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Objective: To gain a better understanding of the pathogenesis of autoimmune arthritis- 
associated interstitial lung disease (ILD), we sought to identify the characteristics of 
lung-infiltrating cells in SKG mice with ILD.

Methods: We injected curdlan in SKG mice at 8 weeks of age, and identified the pres-
ence of ILD by PET-MRI at 20 weeks post-injection and histological analysis at 22 weeks 
post-injection. Lung-infiltrating cells were examined by flow cytometry. Analysis of serum 
cytokines by the Luminex multiplex cytokine assay was performed at 14 and 22 weeks 
post-injection, and cytokine profiles before and after the development of ILD were com-
pared. Opal multiplexed immunofluorescent staining of lung tissue was also performed.

results: At 20  weeks post-injection, curdlan-treated SKG mice developed not only 
arthritis but also lung inflammation combined with fibrosis, which was identified by PET-
MRI and histological analysis. The majority of inflammatory cells that accumulated in the 
lungs of curdlan-treated SKG mice were CD11b+Gr1+ neutrophils, which co-express 
IL-17A and GM-CSF, rather than TNF-α. Compared with 14 weeks post-injection, serum 
levels of GM-CSF, MCP1, IL-17A, IL-23, TSLP, and soluble IL-7Rα had increased at 
22  weeks post-injection, whereas those of IFN-γ, IL-22, IL-6, and TNF-α remained 
unchanged. Furthermore, IL-23, CXCL5, IL-17A, and GM-CSF, but not TNF-α, were 
observed in immunofluorescent-stained lung tissue.

conclusion: We found that IL-17A+GM-CSF+ neutrophils represented the major inflam-
matory cells in the lungs of curdlan-treated SKG mice. In addition, GM-CSF and IL-17A 
appear to play a more important role than TNF-α in ILD development.

Keywords: gM-csF, il-17a, neutrophil, autoimmune arthritis, interstitial lung disease

inTrODUcTiOn

Interstitial lung disease (ILD) is a common extra-articular manifestation of rheumatoid arthritis 
(RA) occurring in up to 30% of RA patients (1). Although treatment of RA has markedly improved 
in recent years with the introduction of biologic therapies, the use of such agents has often been 
restricted in RA-associated ILD due to safety concerns (2). Following initial reports of a link between 
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anti-TNF therapy and serious respiratory adverse events (SRAEs) 
(3, 4), subsequent studies have shown an association between all 
biologic agents used to treat RA and SRAEs (5–8). This discrep-
ancy in the effect of biologic agents on synovial and lung inflam-
mation indicates that the nature of inflammation in the synovium 
and lung may be different in RA. Thus, a better understanding of 
the pathogenesis of RA-associated ILD may lead to better treat-
ment approaches.

SKG mice are an animal model in which chronic autoimmune 
arthritis can be developed (9, 10). These mice possess a mutation 
in the gene encoding the SH2 domain of ZAP-70, a key signal 
transduction molecule in T cells (11, 12). This mutation in ZAP-
70 results in thymic-positive selection and failure in the negative 
selection of highly self-reactive T  cells that include potentially 
arthritogenic T cells (9). These self-reactive T cells lead to chronic 
arthritis and extra-articular manifestation, including ILD (9, 13). 
Therefore, ILD in SKG mice may be a good candidate for a murine 
RA-associated ILD model.

In this study, we assessed the characteristics of lung-infiltrating 
cells in SKG mice with ILD to better understand the pathogen-
esis of RA-associated ILD. We found that IL-17A+GM-CSF+ cells  
increased in lung tissue and were primarily neutrophils. Further-
more, serum levels of IL-17A and GM-CSF increased. These results 
suggest that IL-17A+GM-CSF+ neutrophils serve as the major  
inflammatory cells in this murine RA-associated ILD model.

MaTerials anD MeThODs

induction of arthritis and ilD in sKg Mice
Male SKG mice, obtained from Dr. S. Sakaguchi (University of 
Kyoto, Japan) and male BALB/c were maintained under specific 
pathogen-free conditions. Disease was induced at 8 weeks of age 
by administering 3 mg curdlan by intraperitoneal injection; mice 
were then monitored for up to 22 weeks. All mice were handled 
in accordance with the guidelines for animal care approved by 
the Animal Experimentation Committee of the Asan Institute for 
Life Sciences (2015-14-135).

