile” where the antibody is subjected to postproduction hand
ling (dilution, mixing, in-hospital transport) that is particu
larly likely to cause interfacial stress.33 Just as importantly, 
drug-like antibodies will exhibit high chemical stability dis
played as lower tendency for chemical changes, such as frag
mentation, oxidation, deamidation, and isomerization.34

These basic examples of desired drug-like properties illus
trate just some of the many aspects that must be considered 
during antibody development. Predicting all the desired bio
logical and physicochemical properties from antibody 
sequences is considered a “Holy Grail” in antibody drug 
development. Unfortunately, only some known liabilities 
can be identified directly from the sequence; for example, 
these could be motifs related to accelerated chemical 
degradation34 or polyreactivity.12 Other liabilities such as 
polyspecificity, tendency for non-native aggregation, or 
poor conformational stability are generally harder to predict 
accurately, and therefore are often screened for in high- 
throughput biological and biophysical assays.9,35 

Conversely, poor interfacial stability can become evident 
only much later in pre-clinical development when produc
tion processes are scaled up and the drug product is filled into 
the intended primary package.36

The definitions and classification of drug-like properties of 
antibodies are still developing. For example, polyreactivity and 
polyspecificity were historically used as synonyms. However, 
Cunningham et al. proposed that polyreactivity describes the 
general non-specific stickiness of antibodies, while polyspeci
ficity refers to off-target specific interactions with a discrete 
number of biomolecules different from the main target.37 

Although both phenomena are related to non-specific binding 
and could affect the pharmacokinetic properties of the mAbs, 
polyreactivity can be tested in vitro with general reagents (e.g., 
cell lysates, nucleic acids), while polyspecificity is more diffi
cult to investigate since not every possible off-target in the 
human body can be included in in vitro screening assays.37 

Readers interested in the non-specific binding of antibodies 
can read a recent review focusing on the molecular origins of 
this phenomenon.38

The discovery and selection of drug-like antibodies 
require orthogonal methods. A toolbox based on well- 
established biophysical and computational techniques is 
increasingly adopted by the pharmaceutical sector.10,18– 

20,39,40 Even if these approaches have brought great 
improvements to antibody development, there are still 
many unmet needs, including: (i) discovery approaches 
that yield more drug-like antibodies with desired specifi
cities, (ii) high-throughput candidate optimization to find 
mutations that enhance multiple desired properties, and 
(iii) accurate experimental prediction of multiple liabilities 
from scare material amounts.
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Discovery approaches yielding highly developable 
antibodies

The hybridoma technique introduced in the 1970s enabled 
researchers to isolate and produce large amounts of purified 
mAbs with desired specificities.41 This method was used to 
discover many of the antibody drugs on the market today.42 

However, the approaches to find new antibodies have devel
oped significantly in the last three decades.43 For example, 
sequences of antigen-specific mAbs can be identified directly 
from B-cells derived from immunized (transgenic) animals or 
convalescent patients.44,45 Furthermore, antigen-specific 
mAbs can be obtained by screening large immune, naïve, or 
(semi-)synthetic antibody libraries via phage display, bacterial 
display, ribosome display, yeast surface display or mammalian 
surface display.46 These different antibody discovery strategies 
can be biased towards yielding mAbs with different physico
chemical properties.9,47 Therefore, the selection of antibodies 
with drug-like features starts already at the earliest discovery 
stages.

The use of antibody libraries and display technologies 
enables new approaches to identify mAbs that combine desired 
antigen specificity and favorable physicochemical properties. 
We will discuss in particular (i) libraries that are designed to 
contain antibody sequences with fewer liabilities, (ii) selection 
steps to deplete screened libraries of candidates that exhibit 
issues such as high aggregation propensity or polyreactivity, 
and (iii) mammalian cell display to select developable mAbs.

Rationally designed antibody libraries

Traditional antibody libraries contain an enormous number of 
antibody sequences. Not surprisingly, the candidates in these 
libraries can have unpaired cysteines, deamidation hotspots or 
motifs related to non-specific binding that are not desirable 
from a developability perspective.48,49 Therefore, it is very 
attractive to design antibody libraries that contain sequences 
with fewer liabilities.

The value of designed libraries for the selection of devel
opable antibodies was recently demonstrated by Teixeira et 
al.48 In this study, next-generation antibody libraries were 
prepared by the grafting of natural human complementarity- 
determining regions (CDRs) onto well-behaved scaffolds 
(Figure 1a). The HCDR3 sequences were obtained directly 
from B cells of healthy donors. The remaining CDRs were 
obtained from next-generation sequencing datasets by 
excluding CDRs that contain known liability amino acid 
motifs and selecting the sequences with good expression 
using yeast display of single-CDR libraries. Ultimately, the 
resulting libraries were used to isolate high-affinity binders 
against several antigens. Most importantly, the identified 
antibodies exhibited favorable behavior in several assays 
probing the specificity, thermal stability, self-interaction, or 
aggregation propensity.48 Interestingly, similar designed 
library approaches can also be used for simultaneous affinity 
maturation and removal of sequence liabilities from lead 
antibody candidates.50

Another compelling study focused on the design of smart 
nanobody libraries.51 The authors developed an autoregressive 

model that was trained on naïve nanobody repertoires from 
llamas. The model was used to predict functional constraints 
in the sequences and to design a virtual library of 107 fit 
nanobody sequences. The library was then purged of unde
sired sequences such as candidates that are likely to have 
a post-translational modification in the HCDR3. Finally, 
185,836 nanobody sequences were selected and used to create 
a small but diverse synthetic library. The designed library was 
expressed well on the surface of yeast and yielded a nanobody 
specific for human serum albumin. Although the affinity of the 
binder was low (estimated Kd of 9.8 µM), this study demon
strates the feasibility of a promising approach to design smart 
nanobody libraries that contain fit and carefully selected 
sequences.51

Removing candidates with liabilities by experimental 
selection

Selection rounds aimed at depleting libraries of candidates 
with undesired properties can facilitate the discovery of anti
bodies with fewer physicochemical liabilities.52,53 Importantly, 
each display strategy offers different selection opportunities 
that depend on the compatibility of the technique with the 
conditions needed to select for a certain property.

For example, Jespers et al. reported a strategy to identify 
aggregation-resistant antibody heavy chain variable domains 
(VHHs) by stressing phage-displayed VHHs via exposure to 
high temperatures of up to 80°C (Figure 1b).54 Interestingly, 
they found that VHHs selected by this approach can exhibit 
remarkable resistance to aggregation coupled to fully reversi
ble thermal unfolding.54 Later, this methodology was used to 
define general strategies to engineer aggregation-resistant VH 
and VL domains by introducing negative charges at specific 
positions.55 More importantly, the selected aggregation- 
resistant antibody domains also exhibited a set of other desir
able biophysical properties such as heat-refoldability, shor
tened elution time in size-exclusion chromatography and 
high-expression yields from bacterial systems.55 

Noteworthily, the selection on phage can also be based on 
other types of stress. For example, the phage library can be 
incubated at low pH to select candidates that are stable during 
low-pH viral inactivation.56

Yeast surface display can also be combined with selection 
rounds to obtain antibodies with desired physicochemical 
properties. In particular, the combination of yeast surface dis
play and flow cytometry can be used to screen for non-specific 
binding of candidates at the library level.55 For example, Kelly 
et al. used yeast surface display and fluorescence-activated cell 
sorting (FACS) to dissect a nonimmune human antibody 
library into a population that exhibits non-specific binding 
and a population that does not exhibit non-specific binding 
to four reagents.57 Interestingly, the authors found that mem
bers of the VH6 family exhibit high level of non-specific 
binding suggesting that this family can be excluded from 
libraries aimed at isolating developable antibodies. In an ana
logical way, molecular counter selection during yeast surface 
display can be used to remove antibody candidates that bind to 
polyreactivity reagents while still allowing the discovery of 
high-affinity binders.58
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Mammalian cell surface display to select developable 
antibodies

The mammalian display technology has developed significantly 
over the last two decades.46,59 Importantly, the advances in gene 
editing techniques have allowed the integration of a single anti
body gene at a defined locus while allowing the display of 
millions of antibody variants in a cell population.60 By using 

targeted integration of the antibody genes, transcriptional nor
malization is achieved and the differences in the display level 
can be attributed to the properties of the antibodies. Key oppor
tunities offered by contemporary mammalian cell display tech
nologies were demonstrated in a recent study by Dyson et al.61 

The authors used nuclease-mediated integration of antibody 
genes into a single locus and elegantly showed that higher 

Figure 1. Approaches to discover antibody candidates with fewer physicochemical liabilities. a Rationally designed antibody libraries can be created by selecting 
HCDR1-2 and LCDR1-3 sequences without known sequence-based liabilities, screening the selected sequences as single-CDR libraries for expression on yeast and 
combining the sequences with well-behaved human scFv scaffolds and diverse HCDR3 sequences obtained from human donors. b VHH phage libraries can be depleted 
of aggregation-prone sequences before biopanning to increase the probability of selecting VHH with resistance to aggregation. c Integration of antibody genes into 
a single locus allows transcriptional normalization and comparison of antibody variants based on their expression level on the surface of mammalian cells. High display 
level of the antibodies is correlated with favorable biophysical properties.
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level of antibody display on the mammalian cell membrane was 
correlated to improved biophysical properties such as higher 
solubility and lower self-interaction propensity (Figure 1c).61 In 
contrast, the display level on yeast could not be used to distin
guish between the antibodies with different biophysical proper
ties which was explained by specific differences in how the 
antibodies are displayed on the yeast cell wall and the mamma
lian cell membrane.61 In addition, Dyson et al. showed that their 
mammalian cell display approach can be combined with mole
cular counterselection for non-specific binding to heparin and 
heat-shock proteins to identify polyreactive antibodies therefore 
offering the possibility to select antibodies with both favorable 
biophysical properties and high specificity directly from mam
malian cell display.61

Rational optimization of antibody candidates

Novel discovery approaches can yield antigen-specific mAbs 
with fewer physicochemical issues, but it is still possible that 
some of these candidates need further optimization. A major 
challenge is to select mutations that simultaneously improve 
multiple features in an antibody while maintaining or increas
ing the binding affinity to the target.22,62 Predicting the effects 
of combinations of several mutations can be particularly diffi
cult. Therefore, it is highly desirable to use experimental 
methods that interrogate a broad mutational space to find 
which combinations of mutations lead to the desired enhance
ment of antibody features. A plethora of techniques for 
rational optimization of antibody binding, often together 
with enhanced soluble expression in bacteria or improved 
stability, have been reported.63–66 Here we focus on the recent 
advances in phage-assisted continuous evolution (PACE),67 

tripartite β-lactamase enzyme assays (TPBLAs),68 autonomous 
hypermutation yeast surface display (AHEAD) and machine 
learning (ML) for the optimization of antibodies.43

Phage-assisted continuous evolution

In PACE, E.coli cell suspension constantly flows through 
a fixed-volume vessel that contains a population of phage 
DNA vectors called selection phage (SP) (Figure 2a).67 The 
gene of a protein that will be optimized is incorporated in the 
SP by replacing the pIII gene encoding a protein important for 
phage infectivity. Instead, the pIII gene is included in an 
accessory plasmid in the host bacteria, and pIII production is 
made dependent on the properties (e.g., activity) of the protein 
that is being optimized. The mutation rate in the system is 
increased by including a mutagenesis plasmid in the bacterial 
cells. As a result, novel mutations in the evolving proteins 
occur and only phage vectors with optimized variants that 
induce sufficient pIII production will propagate quickly in 
the vessel and avoid being washed away due to the continuous 
dilution with fresh bacterial suspension.67

PACE has been developed further and applied to optimize 
antibody fragments. For example, Wang et al. developed 
a soluble expression PACE (SE-PACE) by introducing an 
AND gate based on split-intein pIII that allows two simulta
neous positive selections.69 The authors used SE-PACE to 
optimize disulfide-free antibody fragments and were able to 

preserve the target-binding affinity while improving thermo
dynamic stability and the soluble expression of a single-chain 
variable domain (scFv) in bacteria. However, a drawback of 
PACE and SE-PACE is that the selections are performed in 
cytoplasm, and therefore, the optimizations are efficient for 
antibody fragments lacking disulfide bonds.69 To solve this 
limitation, Morrison et al. reported periplasmic PACE 
(pPACE) that is suitable for the optimization of disulfide- 
containing proteins.70 The authors established pPACE by 
exploiting fusion strategies to the CadC sensor to link protein 
properties in the periplasm to transcriptional activation in the 
cytoplasm. They then used scFv Ω-graft antibody mutants with 
different affinity for a leucin zipper antigen to demonstrate 
that variants with higher binding affinity are enriched during 
pPACE.70 Next, they developed a split-intein signal peptide 
pPACE to also control the export to the periplasm and apply 
simultaneous selection pressure for both soluble periplasmic 
expression and target binding. Using pPACE, the authors were 
able to discover mutations that optimize the binding affinity 
and soluble periplasmic expression of scFvs from trastuzumab 
and a Ω-graft antibody.70 Due to the working principle of 
pPACE, the main applications of the method are expected to 
be in the optimization of antibodies against antigens that are 
compatible with periplasmic expression.

Tripartite β-lactamase enzyme assay

TPBLA links the aggregation of a protein of interest to bacter
ial antibiotic resistance.71 The TPBLA was recently adapted by 
Ebo et al. to study the aggregation propensity of antibodies 
(Figure 2b).68 In their assay, the scFv sequences are inserted 
between two domains of the periplasmic β-lactamase of E.coli. 
As a result, aggregation-prone scFv sequences result in non- 
functional β-lactamase fusions leading to lower ampicillin 
resistance. This allows the ranking of scFv variants by studying 
the growth behavior of E.coli clones in the presence of anti
biotics. The authors first used model scFvs with different 
aggregation propensity to demonstrate that scFv aggregation 
correlates with bacterial survival. Next, they applied the 
TPBLA in a directed evolution experiment to identify muta
tions that reduce the aggregation propensity of scFvs. To this 
end, they used error-prone PCR to generate mutants of 
a model scFv. Bacterial cells were then transformed using the 
mutated library and selected on ampicillin agar. Remarkably, 
185 variants bearing mutations were identified, 181 of which 
displayed enhanced bacterial growth compared to wildtype, 
and 12 were better than the best known rationally optimized 
triple scFv mutant. Most importantly, the authors showed that 
the ranking of the scFvs based on bacterial growth correlated 
with the aggregation and self-association propensity of the 
respective IgGs, while the binding to the target of 10 randomly 
selected optimized variants was preserved.68 An interesting 
finding of the study was that TPBLA can be used to identify 
mutational hotspots in the antibody fragments that can be 
targeted in further optimization experiments.

Quite generally, while very powerful, these approaches that 
rely on random mutations to generate diversity for selection 
do not safeguard against the occurrence of immunogenic 
motifs or of chemical and post-translational liabilities.
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Autonomous hypermutation yeast surface display

In addition to bacterial systems, there are notable, new yeast- 
based approaches for rational antibody optimization. For exam
ple, Wellner et al. reported AHEAD – a yeast-based method for 
in vitro affinity maturation of antibody fragments.72 The technol
ogy uses an error-prone DNA polymerase that replicates 
a specific cytosolic plasmid (p1) which propagates stably in 
Saccharomyces cerevisiae. When antibody sequences are included 
in p1, the specific DNA polymerase diversifies the antibodies by 
continuous mutation, while the yeast surface display allows selec
tion of candidates with improved binding affinity via FACS. The 
first version of AHEAD suffered from low levels of surface display 
of the inserted sequences. To solve this issue, Wellner et al. 
developed AHEAD 2.0 by changing the fusion position of the 
antibody sequences in the yeast Aga2p, using a new p1-specific 
promoter, introducing a stronger secretory leader sequence, and 

incorporating a polyadenosine tail.72 These modifications 
improved the surface display of nanobodies by about 25-fold. 
Next, the authors used AHEAD 2.0 to improve the binding 
affinity of several nanobodies against SARS-CoV-2. The authors 
parallelized eight affinity maturation experiments. After three to 
eight cycles of yeast culturing and FACS selection, multiple high 
affinity binders were isolated. Virus neutralization assays revealed 
that the neutralization potencies were increased up to 925-fold for 
the AHEAD-optimized nanobodies.72

Machine learning for rational antibody optimization

ML models can largely support the discovery and engineering 
of antibodies in essentially all steps, from rational and de-novo 
design to developability and formulation optimization.39 ML 
possesses the ability to learn input-output relationships with 

Figure 2. Approaches to select mutations that optimize antibody properties. a Schematic overview of phage assisted continuous evolution. Host bacteria contain 
accessory plasmid with the pIII phage gene needed for infectivity and a mutagenesis plasmid. The host bacteria flow constantly through a vessel (“lagoon”) containing 
selection phages that contain the gene of interest (GOI). The production of the pIII is dependent on properties of the GOI. Only selection phages that encode functional 
variants of the GOI produce pIII and infectious progeny that can reinfect new host bacteria to remain in the “lagoon”. Phages with non-functional variants cannot infect 
new host bacteria before being washed away from the flow. b In the tripartite β-lactamase enzyme assay, scFv sequences are inserted between two domains of β- 
lactamase. If the scFv are resistant to aggregation in the bacterial periplasm, the split β-lactamase can fold into a functional form and the bacteria gain resistance to 
ampicillin. Selection of different variants can be made by assessing the growth of bacterial clones on agar plates with different ampicillin concentrations. c Machine 
learning model trained on a library with >107 emibetuzumab Fab variants sorted for binding affinity and specificity can predict mutations that co-optimize antibody 
affinity and specificity.
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low computational time and resource requirement, even when 
the underlying physical principles are not completely under
stood. These features can significantly accelerate the discovery 
and developability process.

One recent report demonstrated how an existing clinical- 
stage antibody (emibetuzumab) could be co-optimized for 
both high affinity and low non-specific binding using machine 
learning (Figure 2c).73 This approach involved generating 
a multi-site mutant library of >107 emibetuzumab variants 
with mutations in the heavy chain CDRs. The resulting library 
was displayed on the surface of yeast in the Fab format and 
sorted for high and low levels of on-target (affinity) and off- 
target (non-specific) binding using FACS.

The enriched libraries for each property were deep 
sequenced and machine learning classification models were 
trained to predict the class (high or low) of each property 
(affinity and non-specific binding) for every mutant in the 
library.73 Interestingly, the investigators found that relatively 
simple models, such as linear discriminant analysis models, 
could be used not only to predict the class of each property but 
also continuous variables that were strongly correlated with 
both affinity and non-specific binding. The ability to predict 
intraclass variability (e.g., high vs. very high affinity) is critical 
when attempting to solve challenging co-optimization pro
blems that are common in antibody engineering. Indeed, the 
investigators used the continuous predictions from the affinity 
and non-specific binding models to identify rare antibody 
mutants with co-optimal combinations of high affinity and 
low non-specific binding located at the Pareto frontier. This 
type of approach is particularly exciting because it even enables 
the prediction of the impacts of novel mutations that were not 
sampled in the original library, which greatly expands the 
sequence space that can be explored to improve antibody 
properties (Figure 2c).

While this73 and related studies74,75 focused on library 
sorting and machine learning methods for co-optimizing 
two specific antibody properties, namely affinity and non- 
specific binding, it should be straightforward to apply these 
and related approaches to other combinations of antibody 
properties. Indeed, it was recently shown that antibody affi
nity and self-association can be co-optimized at the library 
stage by enriching antibody libraries for high antigen binding 
and low binding to novel quantum dot-IgG conjugates.76 The 
quantum dots (QDs) were conjugated to a high self- 
association IgG (lenzilumab), and low QD-lenzilumab bind
ing to the yeast-displayed library served as a surrogate for low 
antibody self-association. The investigators used this 
approach to identify rare variants of a clinical-stage antibody 
(bococizumab) with high affinity and low self-association in 
physiological conditions (pH 7.4, PBS). Moreover, tradeoffs 
between antibody affinity and stability are common during 
affinity maturation,77,78 and FACS-based methods for select
ing thermostabilized antibodies from yeast-displayed 
libraries79,80 can be used to select antibodies with co- 
optimized combinations of affinity and stability.81 Related 
approaches have also been reported using mammalian 
(CHO)-based antibody display technologies.82

In another example, deep neural networks were applied 
to predict antigen specificity from a diverse space of 

antibody variants of trastuzumab.83 After training the 
model, the authors could identify a subset of variants 
which not only were specific to human epidermal growth 
factor receptor 2 (HER2) but could also be filtered for 
viscosity, clearance, solubility, and immunogenicity. 
Overall, from a computational library of approximately 
108 trastuzumab variants, this method identified thousands 
of optimized lead candidates. These examples show the 
potential of deep learning in assisting antibody design, 
engineering, and optimization by analyzing large amounts 
of data.

Orthogonal approaches for the selection of drug-like 
antibodies

The discovery and optimization strategies described in the 
previous paragraphs typically lead to 10–1000 candidates 
with comparable binding affinity and specificity. The identifi
cation of the lead molecule among these candidates requires 
a further selection step based on the analysis of multiple drug- 
like properties, possibly improved via optimization of formu
lation. These properties, globally defined as “developability” of 
the drug, include several properties related to intermolecular 
interactions, solubility, conformational stability, interfacial 
stability and non-native aggregation. No single property can 
predict the success of a potential drug-like candidate in advan
cing clinical stages, which rather depends on the overall beha
vior of the molecule with respect to all these multiple 
properties.9,35 These physicochemical properties should be 
therefore globally evaluated and optimized. A non- 
comprehensive selection of key properties and recently devel
oped assays to evaluate them is proposed in the following. 
Particular attention has been given to methods that require 
micrograms or even nanograms of crude antibody material 
and are therefore attractive during early-stage screening.

A different perspective on the non-specificity of antibody 
drugs

A particularly important property already addressed during 
the discovery stage is the non-specific binding of antibodies, 
which is related to poor solution behavior in vitro and faster 
clearance in vivo.9,37,84 Therefore, it is essential to evaluate 
whether antibody candidates exhibit non-specific binding to 
molecules different from their target. In these assays, different 
polyreactivity reagents such as cell lysates, nucleic acids, 
heparin or purified unrelated proteins are used. Antibodies 
can exhibit non-specific binding not only to macromolecules 
but also to low molecular weight compounds (such as enzy
matic cofactors), which are often overlooked in polyreactivity 
assays for antibody drugs.85,86

A recent study by Lecerf et al. revealed that some clinical- 
stage antibodies interact with heme.87 Heme is an abundant 
prosthetic group with a porphyrin structure and a molecular 
mass of 616 Da. Strikingly, the binding to heme-induced 
polyreactivity in some of the antibodies illustrates that non- 
specificity can be potentiated by small molecules that are 
abundant in the human body.87 In addition, the authors 
reported that binding to heme correlates with hydrophobicity, 
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self-association tendency and intrinsic polyreactivity.9,87 

Interestingly, several antibodies in the study by Lecerf et al. 
also interacted with another small molecule, folate, hinting 
that therapeutic mAbs might be predisposed to non-specific 
interactions with different heterocyclic compounds.

Traditionally, the non-specific binding is investigated for the 
purified, native antibody candidates. However, it has been 
known for some time that the polyreactivity of antibodies can 
change upon chemical changes such as oxidation.88–90 Recently, 
Lecerf et al. demonstrated that exposure to pro-oxidative agents 
such as ferrous and hypochlorite ions can induce significant 
non-specificity in clinical-stage antibodies.91 Since oxidation in 
therapeutic antibodies can occur during manufacturing, storage, 
postproduction handling or even in vivo post administration,92 

the oxidation-induced polyreactivity antibody drugs might be 
another aspect that should be understood better and considered 
during developability assessment.

Overall, the increase in non-specificity upon interaction 
with abundant small molecules or upon chemical changes 
demonstrates a potential unmet need for predictive assays to 
capture these aspects of antibody non-specificity.

Assessing antibody self-association with low antibody 
concentrations

It is desirable to prepare antibody therapeutics as concentrated 
liquid formulations for subcutaneous delivery, but different 
antibody variants can display highly variable and difficult-to- 
predict solution properties, including large differences in their 
viscosity, opalescence, and/or aggregation properties. 
Therefore, there is broad interest in early-stage assays that 
can be used for selecting antibody candidates with low risk 
for possessing undesirable solution properties. Attractive 
intermolecular interactions, characterized for instance by the 
self-association parameter (kD) and second virial coefficient 
(B22), have been shown to correlate to a good extent with 
viscosity and opalescent behavior at high antibody 
concentrations.27 There is therefore interest in developing 
assays capable to measure intermolecular protein–protein 
interactions with high throughput and consuming a limited 
amount of sample.

One recently reported assay, namely charged-stabilized self- 
interaction nanoparticle spectroscopy (CS-SINS), evaluated the 
self-association of antibodies using immunogold conjugates.93 

The assay involves first immobilizing an anti-human Fc cap
ture antibody on gold nanoparticles, along with polylysine to 
maximize colloidal stability (Figure 3a). Next, the conjugates 
are used to capture human mAbs and assay mAb self- 
association by evaluating the shift in the plasmon wavelength 
of the absorbance spectra. The CS-SINS measurements were 
conducted in a common antibody formulation condition (pH 
6, 10 mM histidine), which is not possible using a related assay 
(AC-SINS)94–96 due to the instability of the immunogold con
jugates in this formulation condition. Importantly, the inves
tigators found that the CS-SINS assay was able to identify 
antibodies with low risk for high viscosity and opalescence 
when concentrated to 150 mg/mL.93 The ability of CS-SINS 
to evaluate antibody self-association at ultra-dilute antibody 

concentrations (0.01 mg/mL) makes it particularly attractive to 
employ in early-stage developability studies.

Another approach with similar advantages has been devel
oped based on asymmetrical flow field-flow fractionation 
(AF4), a powerful separation technique, in which the samples 
are injected and focused onto a membrane in a separation 
channel.97 The membrane is permeable for the buffer compo
nents but not for the analyzed biomolecules. Subsequently, the 
analytes are eluted from the channel under a cross-flow to 
enable separation based on diffusion coefficients. The focusing 
step during AF4 increases the concentration of the analytes 
close to the membrane, thereby, accentuating protein–protein 
and protein–membrane interactions that affect the elution 
profile of the analytes.98

Wahlund and colleagues utilized AF4 to study the self- 
interactions of four immunoglobulins.99 In brief, the mAbs 
were injected and focused on the semipermeable membrane to 
increase the concentration and propel the self-interactions of 
the antibodies. The antibody recovery and retention time in 
AF4 correlated well with the diffusion interaction parameter 
kD from dynamic light scattering which is a valuable molecular 
descriptor of colloidal properties of mAbs.99 There are two 
valuable features of this AF4 approach – (i) the starting anti
body concentration can be low since the concentration is 
increased during the measurement, and (ii) the buffer of the 
injected antibody is exchanged for the running buffer in the 
AF4, which removes the need for a separate buffer-exchange of 
the candidates.