PeT-Mri scan
At 20  weeks, whole-body sequential PET/MRI scanning of the 
mice was performed using a nanoScan PET/MRI (Mediso Ltd.). 
18F-FDG (0.2 mCi/kg) was injected into the tail vein after a fasting 
period of at least 12 h, and a 30-min scan was initiated at 40 min 
after injection of the radioligand. After the MRI scan for 20 min, 
PET scan was performed for 10 min. MRI scans were acquired and 
contiguous axial slices (1 mm) were obtained for the whole body. 
Scanning parameters were repetition time = 25 s, effective echo 
time = 3.4 ms, field of view = 64 mm, number of excitations = 1, 
frequency  =  128, and phase  =  128. Dynamic data acquisition 
of PET scans was performed from 60 to 70 min after 18F-FDG 
injection. Acquired PET images were reconstructed using the 3D 
full detector mode with MRI-based attenuation collection, with an 
energy level of 250–750 keV and 0.5-mm voxel size.

lung histology
Mice were euthanized with a mixture of zoletil (Virbac) and 
Rompun™ (Bayer). The lung was perfused with PBS via the 

heart to remove bronchoalveolar and blood cells. The right lung 
was inflated with 10% buffered formalin, embedded in paraffin, 
and sectioned at 4-µm thickness. Sections were then stained with 
hematoxylin and eosin (H&E) and Masson’s trichrome.

surface and intracellular staining  
and Flow cytometry
Fc receptors were blocked with anti-mouse CD16/32 (BioLegend, 
clone: 93), and surface markers were stained with BV421-conjugated 
anti-CD3 (BioLegend, clone: 145-2C11), FITC-conjugated anti-
CD4 (BioLegend, clone: RM4-5), Alexa Fluor 647-conjugated 
anti-CD11b (BioLegend, clone: M1/70), PE-conjugated anti-
Gr1 (BioLegend, clone: RB6-8C5), PE-conjugated anti-CD44 
(BioLegend, clone: IM7), PerCP/Cy5.5-conjugated anti-CD62L 
(BioLegend, clone: MEL-14), and APC/Cy7-conjugated anti-
CD25 (BioLegend, clone: 3C7). After fixing and perminization, 
intracellular molecules, including cytokines and transcription 
factors, were stained with PE/Cy7-IL-17A (BioLegend, clone: 
TC11-18H10.1), PerCP/Cy5.5-conjugated anti-RORγt (BD, clone: 
Q31-378), Alexa Fluor 647-conjugated anti-FOXP3 (BioLegend, 
clone:150D), PerCP/Cy5.5-conjugated anti-GM-CSF (BioLegend, 
clone: MP1-22E9), and Alexa Fluor 647-conjugated anti-TNF-α 
(BioLegend, clone: MP6-XT22).

analysis of serum cytokines by luminex 
Multiplex cytokine assay
Serum samples were prepared at 14 and 22 weeks post-injection. 
Blood was allowed to clot for a minimum of 1 h at RT and centri-
fuged at 16,000 × g for 15 min at 4°C. Serum concentrations of the 
following immune molecules were determined using a magnetic 
bead-based 10-plex immunoassay: GM-CSF, IFN-γ, IL-6, soluble 
IL-7Rα (sIL-7Rα), IL-17A (CTLA-8), IL-22, IL-23, MCP-1, TNF-
α, and TSLP (customized Procartaplex, Thermo Scientific). Briefly, 
serum samples were mixed with antibody-linked polystyrene 
beads on 96-well filter bottom plate and incubated at RT for 2 h on 
an orbital shaker at 500 rpm. After washing, plates were incubated 
with biotinylated detection antibody for 30 min at RT. Plates were 
then washed twice and resuspended in streptavidin-PE. After 
incubation for 30  min at RT, two additional washes were per-
formed, and the plates were resuspended in reading buffer. Each 
sample was measured in duplicate along with standards (7-point 
dilutions) and the buffer control. Plates were read using a Luminex 
Bio-plex 200 system (Bio-Rad Corp.) for quantitative analysis.