Estimating non-native aggregation tendency from 
refoldability assays

In addition to viscosity, solubility and phase separation, 
another important property of antibodies is stability against 
aggregation during manufacturing, delivery, and storage. 
Often aggregation is triggered by a chemical or conformational 
change of the antibody structure and is therefore defined as 
non-native.100

The non-native aggregation propensity of antibody candi
dates is difficult to predict. This is partly due to the complex 
nature of this degradation pathway that includes multiple 
elementary steps of nucleation and aggregate growth that are 
dependent on both structural (e.g., partial unfolding) and 
colloidal aspects.100 The aggregation mechanisms substantially 
vary between antibodies and are strongly dependent on extrin
sic factors such as temperature and pH.31,101,102 As 
a consequence, accelerated stability studies at 40°C or higher 
temperatures may not always be representative of the stability 
of antibodies at lower storage temperatures.103 Moreover, 
aggregation stability studies can provide high-quality mechan
istic information but are in general time- and material- 
consuming, and therefore not compatible with high- 
throughput screening.

The tendency for non-native aggregation of proteins can be 
estimated from refoldability studies.104 For example, antibody 
domains and nanobodies that exhibit reversible thermal unfold
ing are resistant to non-native aggregation.54,105 Traditionally, the 
thermal unfolding reversibility is studied by differential scanning 
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calorimetry or spectroscopic techniques using a linear heating 
ramp (to track unfolding) and a subsequent cooling ramp (to 
track refolding).54 Alternatively, two subsequent heating ramps 
can be applied to the same sample. However, unfolding reversi
bility after complete thermal denaturation of scFvs, Fabs and full- 
length IgGs106 is rare which obstructs the application of this 
approach for candidate comparison.

Modulated scanning fluorimetry (MSF) extends the cap
abilities of traditional techniques to study thermal unfolding 
reversibility (Figure 3b).107 MSF employs fast heating and 
cooling cycles applied to dozens of samples simultaneously. 
Every subsequent heating cycle reaches a slightly higher 
temperature (e.g., 1°C higher) than the previous one while 
the cooling cycle always ends at the same baseline tempera
ture (e.g., 20°C). This allows the protein to recover from the 
structural perturbations caused at each heating step. From 
the fluorescence signal at the baseline, estimations can be 

made about the peak temperatures that cause irreversible 
structural changes in a protein. The MSF can be applied to 
crude samples and a wide range of proteins at concentra
tions as low as 0.1 mg/mL by consuming only 10 µL per 
condition.107

The unfolding reversibility can also be determined isother
mally by using chemical denaturants such as urea. The dena
turants are added in high concentrations to cause substantial 
antibody unfolding and then the denaturant is removed 
quickly by dialysis or dilution in multiwell plates.108,109 

Subsequently, the amount of monomeric protein is assessed 
via size-exclusion chromatography and compared to 
a reference sample to determine the degree of unfolding rever
sibility. These measurements can be performed at any tem
perature of interest and the data is complementary to the 
thermal denaturation data to estimate the non-native aggrega
tion propensity of antibody candidates.110

Figure 3. Methods to select antibody candidates with desired physicochemical properties. a Charge-stabilized self-interaction nanoparticle spectroscopy (CS-SINS) can 
assess the self-association of antibody candidates in common pharmaceutical buffers (10 mM histidine pH 6) at ultra-dilute antibody concentrations (0.01 mg/mL). The 
CS-SINS score is calculated from the plasmon shift due to self-association of the nanoparticle conjugates and can predict solution properties such as viscosity and 
opalescence at high antibody concentrations. b Modulated scanning fluorimetry (MSF) employs incremental heating and cooling cycles to simultaneously probe the 
thermal unfolding and unfolding reversibility of dozens of antibody candidates by consuming only 10 µL per condition. c The nanoparticle-surface mediated stress 
assay uses nanoparticles with different surface properties. The nanoparticles are mixed and incubated with antibody candidates. The large nanoparticle surface 
accelerates the surface-induced aggregation of antibodies and allows ranking of candidates based on their interfacial stability.
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Interfacial stability

The previous paragraphs described assays to evaluate bulk 
properties of antibody solutions. Proteins and antibodies 
have a high propensity to interact and adsorb to different 
types of interfaces.111 In case of antibodies, interactions with 
interfaces are detrimental since they can lead to protein loss 
(and therefore reduced activity) and, in many cases, to forma
tion of protein particles. Air-water and silicon oil–water inter
faces are only few examples of the large variety of surfaces that 
have been demonstrated to induce protein aggregation via 
promoting heterogeneous nucleation events. For a detailed 
discussion on the topic, the reader is referred to a recent 
review.111

In contrast to the large number of assays to measure bulk 
properties, methods to evaluate interfacial stability are less 
developed and largely include classical shaking assays or are 
limited to the most common and well-known interfaces. 
However, during its life-cycle an antibody can be in contact 
with a wide range of surfaces, and some of them may be 
unpredictable or even unknown.

Recently, a nanoparticle-based approach has been developed 
to assess the stability of antibodies against model surfaces that 
encode the most common types of interactions, such as elec
trostatic and hydrophobic interactions (Figure 3c).112,113 The 
advantage of the approach is the high surface-to-volume ratio 
provided by the nanoparticles, which allows an accurate con
trol of the chemistry and the amount of surface introduced in 
solution, minimizing interference from other interactions with 
the material of the test tube. Moreover, the approach is com
patible with a conventional multi-well plate reader format and 
has therefore good throughput. The assay can identify anti
bodies with a particular high tendency to interact with differ
ent model surfaces, leading to the assessment of an overall 
interfacial stability score.

Selecting candidates with lower tendency to form 
subvisible and visible particles

As discussed in the previous sections, proteins can aggregate 
via complex pathways.31 Several strategies exist to screen for 
candidates with low tendency to aggregate based on the ana
lysis of protein-protein, protein-interface interactions or 
refoldability.27,28,93,110 However, it is currently close to impos
sible to predict the tendency of candidates to form larger 
aggregates, i.e., subvisible and visible protein particles, during 
production, storage, and post-production handling.

Consequently, the analytical characterization of subvisible 
protein particles during product development is essential and 
is ideally incorporated in early-stage candidate screenings. 
Not optimizing for candidates as early as possible, i.e., ideally 
during molecule design, with low tendency to form subvisible 
protein particles is a gap in product development. One chal
lenge is the need for representative down-scale models of 
relevant stress conditions that occur during the drug pro
duct’s life-cycle, which require only µL of sample. Whereas 
incubation at elevated temperatures and freeze-thawing are 
rather straight forward to perform in microplates, the pri
mary packaging has a strong impact on interfacial and 

mechanical stress on the protein. Progress has been achieved, 
e.g., by using nanoparticle-based assays for interfacial stress 
as discussed above. Johann et al. recently reported a shaking 
stress protocol in microplates that is in agreement with shak
ing stress performed in vials.114 In addition, the fact that 
subvisible and visible particles are rarely analyzed during 
discovery and candidate selection is in many cases limited 
by the lack of high-throughput analytical techniques which 
can cope with the very limited sample volumes during early 
stages of development.115,116

Today, many different analytical techniques are available, 
which in general can cover the whole size range from nano- to 
millimeter including the subvisible particle size range from ca. 
0.1–100 µm.116 In particular, for late-stage stability studies and 
batch release,115 typically light obscuration according to 
USP<788>/Ph. Eur. 2.9.19 for particles >10 µm and >25 µm 
is performed, which consumes 25 mL of sample, and still 
~5 mL when a “low-volume” method according to 
USP<787> is used. Liquid handler for both light obscuration 
and flow-imaging microscopy are on the market, but one 
measurement requires at least several hundred microliters, 
which is often not available during discovery. Therefore, 
microplate reader with dynamic light scattering (DLS) is 
often used,115 which can very sensitively detect particles in 
the nanometer- and submicron-size range on a qualitative 
level. However, DLS cannot quantity particles, which impedes 
a reliable ranking of candidates. Similarly, the turbidity can be 
measured because the opalescence of solution increases in the 
presence of light-scattering protein particles. Several methods 
are available to determine the opalescence in a microplate, 
including a recently published method using a DLS/static 
light scattering (SLS) plate reader.117 Therefore, opalescence 
measurements can be easily included in high-throughput 
screenings but cannot provide size or concentrations of pro
tein particles.

In contrast, backgrounded membrane imaging (BMI) is 
available as a method for sizing and counting of subvisible 
protein particles larger than ~2 µm after filtration onto a mem
brane in 96-well plate formate.118 Because only ~50 µL are 
required per well, the method can be integrated into high- 
throughput screenings. However, sizing and counting is less 
reliable as compared to flow-imaging microscopy because the 
boundaries of low-contrast particles might not be detected 
correctly.118,119 Moreover, low analyzed volumes result in 
low particle counts and high extrapolation factors, which is 
a statistical challenge for any particle analysis method.120 

Nevertheless, a relative comparison or ranking by using back
grounded membrane imaging or other low-volume methods to 
rule out bad candidates is often sufficient for early screenings.

Moreover, it was recently demonstrated that particle images 
obtained from BMI in the dried state after filtration contain 
valuable morphological information which can be analyzed by 
machine learning.121 Compressing the morphological infor
mation from the particle images into a low-dimensional repre
sentation may enable an automated assessment, which would 
be very valuable in the high-throughput setup. Consequently, 
insights into not only particle size and concentration but also 
particle morphology would be available at early stage, leading 
into a substantial database over time, which could finally help 
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to facilitate the development of future candidates with low 
tendency to form subvisible protein particles.

Emerging in silico tools to support discovery and 
selection

In recent years, the availability of increasingly powerful com
puters and computer algorithms, of rapidly growing amounts 
of quantitative measurements, and of high-quality sequencing 
and structural data are enabling the development of disruptive 
computational methods to support antibody development. 
These advances are making it possible to complement well- 
established in vivo (first generation) and in vitro (second 
generation) methods of antibody discovery with novel in silico 
(third generation) approaches.122

It is foreseeable that, in the future, most of the antibody 
discovery and optimization work will happen entirely in silico. 
At present, however, computational methods of de novo anti
body design are still in their infancy. The de novo design of 
antibody binding using approaches relying on molecular mod
elling has generally met low success rates and required recur
sive experimental screenings and large libraries,122–127 which 
hampers competitiveness with established laboratory-based 
approaches. Conversely, rapid fragment-based combinatorial 
approaches showed higher success rates for unstructured 
epitopes,128–132 and recently also for structured ones.133 

However, the resulting binding affinities are still orders of 
magnitude away from a therapeutically relevant range, the 
applicability of these approaches is somewhat restricted by 
the available fragments in their databases, and the resulting 
designed antibodies may harbor non-human, immunogenic 
motifs.133

On the other hand, methods to predict and optimize impor
tant properties, including developability potential and huma
nization, are far more mature, and are already offering time- 
and cost-effective opportunities to streamline hit 
selection.18,134 Antibody discovery campaigns usually yield 
many initial hits (100s to 1000s), which are commonly pre
pared in minute amounts, low concentrations, and relatively 
low purity.18 Therefore, conducting the full spectrum of devel
opability in vitro assays combined with binding and functional 
studies remains a challenge. Thus, algorithms that can guide 
hit prioritization and help rule out poorly behaved antibodies 
are very useful.

One example is the Therapeutic Antibody Profiler (TAP) 
proposed by the Deane group.135 The idea behind the 
approach consists in finding molecular descriptors that distin
guish clinical-stage antibodies from human repertoire antibo
dies. The underlying hypothesis is that clinical-stage 
antibodies are enriched in favorable developability attributes 
that are not necessarily present in repertoire antibodies. TAP 
ultimately uses five developability attributes to classify antibo
dies according to whether their attributes fall within the dis
tributions of those of clinical-stage therapeutics, akin to the 
Lipinski’s rule of five used for small molecules. Four of the 
profiling rules evaluate the CDRs by analyzing length, presence 
of hydrophobic patches, presence of positively charged 
patches, and presence of negatively charged patches. The 
final term considers charge symmetry across the variable 

domains. More recently, Labute and coworkers proposed 
a modified version of this method, which improves in parti
cular the charge descriptors.136 These approaches, rather than 
predicting individual biophysical properties, provide a holistic 
view of developability potential by assessing the similarity of 
a new candidate to clinical-stage antibodies.

As with the Lipinski’s rule of five, the thresholds themselves 
should not be interpreted as hard rules, and the distance of 
candidates from the boundaries of the distributions of clinical- 
stage antibodies should be considered. Besides, advances in 
process development and formulation may redefine these 
boundaries, which may also differ for new antibody drug 
candidates, depending for instance on the required dosage 
and formulation concentration. Another limitation of these 
approaches is that not all clinical-stage antibodies are devoid 
of biophysical or developability liabilities.9,137 For example, 
a recent work predicted that 27% of approved antibodies, 
and almost 40% of post-phase-ii not-yet-approved antibodies 
have at least one developability flag.137

Another class of computational methods to assist the 
assessment of developability potential aims at predicting 
directly specific properties that are associated with develop
ability. Examples include the detection of chemical liabilities or 
of sites prone to post-translational modification, and the pre
diction of properties like humanness or immunogenicity, sta
bility, solubility, viscosity, and poly-specificity. Many of these 
methods, and in particular those focusing on the prediction of 
aggregation propensity, have recently been reviewed elsewhere 
and are listed in comprehensive tables.18,134

All methods discussed so far can also assist antibody engi
neering, that is the design of mutations that improve the 
molecular trait(s) of interest on an antibody, for example 
during the lead optimization phase. However, to use them 
for this purpose, one should generate in silico mutational 
variants of the wildtype antibody, and then score these using 
the relevant method(s) to identify mutations predicted to 
improve the property(ies) of interest. This process is far from 
straightforward, first because most of these methods do not 
provide direct insights into which sites should be mutated, 
and second because molecular traits are very often conflicting, 
as mutations that improve one tend to worsen the others.122

The co-optimization of multiple molecular traits remains 
a largely open challenge. Even experimentally, methods of 
affinity maturation are routinely used to optimize binding 
affinity, but this often comes at the expenses of other proper
ties that underpin developability potential, including stability, 
solubility and polyreactivity.50,73,77,78 Multi-trait co- 
optimization has been compared to solving a Rubik’s cube, 
where each face represents one biophysical property. Changing 
one face will affect other faces, often detrimentally, and solving 
a single face is much simpler than completing the puzzle.