immunofluorescent staining
Using the Opal method (Perkin Elmer), six primary antibodies 
were sequentially applied to a single slide. Slides were deparaffi-
nized in xylene and rehydrated in ethanol. Antigen retrieval was 
performed in citrate buffer (pH 6.0) using microwave treatment. 
Primary rabbit antibodies for CD3 (1:100) were incubated for 1 h 
in a humidified chamber at RT, followed by detection using the 
Polymer HRP Ms + Rb. Visualization of CD3 was accomplished 
using fluorescein opal 520 (1:100), after which the slide was placed 
in citrate buffer (pH 6.0) and heated using microwave treatment. 
In a serial fashion, slides were then incubated with primary rabbit 
antibodies for TNF-α (1:500) for 1  h in a humidified chamber  
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at RT, followed by detection using the Polymer HRP Ms + Rb. 
TNF-α was visualized using opal 540 (1:100). Slides were again 
placed in citrate buffer (pH 6.0) and subject to microwave treat-
ment and then incubated with primary rabbit antibodies for 
IL-23 (1:500) for 1 h in a humidified chamber at RT, followed by 
detection using the Polymer HRP Ms + Rb. IL-23 was visualized 
using opal 570 (1:100) and slides were placed in citrate buffer (pH 
6.0) for microwave treatment. Slides were then incubated with 
primary rabbit antibodies for CXCL5 (1:100) for 1 h in a humidi-
fied chamber at RT, followed by detection using the Polymer HRP 
Ms  +  Rb and visualization using opal 620 (1:100). Slides were 
again placed in citrate buffer (pH 6.0) and heated using micro-
wave treatment. Slides were then incubated with primary rabbit 
antibody for IL-17A (1:200) for 1 h in a humidified chamber at RT, 
followed by detection using the Polymer HRP Ms + Rb. IL-17A 
and visualization using opal 650 (1:100). Slides were again placed 
in citrate buffer (pH 6.0) and heated using microwave treatment. 
Slides were then incubated with the last rabbit antibody for 
GM-CSF (1:200) for 1 h in a humidified chamber at RT, followed 
by detection using the Polymer HRP Ms  +  Rb. GM-CSF was 
visualized using opal 690 (1:100). Finally, slides were again placed 
in citrate buffer (pH 6.0) and heated using microwave treatment. 
Nuclei were subsequently visualized with DAPI (1:500) and the 
sections were mounted to coverslips using mounting media 
(Enzo). Stained slides were scanned with a multispectral Vectra 
scanner and quantitative imaging system (Perkin Elmer). To 
observe co-localization of neutrophil and IL-17A, slides were 
incubated with primary rabbit antibody for IL-17A (1:200) and 
rat antibody for neutrophil (1:50) and secondary antibody, fol-
lowed by incubation of Opal 540 for IL-17A and Opal 690 for 
neutrophil. Other procedures were identical as described above.

statistical analysis
All analyses were performed using GraphPad Prism 5 software 
(GraphPad Software). The Mann–Whitney U test was performed 
for two-group comparison. P values of <0.05 were considered statis-
tically significant. Error bars shown in all figures indicate the SEM.

resUlTs

curdlan-Treated sKg Mice Developed ilD
From the PET-MRI scans of curdlan-treated SKG mice (n = 6), 
which were taken 20 weeks after curdlan injection, hypermeta-
bolic lesions were observed in the peripheral joints, intestine, 
and lung (Figure  1A). These hypermetabolic lesions were not 
detected in BALB/c mice (n = 3) or PBS-treated SKG mice (n = 5). 
For the H&E staining of the lung tissue obtained 22 weeks after 
curdlan injection, the infiltration of inflammatory cells into the 
interstitial spaces was observed in the curdlan-treated SKG mice 
(Figure 1B). Masson’s trichrome staining showed that curdlan-
treated SKG mice also developed apparent fibrosis (Figure 1C).

increased il-17a+gM-csF+ cells in the 
lungs of curdlan-Treated sKg Mice
We next investigated the characteristics of lung-infiltrating cells in 
curdlan-treated SKG mice. Flow cytometry plots revealed a lower 

proportion of CD3+ cells (T cells) in the lungs of curdlan-treated 
SKG mice than in those of BALB/c and PBS-treated SKG mice, 
although the proportion of effector CD4+T cells (CD44highCD62LLo 
cells) among the CD3+CD4+ cells was higher (Figures  2A,B). 
In contrast, proportion of CD11b+Gr1+ cells (neutrophils) was 
higher in the lungs of curdlan-treated SKG mice compared with 
those of BALB/c and PBS-treated SKG mice (Figure  2C). To 
identify the different features of lung-infiltrating cells among 
BALB/c, PBS-treated SKG mice, and curdlan-treated SKG mice, 
we evaluated the expressions of IL-17A, TNF-α, and GM-CSF. 
Lung-infiltrating cells in the curdlan-treated SKG mice had mark-
edly increased expression of IL-17A and GM-CSF compared with 
those in BALB/c and PBS-treated SKG mice (Figure 2D).

In addition, flow cytometry plots showed a significantly higher 
proportion of IL-17A+ and/or GM-CSF+ cells in the lungs of 
curdlan-treated SKG mice compared with those of BALB/c and 
PBS-treated SKG mice (Figures  3A–C). We further analyzed 
these IL-17A+ cells by gating analysis. In contrast to IL-17A+ 
cells in the lungs of BALB/c and PBS-treated SKG mice, nearly all 
IL-17A+ cells in the curdlan-treated SKG mice were neutrophils 
(CD11b+Gr1+). In particular, the majority of GM-CSF+ neutro-
phils in the lungs of curdlan-treated SKG mice expressed IL-17A 
(IL-17A+GM-CSF+ neutrophils) (Figure 3D).

increased inflammatory indices  
in the serum of curdlan-Treated  
sKg Mice With ilD
We next measured serum cytokine levels. Compared with curdlan- 
treated SKG mice at 14  weeks post-injection when peripheral 
arthritis, but not lung inflammation (Figure S1 in Supplementary 
Material), was evident, curdlan-treated SKG mice at 22  weeks 
post-injection (when lung inflammation was also evident) had 
higher serum levels of GM-CSF, MCP1, IL-17A, IL-23, TSLP, and 
sIL-7Rα. However, the serum levels of IFN-γ, IL-22, IL-6, and 
TNF-α did not differ significantly between the two time-points. 
However, at 14 weeks post-injection, curdlan-treated SKG mice 
had higher serum levels of IFN-γ, IL-22, IL-6, and TNF-α com-
pared with PBS-treated SKG mice. On the contrary, levels of these 
markers seemed to decrease at 22 weeks post-injection without 
statistical significance (Figure 4).

high expression of il-23, cXcl5,  
il-17a, and gM-csF in the lungs  
of curdlan-Treated sKg Mice
We next investigated the lung tissue using Opal multiplexed 
immunofluorescent staining. The densities of IL-23+, CXCL5+, 
IL-17A+, and GM-CSF+ cells were higher in the curdlan-treated 
SKG mice than in BALB/c and PBS-treated SKG mice, whereas 
the density of TNF-α+ cells was not different (Figure 5A). This 
finding was similar to the serum cytokine levels at 22 weeks post-
injection in curdlan-treated SKG mice in which IL-23, IL-17A, 
and GM-CSF increased but not TNF-α (Figure 4). Furthermore, 
high density of IL-17A+ cells and neutrophils were co-localized 
in inflamed lesions of the lungs of curdlan-treated SKG mice 
(Figure 5B), thereby demonstrating infiltration of IL-17A+ neu-
trophils in lungs of curdlan-treated SKG mice.
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FigUre 1 | Interstitial lung disease (ILD) in curdlan-treated SKG mice. (a) PET-MRI performed at week 20 post-injection revealing inflammation in the peripheral 
joints, spine, intestine, and lung of the curdlan-treated SKG mice. (B) Hematoxylin and eosin staining of the lungs from BALB/c, PBS-treated SKG mice, and 
curdlan-treated SKG mice at week 22 post-injection showing inflammatory cell infiltration in curdlan-treated SKG mice. (c) Masson’s trichrome staining of lungs  
from BALB/c, PBS-treated SKG mice, and curdlan-treated SKG mice at week 22 post-injection showing fibrosis in the curdlan-treated SKG mice. Values in (a) are 
mean ± SEM. *p < 0.05 by Mann–Whitney U test.
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FigUre 2 | Neutrophils in the lungs of curdlan-treated SKG mice. Flow cytometry plots showing (a) proportion of CD3+ cells among lung-infiltrating cells,  
(B) proportion of CD44highCD62LLo cells among CD3+CD4+ cells, and (c) proportion of G11b+Gr1+ cells among lung-infiltrating cells. (D) Levels of IL-17A,  
TNF-α, and GM-CSF in lung-infiltrating cells. Values in (a–c) are mean ± SEM. *p < 0.05 by Mann–Whitney U test.
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DiscUssiOn

In this study, we found that IL-17A+GM-CSF+ neutrophils 
increased in the inflamed lung tissue of curdlan-treated SKG mice.  