Computational approaches offer a promising avenue to 
address this challenge, as they allow for highly controlled 
parallel screenings of multiple biophysical properties. 
Moreover, computer calculations are rapid, inexpensive, 
and have no material requirements, while their ability to 
pinpoint specific mutations reduces cost and environmental 
impact of downstream experiments by massively lowering the 
number of candidates for screening. Taken together, these 
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advantages make the implementation of computational 
methods in antibody and protein development pipelines par
ticularly attractive.

A recently proposed approach contributes to addressing 
this challenge by introducing a fully automated computational 
strategy for the simultaneous optimization of solubility and 
conformational stability, which have been reported to be con
flicting in many cases,122,138–140 while not affecting binding. 
The method, called CamSol Combination,141 works by remov
ing surface-exposed aggregation hotspots leading to poor solu
bility, and by proposing mutations expected to increase 
conformational stability and solubility, thus decreasing the 
population of partially or fully unfolded states in solution. 
The approach leverages phylogenetic information to reduce 
false-positive predictions using an ad-hoc recipe for antibody 
variable domains, thus reducing the chances of introducing 
non-human potentially immunogenic mutations. Then, the 
pipeline relies on the CamSol method142 to carry out predic
tions of solubility changes upon mutation, and on the energy 
function Fold-X143 for the predictions of the associated stabi
lity changes. The method was validated experimentally by 
expressing 42 designed variants of six different antibodies: 
three nanobodies and three scFvs, two of which are approved 
therapeutics.

Quite generally, hits with the best functionality obtained 
from screening campaigns are often not those with the best 
developability profile. Therefore, this type of algorithms that 
can guide antibody engineering by suggesting specific muta
tions that can improve developability without affecting func
tionality are potentially very useful, especially when used in 
synergy with increasingly accurate approaches of antibody 
structural modelling144–147 and paratope prediction.148–150

Outlook and outstanding challenges

Here, we summarized a selection of methods that can facilitate 
the discovery, optimization, and selection of drug-like antibo
dies. Despite the impressive progress in technologies applied to 
antibody drug development, there are still many outstanding 
challenges. Even state-of-the-art antibody discovery platforms 
can sometimes yield candidates with desired biological activity 
but poor physicochemical properties. Techniques that yield 
only antigen-specific antibodies with drug-like features will 
be invaluable to streamline future drug development. 
Currently, many important physicochemical properties and 
stability aspects of mAbs cannot be predicted from the primary 
sequence. The predictions of antibody properties from 
sequences and in different formulations are expected to 
improve significantly as new large experimental datasets and 
analysis algorithms emerge. It is expected that advances in 
microfluidic technology will contribute to expand the quality 
and quantity of the experimental datasets.151,152 With more 
accurate sequence-based developability assessments, it will be 
possible to significantly reduce the number of candidates to be 
expressed for experimental characterization.134 Still, biophysi
cal techniques will be needed to validate the drug-like features 
of lead candidates. The challenge is to develop a portfolio of 
methods that can predict all physicochemical and stability 
issues of antibodies. This analytical toolbox will ideally work 

with micrograms or even nanograms of crude antibody 
material.20

In addition to candidate selection and optimization, it will 
be essential to improve formulation development approaches 
for antibody candidates. For example, another powerful appli
cation of computational approaches based on ML is the pos
sibility to reduce the number of experiments required to 
optimize a target biophysical property of an antibody. For 
instance, Narayanan et al. developed a Bayesian algorithm to 
simultaneously optimize conformational stability and interfa
cial stability of single-chain variants by optimizing the 
formulation.153 The algorithm could identify the minimal con
centration of surfactant required to optimize both properties. 
The algorithm identifies the optimum target with a reduced 
number of experiments with respect to traditional design of 
experiments, allows to use prior knowledge and identified 
trade-off between multiple properties. Overall, it can accelerate 
design of formulation to optimize multiple biophysical proper
ties of antibodies.

Another outstanding challenge is that antibody-based ther
apeutics are becoming more diverse. For example, antibody 
fragments, different antibody classes (e.g., IgG2, IgG4 and 
IgM), and multi-specific formats are becoming increasingly 
popular. However, switching the antibody format (e.g., from 
full-length IgG to scFv) or the antibody class can affect devel
opability potential. Methods to predict the developability 
potential of antibodies upon format change or class switching 
will be very valuable in future. In addition, bi- and multi- 
specific antibodies enable novel therapeutic avenues but 
often possess poor physicochemical properties that hinder 
pharmaceutical development.154 Therefore, it becomes neces
sary to establish approaches to discover drug-like multispecific 
antibodies.155 In that regard, new methods to explore the 
combinatorial space for multi-specific antibody design will be 
important to assess not only the biological activity but also the 
physicochemical properties of the candidates.156 In addition, 
antibody-drug conjugates (ADCs) are also often affected by 
physicochemical properties. For ADCs, it is necessary to deter
mine early developability criteria not only for the antibody but 
also for the linker and the conjugated drug.6 In that respect, it 
will be important to rationalize the selection of combinations 
between antibodies, linkers and payloads that result in ADCs 
with favorable physicochemical properties.

In summary, the outstanding challenges to deliver the next 
generation of antibody-based drugs157 will have to be 
addressed by innovations at all discovery and development 
stages.

Abbreviations

AF4, asymmetrical flow field-flow fractionation; AHEAD: 
autonomous hypermutation yeast surface display; BMI – back
grounded membrane imaging; CDR - complementarity- 
determining region; CS-SINS - charged-stabilized self- 
interaction nanoparticle spectroscopy; GOI - gene of interest; 
DLS – dynamic light scattering; FACS - fluorescence-activated 
cell sorting; FDA - U.S. Food and Drug Administration; 
HCDR – complementarity-determining region in the heavy 
chain; HER2 - human epidermal growth factor receptor 2; 

12 H. L. SVILENOV ET AL.



IgG – immunoglobulin G; INN - international nonproprietary 
name; LCDR - complementarity-determining region in the 
light chain; ML – machine learning; MSF – modulated scan
ning fluorimetry; PACE - phage-assisted continuous evolu
tion; pPACE – periplasmic phage-assisted continuous 
evolution; QD – quantum dot; scFv - single-chain variable 
domain; SE-PACE – soluble expression phage-assisted contin
uous evolution; SLS – static light scattering; SP – selection 
phage; TAP – therapeutic antibody profiler; TPBLA - tripartite 
β-lactamase enzyme assay; TPP – target product profile.

Acknowledgments

Images in the manuscript were created with BioRender.com.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

H.L.S. acknowledges the funding from the special research fund of Ghent 
University, grant number BOF/STA/202109/034. P.S. is a Royal Society 
University Research Fellow (URF/R1/201461).

ORCID

Hristo L. Svilenov http://orcid.org/0000-0001-5863-9569

References

1. Mullard A. FDA approves 100th monoclonal antibody product. 
Nat Rev Drug Discov. 2021;20(7):491–95. doi:10.1038/d41573- 
021-00079-7.

2. Wilkinson I, Hale G. Systematic analysis of the varied designs of 
819 therapeutic antibodies and Fc fusion proteins assigned inter
national nonproprietary names. MAbs. 2022;14(1):2123299. 
doi:10.1080/19420862.2022.2123299.

3. Brinkmann U, Kontermann RE. The making of bispecific 
antibodies. MAbs. 2017;9(2):182–212. doi:10.1080/19420862. 
2016.1268307.

4. Jovčevska I, Muyldermans S. The therapeutic potential of 
nanobodies. BioDrugs. 2020;34(1):11–26. doi:10.1007/s40259- 
019-00392-z.

5. Keyt BA, Baliga R, Sinclair AM, Carroll SF, Peterson MS. 
Structure, function, and therapeutic use of IgM antibodies. 
Antibodies. 2020;9(4):1–35. doi:10.3390/antib9040053.

6. Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and chal
lenges for the next generation of antibody-drug conjugates. Nat 
Rev Drug Discov. 2017;16(5):315–37. doi:10.1038/nrd.2016.268.

7. Kelley B. Developing therapeutic monoclonal antibodies at pan
demic pace. Nat Biotechnol. 2020;38(5):540–45. doi:10.1038/ 
s41587-020-0512-5.

8. Kelley B, de Moor P, Douglas K, Renshaw T, Traviglia S. 
Monoclonal antibody therapies for COVID-19: lessons learned 
and implications for the development of future products. Curr 
Opin Biotechnol. 2022;78:102798. doi:10.1016/j.copbio.2022. 
102798.

9. Jain T, Sun T, Durand S, Hall A, Houston NR, Nett JH, Sharkey B, 
Bobrowicz B, Caffry I, Yu Y. Biophysical properties of the 
clinical-stage antibody landscape. Proc Natl Acad Sci U S A. 
2017;114(5):944–49. doi:10.1073/pnas.1616408114.

10. Lu X, Nobrega RP, Lynaugh H, Jain T, Barlow K, Boland T, 
Sivasubramanian A, Vásquez M, Xu Y. Deamidation and 

isomerization liability analysis of 131 clinical-stage antibodies. 
MAbs. 2019;11(1):45–57. doi:10.1080/19420862.2018.1548233.

11. Whitaker N, Xiong J, Pace SE, Kumar V, Middaugh CR, Joshi SB, 
Volkin DB. A formulation development approach to identify and 
select stable ultra–high-concentration monoclonal antibody for
mulations with reduced viscosities. J Pharm Sci. 2017;106 
(11):3230–41. doi:10.1016/j.xphs.2017.06.017.

12. Rabia LA, Zhang Y, Ludwig SD, Julian MC, Tessier PM, Daggett V. 
Net charge of antibody complementarity-determining regions is 
a key predictor of specificity. Protein Engineering, Design and 
Selection. 2018;31(11):409–18. doi:10.1093/protein/gzz002.

13. Ponsel D, Neugebauer J, Ladetzki-Baehs K, Tissot K. High affinity, 
developability and functional size: the holy grail of combinatorial 
antibody library generation. Molecules. 2011;16(5):3675–700. 
doi:10.3390/molecules16053675.

14. Lauer TM, Agrawal NJ, Chennamsetty N, Egodage K, Helk B, 
Trout BL. Developability index: a rapid in silico tool for the 
screening of antibody aggregation propensity. J Pharm Sci. 
2012;101(1):102–15. doi:10.1002/jps.22758.

15. von Kreudenstein TS, Escobar-Carbrera E, Lario PI, D'Angelo I, 
Brault K, Kelly J, Durocher Y, Baardsnes J, Woods RJ, Xie MH. 
Improving biophysical properties of a bispecific antibody scaffold 
to aid developability: quality by molecular design. MAbs. 2013;5 
(5):646–54. doi:10.4161/mabs.25632.

16. Starr CG, Tessier PM. Selecting and engineering monoclonal anti
bodies with drug-like specificity. Curr Opin Biotechnol. 
2019;60:119–27. doi:10.1016/j.copbio.2019.01.008.

17. Zhang Y, Wu L, Gupta P, Desai AA, Smith MD, Rabia LA, 
Ludwig SD, Tessier PM. Physicochemical rules for identifying 
monoclonal antibodies with drug-like specificity. Mol Pharm. 
2020;17(7):2555–69. doi:10.1021/acs.molpharmaceut.0c00257.

18. Wolf Pérez AM, Lorenzen N, Vendruscolo M, Sormanni P. 
Assessment of therapeutic antibody developability by combina
tions of in vitro and in silico methods. Therapeutic Antibodies 
Methods in Molecular Biology. New York, NY: Humana: 
2022;57–113. doi:10.1007/978-1-0716-1450-1_4.

19. Bailly M, Mieczkowski C, Juan V, Metwally E, Tomazela D, 
Baker J, Uchida M, Kofman E, Raoufi F, Motlagh S, et al. 
Predicting antibody developability profiles through early stage 
discovery screening. MAbs. 2020;12(1):1743053. doi:10.1080/ 
19420862.2020.1743053.

20. Makowski EK, Wu L, Gupta P, Tessier PM. Discovery-stage iden
tification of drug-like antibodies using emerging experimental and 
computational methods. MAbs. 2021;13(1):1895540. doi:10.1080/ 
19420862.2021.1895540.

21. Kumar S, Roffi K, Tomar DS, Cirelli D, Luksha N, Meyer D, 
Mitchell J, Allen MJ, Li L , et al. Rational optimization of 
a monoclonal antibody for simultaneous improvements in its 
solution properties and biological activity. Protein Engineering, 
Design and Selection. 2018;31(7–8):313–25. doi:10.1093/protein/ 
gzy020.

22. Rabia LA, Desai AA, Jhajj HS, Tessier PM. Understanding and 
overcoming trade-offs between antibody affinity, specificity, stabi
lity and solubility. Biochem Eng J. 2018;137:365–74. doi:10.1016/j. 
bej.2018.06.003.

23. Tiller KE, Li L, Kumar S, Julian MC, Garde S, Tessier PM. Arginine 
mutations in antibody complementarity-determining regions dis
play context-dependent affinity/specificity trade-offs. Journal of 
Biological Chemistry. 2017;292(40):16638–52. doi:10.1074/jbc. 
M117.783837.

24. Hoover JM, Prinslow EG, Teigler JE, Truppo MD, la Porte SL. 
Therapeutic antibody discovery. In: Remington: the science and 
practice of pharmacy. Cambridge, MA: Academic Press; 2020. p. 
417–36.

25. Jiskoot W, Hawe A, Menzen T, Volkin DB, Crommelin DJA. 
Ongoing challenges to develop high concentration monoclonal 
antibody-based formulations for subcutaneous administration: 
quo Vadis? J Pharm Sci. 2022;111(4):861–67. doi:10.1016/J. 
XPHS.2021.11.008.

MABS 13

https://doi.org/10.1038/d41573-021-00079-7
https://doi.org/10.1038/d41573-021-00079-7
https://doi.org/10.1080/19420862.2022.2123299
https://doi.org/10.1080/19420862.2016.1268307
https://doi.org/10.1080/19420862.2016.1268307
https://doi.org/10.1007/s40259-019-00392-z
https://doi.org/10.1007/s40259-019-00392-z
https://doi.org/10.3390/antib9040053
https://doi.org/10.1038/nrd.2016.268
https://doi.org/10.1038/s41587-020-0512-5
https://doi.org/10.1038/s41587-020-0512-5
https://doi.org/10.1016/j.copbio.2022.102798
https://doi.org/10.1016/j.copbio.2022.102798
https://doi.org/10.1073/pnas.1616408114
https://doi.org/10.1080/19420862.2018.1548233
https://doi.org/10.1016/j.xphs.2017.06.017
https://doi.org/10.1093/protein/gzz002
https://doi.org/10.3390/molecules16053675
https://doi.org/10.1002/jps.22758
https://doi.org/10.4161/mabs.25632
https://doi.org/10.1016/j.copbio.2019.01.008
https://doi.org/10.1021/acs.molpharmaceut.0c00257
https://doi.org/10.1007/978-1-0716-1450-1_4
https://doi.org/10.1080/19420862.2020.1743053
https://doi.org/10.1080/19420862.2020.1743053
https://doi.org/10.1080/19420862.2021.1895540
https://doi.org/10.1080/19420862.2021.1895540
https://doi.org/10.1093/protein/gzy020
https://doi.org/10.1093/protein/gzy020
https://doi.org/10.1016/j.bej.2018.06.003
https://doi.org/10.1016/j.bej.2018.06.003
https://doi.org/10.1074/jbc.M117.783837
https://doi.org/10.1074/jbc.M117.783837
https://doi.org/10.1016/J.XPHS.2021.11.008
https://doi.org/10.1016/J.XPHS.2021.11.008


26. Silence K, Dreier T, Moshir M, Ulrichts P, Gabriels SM, 
Saunders M, Wajant H, Brouckaert P, Huyghe L, Van 
Hauwermeiren T, et al. ARGX-110, a highly potent antibody 
targeting CD70, eliminates tumors via both enhanced ADCC and 
immune checkpoint blockade. MAbs. 2014;6(2):523–32. doi:10. 
4161/mabs.27398.

27. Kingsbury JS, Saini A, Auclair SM, Fu L, Lantz MM, Halloran KT, 
Calero-Rubio C, Schwenger W, Airiau CY, Zhang J, et al. A single 
molecular descriptor to predict solution behavior of therapeutic 
antibodies. Sci Adv. 2020;6(32):eabb0372. doi:10.1126/sciadv. 
abb0372.

28. Svilenov HL, Winter G. Formulations that suppress aggregation 
during long-term storage of a bispecific antibody are characterized 
by high refoldability and colloidal stability. J Pharm Sci. 2020;109 
(6):2048–58. doi:10.1016/j.xphs.2020.03.011.

29. Baek Y, Singh N, Arunkumar A, Borys M, Li ZJ, Zydney AL. 
Ultrafiltration behavior of monoclonal antibodies and Fc-fusion 
proteins: effects of physical properties. Biotechnol Bioeng. 
2017;114(9):2057–65. doi:10.1002/bit.26326.

30. Clarkson BR, Schön A, Freire E. Conformational stability and 
self-association equilibrium in biologics. Drug Discov Today. 
2016;21(2):342–47. doi:10.1016/j.drudis.2015.11.007.

31. Roberts CJ. Therapeutic protein aggregation: mechanisms, design, 
and control. Trends Biotechnol. 2014;32(7):372–80. doi:10.1016/j. 
tibtech.2014.05.005.

32. Mazzer AR, Perraud X, Halley J, O’Hara J, Bracewell DG. Protein 
A chromatography increases monoclonal antibody aggregation 
rate during subsequent low pH virus inactivation hold. 
J Chromatogr A. 2015;1415:83–90. doi:10.1016/j.chroma.2015.08. 
068.

33. Nejadnik MR, Randolph TW, Volkin DB, Schöneich C, 
Carpenter JF, Crommelin DJA, Jiskoot W. Postproduction hand
ling and administration of protein pharmaceuticals and potential 
instability issues. J Pharm Sci. 2018;107(8):2013–19. doi:10.1016/j. 
xphs.2018.04.005.

34. Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. 
Stability of protein pharmaceuticals: an update. Pharm Res. 
2010;27(4):544–75. doi:10.1007/s11095-009-0045-6.

35. Gentiluomo L, Svilenov HL, Augustijn D, El Bialy I, Greco ML, 
Kulakova A, Indrakumar S, Mahapatra S, Morales MM, Pohl C. 
Advancing therapeutic protein discovery and development 
through comprehensive computational and biophysical 
characterization. Mol Pharm. 2020;17(2):426–40. doi:10.1021/acs. 
molpharmaceut.9b00852.

36. Koepf E, Eisele S, Schroeder R, Brezesinski G, Friess W. Notorious 
but not understood: how liquid-air interfacial stress triggers pro
tein aggregation. Int J Pharm. 2018;537(1–2):202–12. doi:10.1016/ 
j.ijpharm.2017.12.043.

37. Cunningham O, Scott M, Zhou ZS, Finlay WJJ. Polyreactivity and 
polyspecificity in therapeutic antibody development: risk factors 
for failure in preclinical and clinical development campaigns. 
MAbs. 2021;13(1):1999195. doi:10.1080/19420862.2021.1999195.

38. Ausserwöger H, Schneider MM, Herling TW, Arosio P, 
Invernizzi G, Knowles TPJ, Lorenzen N. Non-specificity as the 
sticky problem in therapeutic antibody development. Nat Rev 
Chem. 2022;6(12):844–61. doi:10.1038/s41570-022-00438-x.

39. Narayanan H, Dingfelder F, Butté A, Lorenzen N, Sokolov M, 
Arosio P. Machine learning for biologics: opportunities for protein 
engineering, developability, and formulation. Trends Pharmacol 
Sci. 2021;42(3):151–65. doi:10.1016/j.tips.2020.12.004.

40. Brader ML, Estey T, Bai S, Alston RW, Lucas KK, Lantz S, 
Landsman P, Maloney KM. Examination of thermal unfolding 
and aggregation profiles of a series of developable therapeutic 
monoclonal antibodies. Mol Pharm. 2015;12(4):1005–17. doi:10. 
1021/mp400666b.

41. Köhler G, Milstein C. Continuous cultures of fused cells secreting 
antibody of predefined specificity. Nature. 1975;256(5517):495–97. 
doi:10.1038/256495a0.

42. Lu RM, Hwang YC, Liu IJ, Lee -C-C, Tsai H-Z, Li H-J, Wu H-C. 
Development of therapeutic antibodies for the treatment of 

diseases. J Biomed Sci. 2020;27(1):1–30. doi:10.1186/s12929-019- 
0592-z.

43. Laustsen AH, Greiff V, Karatt-Vellatt A, Muyldermans S, 
Jenkins TP. Animal immunization, in vitro display technologies, 
and machine learning for antibody discovery. Trends Biotechnol. 
2021;39(12):1263–73. doi:10.1016/j.tibtech.2021.03.003.

44. Reddy ST, Ge X, Miklos AE, Hughes RA, Kang SH, Hoi KH, 
Chrysostomou C, Hunicke-Smith SP, Iverson BL, Tucker PW, 
et al. Monoclonal antibodies isolated without screening by analyz
ing the variable-gene repertoire of plasma cells. Nat Biotechnol. 
2010;28(9):965–69. doi:10.1038/nbt.1673.

45. Zost SJ, Gilchuk P, Case JB, Binshtein E, Chen RE, Nkolola JP, 
Schäfer A, Reidy JX, Trivette A, Nargi RS, et al. Potently neutraliz
ing and protective human antibodies against SARS-CoV-2. 
Nature. 2020;584(7821):443–49. doi:10.1038/s41586-020-2548-6.

46. Valldorf B, Hinz SC, Russo G, Pekar L, Mohr L, Klemm J, 
Doerner A, Krah S, Hust M, Zielonka S, et al. Antibody display 
technologies: selecting the cream of the crop. Biol Chem. 2022;403 
(5):455–77. doi:10.1515/hsz-2020-0377.

47. Kaleli NE, Karadag M, Kalyoncu S. Phage display derived thera
peutic antibodies have enriched aliphatic content: insights for 
developability issues. Proteins: Structure, Function and 
Bioinformatics. 2019;87(7):607–18. doi:10.1002/prot.25685.

48. Reis Teixeira A A, Erasmus MF, D’Angelo S, Naranjo L, Ferrara F, 
Leal-Lopes C, Durrant O, Galmiche C, Morelli A, Scott-Tucker A, 
et al. Drug-like antibodies with high affinity, diversity and devel
opability directly from next-generation antibody libraries. MAbs. 
2021;13(1):1980942. doi:10.1080/19420862.2021.1980942.

49. Kelly RL, Le D, Zhao J, Wittrup KD. Reduction of nonspecificity 
motifs in synthetic antibody libraries. J Mol Biol. 2018;430 
(1):119–30. doi:10.1016/j.jmb.2017.11.008.

50. Teixeira AAR, D’Angelo S, Erasmus MF, Leal-Lopes C, Ferrara F, 
Spector LP, Naranjo L, Molina E, Max T, DeAguero A, et al. 
Simultaneous affinity maturation and developability enhancement 
using natural liability-free CDRs. MAbs. 2022;14(1):2115200. 
doi:10.1080/19420862.2022.2115200.

51. Shin JE, Riesselman AJ, Kollasch AW, McMahon C, Simon E, 
Sander C, Manglik A, Kruse AC, Marks DS. Protein design and 
variant prediction using autoregressive generative models. Nat 
Commun. 2021;12(1):1–11. doi:10.1038/s41467-021-22732-w.

52. Jung S, Honegger A, Plückthun A. Selection for improved protein 
stability by phage display. J Mol Biol. 1999;294(1):163–80. doi:10. 
1006/jmbi.1999.3196.

53. Shusta EV, Holler PD, Kieke MC, Kranz DM, Wittrup KD. 
Directed evolution of a stable scaffold for T-cell receptor 
engineering. Nat Biotechnol. 2000;18(7):754–59. doi:10.1038/ 
77325.

54. Jespers L, Schon O, Famm K, Winter G. Aggregation-resistant 
domain antibodies selected on phage by heat denaturation. Nat 
Biotechnol. 2004;22(9):1161–65. doi:10.1038/nbt1000.

55. Dudgeon K, Rouet R, Kokmeijer I, Schofield P, Stolp J, Langley D, 
Stock D, Christ D. General strategy for the generation of human 
antibody variable domains with increased aggregation resistance. 
Proc Natl Acad Sci U S A. 2012;109(27):10879–84. doi:10.1073/ 
pnas.1202866109.

56. Famm K, Hansen L, Christ D, Winter G. Thermodynamically 
stable aggregation-resistant antibody domains through directed 
evolution. J Mol Biol. 2008;376(4):926–31. doi:10.1016/j.jmb. 
2007.10.075.

57. Kelly RL, Zhao J, Le D, Wittrup KD. Nonspecificity in 
a nonimmune human scFv repertoire. MAbs. 2017;9(7):1029–35. 
doi:10.1080/19420862.2017.1356528.

58. Xu Y, Roach W, Sun T, Jain T, Prinz B, Yu TY, Torrey J, Thomas J, 
Bobrowicz P, Vásquez M. Addressing polyspecificity of antibodies 
selected from an in vitro yeast presentation system: A FACS-based, 
high-throughput selection and analytical tool. Protein 
Engineering, Design and Selection. 2013;26(10):663–70. doi:10. 
1093/protein/gzt047.

59. Mason DM, Weber CR, Parola C, Meng SM, Greiff V, Kelton WJ, 
Reddy ST. High-throughput antibody engineering in mammalian 

14 H. L. SVILENOV ET AL.

https://doi.org/10.4161/mabs.27398
https://doi.org/10.4161/mabs.27398
https://doi.org/10.1126/sciadv.abb0372
https://doi.org/10.1126/sciadv.abb0372
https://doi.org/10.1016/j.xphs.2020.03.011
https://doi.org/10.1002/bit.26326
https://doi.org/10.1016/j.drudis.2015.11.007
https://doi.org/10.1016/j.tibtech.2014.05.005
https://doi.org/10.1016/j.tibtech.2014.05.005
https://doi.org/10.1016/j.chroma.2015.08.068
https://doi.org/10.1016/j.chroma.2015.08.068
https://doi.org/10.1016/j.xphs.2018.04.005
https://doi.org/10.1016/j.xphs.2018.04.005
https://doi.org/10.1007/s11095-009-0045-6
https://doi.org/10.1021/acs.molpharmaceut.9b00852
https://doi.org/10.1021/acs.molpharmaceut.9b00852
https://doi.org/10.1016/j.ijpharm.2017.12.043
https://doi.org/10.1016/j.ijpharm.2017.12.043
https://doi.org/10.1080/19420862.2021.1999195
https://doi.org/10.1038/s41570-022-00438-x
https://doi.org/10.1016/j.tips.2020.12.004
https://doi.org/10.1021/mp400666b
https://doi.org/10.1021/mp400666b
https://doi.org/10.1038/256495a0
https://doi.org/10.1186/s12929-019-0592-z
https://doi.org/10.1186/s12929-019-0592-z
https://doi.org/10.1016/j.tibtech.2021.03.003
https://doi.org/10.1038/nbt.1673
https://doi.org/10.1038/s41586-020-2548-6
https://doi.org/10.1515/hsz-2020-0377
https://doi.org/10.1002/prot.25685
https://doi.org/10.1080/19420862.2021.1980942
https://doi.org/10.1016/j.jmb.2017.11.008
https://doi.org/10.1080/19420862.2022.2115200
https://doi.org/10.1038/s41467-021-22732-w
https://doi.org/10.1006/jmbi.1999.3196
https://doi.org/10.1006/jmbi.1999.3196
https://doi.org/10.1038/77325
https://doi.org/10.1038/77325
https://doi.org/10.1038/nbt1000
https://doi.org/10.1073/pnas.1202866109
https://doi.org/10.1073/pnas.1202866109
https://doi.org/10.1016/j.jmb.2007.10.075
https://doi.org/10.1016/j.jmb.2007.10.075
https://doi.org/10.1080/19420862.2017.1356528
https://doi.org/10.1093/protein/gzt047
https://doi.org/10.1093/protein/gzt047


cells by CRISPR/Cas9-mediated homology-directed mutagenesis. 
Nucleic Acids Res. 2018;46(14):7436–49. doi:10.1093/nar/gky550.

60. Parthiban K, Perera RL, Sattar M, Huang Y, Mayle S, Masters E, 
Griffiths D, Surade S, Leah R, Dyson MR, et al. A comprehensive 
search of functional sequence space using large mammalian dis
play libraries created by gene editing. MAbs. 2019;11(5):884–98. 
doi:10.1080/19420862.2019.1618673.

61. Dyson MR, Masters E, Pazeraitis D, Perera RL, Syrjanen JL, 
Surade S, Thorsteinson N, Parthiban K, Jones PC, Sattar M, et al. 
Beyond affinity: selection of antibody variants with optimal bio
physical properties and reduced immunogenicity from mamma
lian display libraries. MAbs. 2020;12(1):1829335. doi:10.1080/ 
19420862.2020.1829335.

62. Tiller KE, Chowdhury R, Li T, Ludwig SD, Sen S, Maranas CD, 
Tessier PM. Facile affinity maturation of antibody variable 
domains using natural diversity mutagenesis. Front Immunol. 
2017;8:986. doi:10.3389/fimmu.2017.00986.

63. Ki JJ, Min JS, Iverson BL, Georgiou G. APEx 2-hybrid, 
a quantitative protein-protein interaction assay for antibody dis
covery and engineering. Proc Natl Acad Sci U S A. 2007;104 
(20):8247–52. doi:10.1073/pnas.0702650104.

64. Waraho-Zhmayev D, Meksiriporn B, Portnoff AD, DeLisa MP, 
Bradbury A. Optimizing recombinant antibodies for intracellular 
function using hitchhiker-mediated survival selection. Protein 
Engineering, Design and Selection. 2014;27(10):351–58. doi:10. 
1093/protein/gzu038.

65. Lombana TN, Dillon M, Bevers J, Spiess C. Optimizing antibody 
expression by using the naturally occurring framework diversity in 
a live bacterial antibody display system. Sci Rep. 2015;5(1):1–14. 
doi:10.1038/srep17488.

66. Moghaddam-Taaheri P, Ikonomova SP, Gong Z, Wisniewski JQ, 
Karlsson AJ. Bacterial inner-membrane display for screening 
a library of antibody fragments. Journal of Visualized 
Experiments. 2016;116:e54583. doi:10.3791/54583.

67. Esvelt KM, Carlson JC, Liu DR. A system for the continuous 
directed evolution of biomolecules. Nature. 2011;472 
(7344):499–503. doi:10.1038/nature09929.

68. Ebo JS, Saunders JC, Devine PWA, Gordon AM, Warwick AS, 
Schiffrin B, Chin SE, England E, Button JD, Lloyd C. An in vivo 
platform to select and evolve aggregation-resistant proteins. Nat 
Commun. 2020;11(1):1–12. doi:10.1038/s41467-020-15667-1.

69. Wang T, Badran AH, Huang TP, Liu DR. Continuous directed 
evolution of proteins with improved soluble expression. Nat Chem 
Biol. 2018;14(10):972–80. doi:10.1038/s41589-018-0121-5.

70. Morrison MS, Wang T, Raguram A, Hemez C, Liu DR. Disulfide- 
compatible phage-assisted continuous evolution in the periplasmic 
space. Nat Commun. 2021;12(1):1–14. doi:10.1038/s41467-021- 
26279-8.

71. Saunders JC, Young LM, Mahood RA, Jackson MP, Revill CH, 
Foster RJ, Smith DA, Ashcroft AE, Brockwell DJ, Radford SE, et al. 
An in vivo platform for identifying inhibitors of protein 
aggregation. Nat Chem Biol. 2016;12(2):94–101. doi:10.1038/ 
nchembio.1988.

72. Wellner A, McMahon C, Gilman MSA, Clements JR, Clark S, 
Nguyen KM, Ho MH, Hu VJ, Shin J-E, Feldman J, et al. Rapid 
generation of potent antibodies by autonomous hypermutation in 
yeast. Nat Chem Biol. 2021;17(10):1057–64. doi:10.1038/s41589- 
021-00832-4.

73. Makowski EK, Kinnunen PC, Huang J, Wu L, Smith MD, Wang T, 
Desai AA, Streu CN, Zhang Y, Zupancic JM, et al. Co-optimization 
of therapeutic antibody affinity and specificity using machine 
learning models that generalize to novel mutational space. Nat 
Commun. 2022;13(1):1–14. doi:10.1038/s41467-022-31457-3.

74. Saksena SD, Liu G, Banholzer C, Horny G, Ewert S, Gifford DK. 
Computational counterselection identifies nonspecific therapeutic 
biologic candidates. Cell Reports Methods. 2022;2(7):100254. 
doi:10.1016/j.crmeth.2022.100254.

75. Liu G, Zeng H, Mueller J, Carter B, Wang Z, Schilz J, Horny G, 
Birnbaum ME, Ewert S, Gifford DK, et al. Antibody complemen
tarity determining region design using high-capacity machine 

learning. Bioinformatics. 2020;36(7):2126–33. doi:10.1093/bioin 
formatics/btz895.

76. Makowski EK, Chen H, Lambert M, Bennett EM, Eschmann N, 
Zhang Y, Zupancic JM, Desai AA, Smith MD, Lou W. Reduction 
of therapeutic antibody self-association using yeast-display selec
tions and machine learning. MAbs. 2022;14(1). doi:10.1080/ 
19420862.2022.2146629

77. Julian MC, Li L, Garde S, Wilen R, Tessier PM. Efficient affinity 
maturation of antibody variable domains requires co-selection of 
compensatory mutations to maintain thermodynamic stability. Sci 
Rep. 2017;7(1):1–13. doi:10.1038/srep45259.

78. Shehata L, Maurer DP, Wec AZ, Lilov A, Champney E, Sun T, 
Archambault K, Burnina I, Lynaugh H, Zhi X, et al. Affinity 
maturation enhances antibody specificity but compromises con
formational stability. Cell Rep. 2019;28(13):3300–08. doi:10.1016/j. 
celrep.2019.08.056.

79. Traxlmayr MW, Faissner M, Stadlmayr G, Hasenhindl C, Antes B, 
Rüker F, Obinger C. Directed evolution of stabilized IgG1-Fc 
scaffolds by application of strong heat shock to libraries displayed 
on yeast. Biochim Biophys Acta Proteins Proteom. 2012;1824 
(4):542–49. doi:10.1016/j.bbapap.2012.01.006.

80. Traxlmayr MW, Obinger C. Directed evolution of proteins for 
increased stability and expression using yeast display. Arch 
Biochem Biophys. 2012;526(2):174–80. doi:10.1016/j.abb.2012.04. 
022.

81. Xu L, Kohli N, Rennard R, Jiao Y, Razlog M, Zhang K, Baum J, 
Johnson B, Tang J, Schoeberl B, et al. Rapid optimization and 
prototyping for therapeutic antibody-like molecules. MAbs. 
2013;5(2):237–54. doi:10.4161/mabs.23363.

82. Luo R, Qu B, An L, Zhao Y, Cao Y, Ren P, Hang H. Simultaneous 
maturation of single chain antibody stability and affinity by CHO 
cell display. Bioengineering. 2022;9(8):360. doi:10.3390/ 
bioengineering9080360.

83. Mason DM, Friedensohn S, Weber CR, Jordi C, Wagner B, 
Meng SM, Ehling RA, Bonati L, Dahinden J, Gainza P, et al. 
Optimization of therapeutic antibodies by predicting antigen spe
cificity from antibody sequence via deep learning. Nat Biomed 
Eng. 2021;5(6):600–12. doi:10.1038/s41551-021-00699-9.

84. Kelly RL, Sun T, Jain T, Caffry I, Yu Y, Cao Y, Lynaugh H, Brown 
M, Vásquez M, Wittrup KD. High throughput cross-interaction 
measures for human IgG1 antibodies correlate with clearance rates 
in mice. MAbs. 2015;7(4):770–77. doi:10.1080/19420862.2015. 
1043503/SUPPL_FILE/KMAB_A_1043503_SM9491.ZIP.

85. Watson CD, Ford HC. High-affinity binding of riboflavin and 
FAD by immunoglobulins from normal human serum. Biochem 
Int. 1988; 16(6):1067–74. [Accessed October 10, 2022]. https:// 
europepmc.org/article/med/3178858 .

86. Bowen RAR, Drake SK, Vanjani R, Huey ED, Grafman J, 
Horne MK. Markedly increased vitamin B12 concentrations attri
butable to IgG-IgM-vitamin B12 immune complexes. Clin Chem. 
2006;52(11):2107–14. doi:10.1373/clinchem.2006.073882.

87. Lecerf M, Kanyavuz A, Rossini S, Dimitrov JD. Interaction of 
clinical-stage antibodies with heme predicts their physiochemical 
and binding qualities. Commun Biol. 2021;4(1):1–13. doi:10.1038/ 
s42003-021-01931-7.

88. Dimitrov JD, Ivanovska ND, Lacroix-Desmazes S, 
Doltchinkova VR, Kaveri SV, Vassilev TL. Ferrous ions and reac
tive oxygen species increase antigen-binding and 
anti-inflammatory activities of immunoglobulin G. Journal of 
Biological Chemistry. 2006;281(1):439–46. doi:10.1074/jbc. 
M509190200.

89. McIntyre JA. The appearance and disappearance of antiphospho
lipid autoantibodies subsequent to oxidation-reduction reactions. 
Thromb Res. 2004;114(5–6):579–87. doi:10.1016/j.thromres.2004. 
08.008.

90. McIntyre JA, Wagenknecht DR, Faulk WP. Autoantibodies 
unmasked by redox reactions. J Autoimmun. 2005;24(4):311–17. 
doi:10.1016/j.jaut.2005.03.005.

91. Lecerf M, Lacombe R, Kanyavuz A, Dimitrov JD. Functional 
changes of therapeutic antibodies upon exposure to 

MABS 15

https://doi.org/10.1093/nar/gky550
https://doi.org/10.1080/19420862.2019.1618673
https://doi.org/10.1080/19420862.2020.1829335
https://doi.org/10.1080/19420862.2020.1829335
https://doi.org/10.3389/fimmu.2017.00986
https://doi.org/10.1073/pnas.0702650104
https://doi.org/10.1093/protein/gzu038
https://doi.org/10.1093/protein/gzu038
https://doi.org/10.1038/srep17488
https://doi.org/10.3791/54583
https://doi.org/10.1038/nature09929
https://doi.org/10.1038/s41467-020-15667-1
https://doi.org/10.1038/s41589-018-0121-5
https://doi.org/10.1038/s41467-021-26279-8
https://doi.org/10.1038/s41467-021-26279-8
https://doi.org/10.1038/nchembio.1988
https://doi.org/10.1038/nchembio.1988
https://doi.org/10.1038/s41589-021-00832-4
https://doi.org/10.1038/s41589-021-00832-4
https://doi.org/10.1038/s41467-022-31457-3
https://doi.org/10.1016/j.crmeth.2022.100254
https://doi.org/10.1093/bioinformatics/btz895
https://doi.org/10.1093/bioinformatics/btz895
https://doi.org/10.1080/19420862.2022.2146629
https://doi.org/10.1080/19420862.2022.2146629
https://doi.org/10.1038/srep45259
https://doi.org/10.1016/j.celrep.2019.08.056
https://doi.org/10.1016/j.celrep.2019.08.056
https://doi.org/10.1016/j.bbapap.2012.01.006
https://doi.org/10.1016/j.abb.2012.04.022
https://doi.org/10.1016/j.abb.2012.04.022
https://doi.org/10.4161/mabs.23363
https://doi.org/10.3390/bioengineering9080360
https://doi.org/10.3390/bioengineering9080360
https://doi.org/10.1038/s41551-021-00699-9
https://doi.org/10.1080/19420862.2015.1043503/SUPPL_FILE/KMAB_A_1043503_SM9491.ZIP
https://doi.org/10.1080/19420862.2015.1043503/SUPPL_FILE/KMAB_A_1043503_SM9491.ZIP
https://europepmc.org/article/med/3178858
https://europepmc.org/article/med/3178858
https://doi.org/10.1373/clinchem.2006.073882
https://doi.org/10.1038/s42003-021-01931-7
https://doi.org/10.1038/s42003-021-01931-7
https://doi.org/10.1074/jbc.M509190200
https://doi.org/10.1074/jbc.M509190200
https://doi.org/10.1016/j.thromres.2004.08.008
https://doi.org/10.1016/j.thromres.2004.08.008
https://doi.org/10.1016/j.jaut.2005.03.005


pro-oxidative agents. Antibodies. 2022;11(1):11. doi:10.3390/ 
antib11010011.

92. Gupta S, Jiskoot W, Schöneich C, Rathore AS. Oxidation and 
deamidation of monoclonal antibody products: potential impact 
on stability, biological activity, and efficacy. J Pharm Sci. 2022;111 
(4):903–18. doi:10.1016/j.xphs.2021.11.024.

93. Starr CG, Makowski EK, Wu L, Berg B, Kingsbury JS, Gokarn YR, 
Tessier PM. Ultradilute measurements of self-association for the 
identification of antibodies with favorable high-concentration 
solution properties. Mol Pharm. 2021;18(7):2744–53. doi:10. 
1021/acs.molpharmaceut.1c00280.

94. Wu J, Schultz JS, Weldon CL, Sule SV, Chai Q, Geng SB, 
Dickinson CD, Tessier PM. Discovery of highly soluble antibodies 
prior to purification using affinity-capture self-interaction nano
particle spectroscopy. Protein Engineering, Design and Selection. 
2015;28(10):403–14. doi:10.1093/protein/gzv045.

95. Sule SV, Dickinson CD, Lu J, Chow CK, Tessier PM. Rapid 
analysis of antibody self-association in complex mixtures using 
immunogold conjugates. Mol Pharm. 2013;10(4):1322–31. doi:10. 
1021/mp300524x.

96. Liu Y, Caffry I, Wu J, Geng SB, Jain T, Sun T, Reid F, Cao Y, 
Estep P, Yu Y, et al. High-throughput screening for developability 
during early-stage antibody discovery using self-interaction nano
particle spectroscopy. MAbs. 2014;6(2):483–92. doi:10.4161/mabs. 
27431.

97. Fraunhofer W, Winter G. The use of asymmetrical flow field-flow 
fractionation in pharmaceutics and biopharmaceutics. European 
Journal of Pharmaceutics and Biopharmaceutics. 2004;58 
(2):369–83. doi:10.1016/j.ejpb.2004.03.034.

98. Marioli M, Kok WT. Recovery, overloading, and protein interac
tions in asymmetrical flow field-flow fractionation. Anal Bioanal 
Chem. 2019;411(11):2327–38. doi:10.1007/s00216-019-01673-w.

99. Wahlund PO, Lorenzen N, Rischel C. Screening for protein–pro
tein interactions with asymmetrical flow field-flow fractionation. 
J Pharm Sci. 2021;110(6):2336–39. doi:10.1016/J.XPHS.2021.02. 
026.

100. Das TK, Chou DK, Jiskoot W, Arosio P. Nucleation in protein 
aggregation in biotherapeutic development: a look into the heart of 
the event. J Pharm Sci. 2022;111(4):951–59. doi:10.1016/j.xphs. 
2022.01.017.

101. Wang W, Roberts CJ. Non-Arrhenius protein aggregation. AAPS 
Journal. 2013;15(3):840–51. doi:10.1208/s12248-013-9485-3.

102. Arosio P, Rima S, Morbidelli M. Aggregation mechanism of an 
IgG2 and two IgG1 monoclonal antibodies at low pH: from oligo
mers to larger aggregates. Pharm Res. 2013;30(3):641–54. doi:10. 
1007/s11095-012-0885-3.

103. Wälchli R, Vermeire PJ, Massant J, Arosio P. Accelerated aggrega
tion studies of monoclonal antibodies: considerations for storage 
stability. J Pharm Sci. 2020;109(1):595–602. doi:10.1016/j.xphs. 
2019.10.048.

104. Jgs H, Middelberg APJ. Estimating the potential refolding yield of 
recombinant proteins expressed as inclusion bodies. Biotechnol 
Bioeng. 2004;87(5):584–92. doi:10.1002/bit.20148.

105. Kunz P, Zinner K, Mücke N, Bartoschik T, Muyldermans S, 
Hoheisel JD. The structural basis of nanobody unfolding reversi
bility and thermoresistance. Sci Rep. 2018;8(1):1–10. doi:10.1038/ 
s41598-018-26338-z.

106. Schön A, Freire E. Reversibility and irreversibility in the tempera
ture denaturation of monoclonal antibodies. Anal Biochem. 
2021;626:114240. doi:10.1016/j.ab.2021.114240.

107. Svilenov HL, Menzen T, Richter K, Winter G. Modulated scanning 
fluorimetry can quickly assess thermal protein unfolding reversi
bility in microvolume samples. Mol Pharm. 2020;17(7):2638–47. 
doi:10.1021/acs.molpharmaceut.0c00330.

108. Svilenov H, Winter G. The ReFOLD assay for protein formulation 
studies and prediction of protein aggregation during long-term 
storage. European Journal of Pharmaceutics and 
Biopharmaceutics. 2019;137:131–39. doi:10.1016/j.ejpb.2019.02. 
018.

109. Svilenov H, Gentiluomo L, Friess W, Roessner D, Winter G. A new 
approach to study the physical stability of monoclonal antibody 
formulations—dilution from a denaturant. J Pharm Sci. 2018;107 
(12):3007–13. doi:10.1016/j.xphs.2018.08.004.

110. Berner C, Menzen T, Winter G, Svilenov HL. Combining unfold
ing reversibility studies and molecular dynamics simulations to 
select aggregation-resistant antibodies. Mol Pharm. 2021;18 
(6):2242–53. doi:10.1021/acs.molpharmaceut.1c00017.

111. Kopp MRG, Grigolato F, Zürcher D, Das TK, Chou D, 
Wuchner K, Arosio P. Surface-induced protein aggregation and 
particle formation in biologics: current understanding of mechan
isms, detection and mitigation strategies.J Pharm Sci. - October 9 
2022;Accepted manuscript, In press 10.1016/j.xphs.2022.10.009

112. Kopp MRG, Capasso Palmiero U, Arosio P. A nanoparticle-based 
assay to evaluate surface-induced antibody instability. Mol Pharm. 
2020;17(3):909–18. doi:10.1021/acs.molpharmaceut.9b01168.

113. Kopp MRG, Wolf Pérez AM, Zucca MV, Capasso Palmiero U, 
Friedrichsen B, Lorenzen N, Arosio P. An accelerated 
surface-mediated stress assay of antibody instability for develop
ability studies. MAbs. 2020;12(1):1815995. doi:10.1080/19420862. 
2020.1815995.

114. Johann F, Wöll S, Winzer M, Snell J, Valldorf B, Gieseler H. 
Miniaturized forced degradation of therapeutic proteins and 
ADCs by agitation-induced aggregation using orbital shaking of 
microplates. J Pharm Sci. 2022;111(5):1401–13. doi:10.1016/j.xphs. 
2021.09.027.

115. Mathaes R, Narhi L, Hawe A, Matter A, Bechtold-Peters K, 
Kenrick S, Kar S, Laskina O, Carpenter J, Cavicchi R. Phase- 
appropriate application of analytical methods to monitor subvisi
ble particles across the biotherapeutic drug product life cycle. 
AAPS Journal. 2020;22(1):1–7. doi:10.1208/s12248-019-0384-0.

116. Roesch A, Zölls S, Stadler D, Helbig C, Wuchner K, Kersten G, 
Hawe A, Jiskoot W, Menzen T. Particles in biopharmaceutical 
formulations, Part 2: an update on analytical techniques and 
applications for therapeutic proteins, viruses, vaccines and cells. 
J Pharm Sci. 2022;111(4):933–50. doi:10.1016/j.xphs.2021.12.011.

117. Kunz P, Stuckenberger E, Hausmann K, Gentiluomo L, 
Neustrup M, Michalakis S, Rieser R, Romeijn S, Wichmann C, 
Windisch R, et al. Understanding opalescence measurements of 
biologics – a comparison study of methods, standards, and mole
cules. Int J Pharm. 2022;628:122321. doi:10.1016/j.ijpharm.2022. 
122321.

118. Helbig C, Ammann G, Menzen T, Friess W, Wuchner K, Hawe A. 
Backgrounded membrane imaging (BMI) for high-throughput 
characterization of subvisible particles during biopharmaceutical 
drug product development. J Pharm Sci. 2020;109(1):264–76. 
doi:10.1016/j.xphs.2019.03.024.

119. Murphy MI, Bruque M, Hanford A, Trayton I, Handali M, 
Leissa JA, Hasige S, Day K, Patel SM. Qualitative 
High-throughput analysis of subvisible particles in biological for
mulations using backgrounded membrane imaging. J Pharm Sci. 
2022;111(6):1605–13. doi:10.1016/j.xphs.2022.03.010.

120. Gühlke M, Hecht J, Böhrer A, Hawe A, Nikels F, Garidel P, 
Menzen T. Taking subvisible particle quantitation to the limit: 
uncertainties and statistical challenges with ophthalmic products 
for intravitreal injection. J Pharm Sci. 2020;109(1):505–14. doi:10. 
1016/j.xphs.2019.10.061.

121. Calderon CP, Levačić A K, Helbig C, Wuchner K, Menzen T. 
Combining machine learning and backgrounded membrane ima
ging: a case study in comparing and classifying different types of 
biopharmaceutically relevant particles. J Pharm Sci. 2022;111 
(9):2422–34. doi:10.1016/j.xphs.2022.05.022.

122. Sormanni P, Aprile FA, Vendruscolo M. Third generation anti
body discovery methods: in silico rational design. Chem Soc Rev. 
2018;47(24):9137–57. doi:10.1039/c8cs00523k.

123. Fischman S, Ofran Y. Computational design of antibodies. Curr 
Opin Struct Biol. 2018;51:156–62. doi:10.1016/j.sbi.2018.04.007.

124. Baran D, Pszolla MG, Lapidoth GD, Norn C, Dym O, Unger T, 
Albeck S, Tyka MD, Fleishman SJ. Principles for computational 

16 H. L. SVILENOV ET AL.

https://doi.org/10.3390/antib11010011
https://doi.org/10.3390/antib11010011
https://doi.org/10.1016/j.xphs.2021.11.024
https://doi.org/10.1021/acs.molpharmaceut.1c00280
https://doi.org/10.1021/acs.molpharmaceut.1c00280
https://doi.org/10.1093/protein/gzv045
https://doi.org/10.1021/mp300524x
https://doi.org/10.1021/mp300524x
https://doi.org/10.4161/mabs.27431
https://doi.org/10.4161/mabs.27431
https://doi.org/10.1016/j.ejpb.2004.03.034
https://doi.org/10.1007/s00216-019-01673-w
https://doi.org/10.1016/J.XPHS.2021.02.026
https://doi.org/10.1016/J.XPHS.2021.02.026
https://doi.org/10.1016/j.xphs.2022.01.017
https://doi.org/10.1016/j.xphs.2022.01.017
https://doi.org/10.1208/s12248-013-9485-3
https://doi.org/10.1007/s11095-012-0885-3
https://doi.org/10.1007/s11095-012-0885-3
https://doi.org/10.1016/j.xphs.2019.10.048
https://doi.org/10.1016/j.xphs.2019.10.048
https://doi.org/10.1002/bit.20148
https://doi.org/10.1038/s41598-018-26338-z
https://doi.org/10.1038/s41598-018-26338-z
https://doi.org/10.1016/j.ab.2021.114240
https://doi.org/10.1021/acs.molpharmaceut.0c00330
https://doi.org/10.1016/j.ejpb.2019.02.018
https://doi.org/10.1016/j.ejpb.2019.02.018
https://doi.org/10.1016/j.xphs.2018.08.004
https://doi.org/10.1021/acs.molpharmaceut.1c00017
https://doi.org/10.1016/j.xphs.2022.10.009
https://doi.org/10.1021/acs.molpharmaceut.9b01168
https://doi.org/10.1080/19420862.2020.1815995
https://doi.org/10.1080/19420862.2020.1815995
https://doi.org/10.1016/j.xphs.2021.09.027
https://doi.org/10.1016/j.xphs.2021.09.027
https://doi.org/10.1208/s12248-019-0384-0
https://doi.org/10.1016/j.xphs.2021.12.011
https://doi.org/10.1016/j.ijpharm.2022.122321
https://doi.org/10.1016/j.ijpharm.2022.122321
https://doi.org/10.1016/j.xphs.2019.03.024
https://doi.org/10.1016/j.xphs.2022.03.010
https://doi.org/10.1016/j.xphs.2019.10.061
https://doi.org/10.1016/j.xphs.2019.10.061
https://doi.org/10.1016/j.xphs.2022.05.022
https://doi.org/10.1039/c8cs00523k
https://doi.org/10.1016/j.sbi.2018.04.007


design of binding antibodies. Proc Natl Acad Sci U S A. 2017;114 
(41):10900–05. doi:10.1073/pnas.1707171114.

125. Nimrod G, Fischman S, Austin M, Herman A, Keyes F, Leiderman 
O, Hargreaves D, Strajbl M, Breed J, Klompus K. Computational 
design of epitope-specific functional antibodies. Cell Rep. 2018;25 
(8):2121–31. doi:10.1016/j.celrep.2018.10.081.

126. Entzminger KC, Hyun JM, Pantazes RJ, Patterson-Orazem AC, 
Qerqez AN, Frye ZP, Hughes RA, Ellington AD, Lieberman RL, 
Maranas CD. De novo design of antibody complementarity deter
mining regions binding a FLAG tetra-peptide. Sci Rep. 2017;7 
(1):1–11. doi:10.1038/s41598-017-10737-9.

127. Poosarla VG, Li T, Goh BC, Schulten K, Wood TK, Maranas CD. 
Computational de novo design of antibodies binding to a peptide 
with high affinity. Biotechnol Bioeng. 2017;114(6):1331–42. 
doi:10.1002/bit.26244.

128. Pras A The Molecular Role of SERF in Amyloid Formation: A Fine 
Line between Toxicity and Function. PhD Thesis. 2021. doi:10. 
33612/diss.177554757

129. Aprile FA, Sormanni P, Podpolny M, Chhangur S, Needham L-M, 
Ruggeri FS, Perni M, Limbocker R, Heller GT, Sneideris T, et al. 
Rational design of a conformation-specific antibody for the quan
tification of Aβ oligomers. Proc Natl Acad Sci U S A. 2020;117 
(24):13509–18. doi:10.1073/pnas.1919464117.

130. Lin J, Figazzolo C, Metrick MA, Sormanni P, Vendruscolo M. 
Computational maturation of a single-domain antibody against 
Aβ42 aggregation. Chem Sci. 2021;12(41):13940–48. doi:10.1039/ 
d1sc03898b.

131. Kulenkampff K, Emin D, Staats R, Zhang YP, Sakhnini L, Kouli A, 
Rimon O, Lobanova E, Williams-Gray CH, Aprile FA, et al. An 
antibody scanning method for the detection of α-synuclein oligo
mers in the serum of Parkinson’s disease patients. Chem Sci. 
2022;13(46):13815–28. doi:10.1039/d2sc00066k.

132. Sormanni P, Aprile FA, Vendruscolo M. Rational design of anti
bodies targeting specific epitopes within intrinsically disordered 
proteins. Proc Natl Acad Sci U S A. 2015;112(32):9902–07. doi:10. 
1073/pnas.1422401112.

133. Aguilar Rangel M, Bedwell A, Costanzi E, Taylor RJ, Russo R, 
Bernardes GJL, Ricagno S, Frydman J, Vendruscolo M, 
Sormanni P, et al. Fragment-based computational design of anti
bodies targeting structured epitopes. Sci Adv. 2022;8(45):9540. 
doi:10.1126/SCIADV.ABP9540/SUPPL_FILE/SCIADV. 
ABP9540_TABLE_S3.ZIP.

134. Khetan R, Curtis R, Deane CM, Hadsund JT, Kar U, Krawczyk K, 
Kuroda D, Robinson SA, Sormanni P, Tsumoto K, et al. Current 
advances in biopharmaceutical informatics: guidelines, impact and 
challenges in the computational developability assessment of anti
body therapeutics. MAbs. 2022;14(1):2020082. doi:10.1080/ 
19420862.2021.2020082.

135. Raybould MIJ, Marks C, Krawczyk K, Taddese B, Nowak J, 
Lewis AP, Bujotzek A, Shi J, Deane CM. Five computational 
developability guidelines for therapeutic antibody profiling. Proc 
Natl Acad Sci U S A. 2019;116(10):4025–30. doi:10.1073/pnas. 
1810576116.

136. Thorsteinson N, Gunn JR, Kelly K, Long W, Labute P. Structure- 
based charge calculations for predicting isoelectric point, viscosity, 
clearance, and profiling antibody therapeutics. MAbs. 2021;13 
(1):1981805. doi:10.1080/19420862.2021.1981805.

137. Ahmed L, Gupta P, Martin KP, Scheer JM, Nixon AE, Kumar S. 
Intrinsic physicochemical profile of marketed antibody-based 
biotherapeutics. Proc Natl Acad Sci U S A. 2021;118(37): 
e2020577118. doi:10.1073/pnas.2020577118.

138. Broom A, Jacobi Z, Trainor K, Meiering EM. Computational tools 
help improve protein stability but with a solubility tradeoff. 
Journal of Biological Chemistry. 2017;292(35):14349–61. doi:10. 
1074/jbc.M117.784165.

139. Gil-Garcia M, Banó-Polo M, Varejao N, Jamroz M, Kuriata A, 
Díaz-Caballero M, Lascorz J, Morel B, Navarro S, Reverter D, et al. 
Combining structural aggregation propensity and stability 

predictions to redesign protein solubility. Mol Pharm. 2018;15 
(9):3846–59. doi:10.1021/acs.molpharmaceut.8b00341.

140. van der Kant R, Karow-Zwick AR, van Durme J, Blech M, 
Gallardo R, Seeliger D, Aßfalg K, Baatsen P, Compernolle G, 
Gils A, et al. Prediction and reduction of the aggregation of 
monoclonal antibodies. J Mol Biol. 2017;429(8):1244–61. doi:10. 
1016/j.jmb.2017.03.014.

141. Rosace A, Bennett A, Oeller M, Mortensen MM, Sakhnini LI, 
Sormanni P. Automated optimisation of solubility and conforma
tional stability of antibodies and proteins. bioRxiv. Published 
online October 18, 2022. doi:10.1101/2022.05.20.492798.

142. Sormanni P, Aprile FA, Vendruscolo M. The CamSol method of 
rational design of protein mutants with enhanced solubility. J Mol 
Biol. 2015;427(2):478–90. doi:10.1016/j.jmb.2014.09.026.

143. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, 
Serrano L. The FoldX web server: an online force field. 
Nucleic Acids Res. 2005;33(SUPPL. 2):W382–W388. doi:10. 
1093/nar/gki387.

144. Abanades B, Georges G, Bujotzek A, Deane CM, Xu J. ABlooper: 
fast accurate antibody CDR loop structure prediction with accu
racy estimation. Bioinformatics. 2022;38(7):1877–80. doi:10.1093/ 
bioinformatics/btac016.

145. Ruffolo JA, Sulam J, Gray JJ. Antibody structure prediction using 
interpretable deep learning. Patterns. 2022;3(2):100406. doi:10. 
1016/j.patter.2021.100406.

146. Cohen T, Halfon M, Schneidman-Duhovny D. NanoNet: rapid 
and accurate end-to-end nanobody modeling by deep learning. 
Front Immunol. 2022;13:4319. doi:10.3389/fimmu.2022.958584.

147. Schneider C, Raybould MIJ, Deane CM. SAbDab in the age of 
biotherapeutics: updates including SAbDab-nano, the nanobody 
structure tracker. Nucleic Acids Res. 2022;50(D1):D1368–D1372. 
doi:10.1093/nar/gkab1050.

148. Liberis E, Velickovic P, Sormanni P, Vendruscolo M, Lio P, 
Hancock J. Parapred: antibody paratope prediction using convolu
tional and recurrent neural networks. Bioinformatics. 2018;34 
(17):2944–50. doi:10.1093/bioinformatics/bty305.

149. Deac A, Veličković P, Sormanni P. Attentive Cross-Modal 
Paratope Prediction. Journal of Computational Biology. 2019;26 
(6):536–45. doi:10.1089/cmb.2018.0175.

150. Leem J, Mitchell LS, Farmery JHR, Barton J, Galson JD. Deciphering 
the language of antibodies using self-supervised learning. Patterns. 
2022;3(7):100513. doi:10.1016/j.patter.2022.100513.

151. Kopp MRG, Arosio P. Microfluidic Approaches for the 
Characterization of Therapeutic Proteins. J Pharm Sci. 2018;107 
(5):1228–36. doi:10.1016/j.xphs.2018.01.001.

152. Erkamp NA, Oeller M, Sneideris T, Ausserwӧger H, Levin A, 
Welsh T, Qi R, Qian D, Zhu H, Sormanni P. Multi-dimensional 
protein solubility optimization with an ultra-high-throughput 
microfluidic platform. bioRxiv. Published online October 22 
2022. 10.1101/2022.10.21.513267. 2022.10.21.513267.

153. Narayanan H, Dingfelder F, Condado Morales I, Patel B, 
Heding KE, Bjelke JR, Egebjerg T, Butté A, Sokolov M, 
Lorenzen N, et al. Design of biopharmaceutical formulations 
accelerated by machine learning. Mol Pharm. 2021;18 
(10):3843–53. doi:10.1021/acs.molpharmaceut.1c00469.

154. Brinkmann U, Kontermann RE. Bispecific antibodies. Science. 
2021;372(6545):916–17. doi:10.1126/science.abg1209.

155. Sawant MS, Streu CN, Wu L, Tessier PM. Toward drug-like multi
specific antibodies by design. Int J Mol Sci. 2020;21(20):1–41. 
doi:10.3390/ijms21207496.

156. Dengl S, Mayer K, Bormann F, Duerr H, Hoffmann E, 
Nussbaum B, Tischler M, Wagner M, Kuglstatter A, Leibrock L, 
et al. Format chain exchange (FORCE) for high-throughput gen
eration of bispecific antibodies in combinatorial binder-format 
matrices. Nat Commun. 2020;11(1):1–11. doi:10.1038/s41467- 
020-18477-7.

157. Carter PJ, Rajpal A. Designing antibodies as therapeutics. Cell. 
2022;185(15):2789–805. doi:10.1016/j.cell.2022.05.029.

MABS 17

https://doi.org/10.1073/pnas.1707171114
https://doi.org/10.1016/j.celrep.2018.10.081
https://doi.org/10.1038/s41598-017-10737-9
https://doi.org/10.1002/bit.26244
https://doi.org/10.33612/diss.177554757
https://doi.org/10.33612/diss.177554757
https://doi.org/10.1073/pnas.1919464117
https://doi.org/10.1039/d1sc03898b
https://doi.org/10.1039/d1sc03898b
https://doi.org/10.1039/d2sc00066k
https://doi.org/10.1073/pnas.1422401112
https://doi.org/10.1073/pnas.1422401112
https://doi.org/10.1126/SCIADV.ABP9540/SUPPL_FILE/SCIADV.ABP9540_TABLE_S3.ZIP
https://doi.org/10.1126/SCIADV.ABP9540/SUPPL_FILE/SCIADV.ABP9540_TABLE_S3.ZIP
https://doi.org/10.1080/19420862.2021.2020082
https://doi.org/10.1080/19420862.2021.2020082
https://doi.org/10.1073/pnas.1810576116
https://doi.org/10.1073/pnas.1810576116
https://doi.org/10.1080/19420862.2021.1981805
https://doi.org/10.1073/pnas.2020577118
https://doi.org/10.1074/jbc.M117.784165
https://doi.org/10.1074/jbc.M117.784165
https://doi.org/10.1021/acs.molpharmaceut.8b00341
https://doi.org/10.1016/j.jmb.2017.03.014
https://doi.org/10.1016/j.jmb.2017.03.014
https://doi.org/10.1101/2022.05.20.492798
https://doi.org/10.1016/j.jmb.2014.09.026
https://doi.org/10.1093/nar/gki387
https://doi.org/10.1093/nar/gki387
https://doi.org/10.1093/bioinformatics/btac016
https://doi.org/10.1093/bioinformatics/btac016
https://doi.org/10.1016/j.patter.2021.100406
https://doi.org/10.1016/j.patter.2021.100406
https://doi.org/10.3389/fimmu.2022.958584
https://doi.org/10.1093/nar/gkab1050
https://doi.org/10.1093/bioinformatics/bty305
https://doi.org/10.1089/cmb.2018.0175
https://doi.org/10.1016/j.patter.2022.100513
https://doi.org/10.1016/j.xphs.2018.01.001
https://doi.org/10.1101/2022.10.21.513267
https://doi.org/10.1021/acs.molpharmaceut.1c00469
https://doi.org/10.1126/science.abg1209
https://doi.org/10.3390/ijms21207496
https://doi.org/10.1038/s41467-020-18477-7
https://doi.org/10.1038/s41467-020-18477-7
https://doi.org/10.1016/j.cell.2022.05.029

	Abstract
	Introduction
	Drug-like properties of antibodies
	Discovery approaches yielding highly developable antibodies
	Rationally designed antibody libraries
	Removing candidates with liabilities by experimental selection
	Mammalian cell surface display to select developable antibodies

	Rational optimization of antibody candidates
	Phage-assisted continuous evolution
	Tripartite β-lactamase enzyme assay
	Autonomous hypermutation yeast surface display
	Machine learning for rational antibody optimization

	Orthogonal approaches for the selection of drug-like antibodies
	A different perspective on the non-specificity of antibody drugs
	Assessing antibody self-association with low antibody concentrations
	Estimating non-native aggregation tendency from refoldability assays
	Interfacial stability
	Selecting candidates with lower tendency to form subvisible and visible particles

	Emerging in silico tools to support discovery and selection
	Outlook and outstanding challenges
	Abbreviations
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References