In addition, neutrophils, rather than T  cells, were the major 
inflammatory cells in the lungs of curdlan-treated SKG mice. 
A previous study evaluating the role of T  cells in SKG mice 
(14) showed that T cells are important mediators of interstitial 
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FigUre 3 | IL-17A+GM-CSF+ neutrophils in the lungs of curdlan-treated SKG mice. Flow cytometry plots showing (a) proportion of IL-17A+ cells among lung-
infiltrating cells, (B) proportion of GM-CSF+ cells among lung-infiltrating cells, and (c) proportion of IL-17A+ and GM-CSF+ cells among lung-infiltrating cells.  
(D) Lung-infiltrating cells were gated on IL-17A expression and stained for Gr1 and CD11b. In the lungs of curdlan-treated SKG mice, nearly almost all IL-17A+ viable 
cells were CD11b+Gr1+ neutrophils, and GM-CSF+ neutrophils also expressed IL-17A mostly. Values in (a–D) are mean ± SEM. *p < 0.05 by Mann–Whitney U test.
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FigUre 4 | Levels of serum cytokines at week 14 and 22 post-injection in PBS- and curdlan-treated SKG mice. Values are mean ± SEM. *p < 0.05 and **p < 0.01 
between PBS- and curdlan-treated mice; †p < 0.05; and ††p < 0.01; †††p < 0.001 between 14- and 22-week post-injection in curdlan-treated mice by Mann–
Whitney U test.
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pneumonitis. In that study, self-reactive T cells from the arthritic 
joints of SKG mice were capable of mediating not only arthritis 
but also interstitial pneumonitis. This indicates that inflamma-
tion in the lung may be mediated, at least in part, by self-reactive 
T cells in SKG mice. However, the inflammatory process became 
less T cell-dependent in the later phase of lung inflammation in 
that study, implicating that other cells are also involved in lung 
inflammation. Based on our results, neutrophils seem to play a 
more important role than T cells. In fact, analyses of inflamma-
tory cells using bronchoalveolar lavage of CTD-associated ILD 
patients has shown an accumulation of neutrophils, with or with-
out an increased percentage of lymphocytes (15), and neutrophils 
have been reported as important effector cells associated with 
poor outcome in CTD-associated ILD (15–20). Concordant with 
these findings, our results also showed that neutrophils, particu-
larly IL-17A+GM-CSF+ neutrophils, as seen by flow cytometry of 
the lungs of curdlan-treated SKG mice, are the most important 
inflammatory cells in ILD.

Recently, Sendo et al. (21) analyzed lung-infiltrating cells in 
zymosan A-treated SKG mice. They reported that CD11b+Gr1+, 
Th17, and innate lymphoid cells increased in the lungs of 
zymosan A-treated SKG mice, with varying proportions of these 
cells according to ILD severity. Our results provide additional 
information by showing that the CD11b+Gr1+ cells in the lungs of 
SKG mice with ILD co-express IL-17A and GM-CSF. Sendo et al. 
(21) also reported a new cell population, CD11b+Gr1dim tolero-
genic dendritic cell (DC)-like cells, which appeared to suppress 
the development of ILD in SKG mice and was increased only in  
the severely inflamed lung tissue (defined by ≥60% affected). In the  
present study, this CD11b+Gr1dim tolerogenic DC-like cell 
population was less observed in the flow cytometry plots of lung-
infiltrating cells (Figure 2C). Compared with the previous study, 
in our model, lung inflammation was less severe (<60% affected), 
whereas lung fibrosis was more severe, resembling the late stage 
of ILD. The absence of CD11b+Gr1dim tolerogenic DC-like cells in 
our study, in conjunction with more prominent fibrosis as seen 

by histology, suggests that CD11b+Gr1dim tolerogenic DC-like 
cells may not be observed in the late stage of ILD. Although it 
remains unclear, further studies elucidating the pathogenic 
link between these CD11b+Gr1dim tolerogenic DC-like cells and 
IL-17A+GM-CSF+CD11b+Gr1+ cells observed in our study may 
lead to a better understanding of the pathogenic mechanisms of 
ILD in SKG mice.

In this study, we found that curdlan-treated SKG mice at 
22  weeks post-injection had significantly elevated serum levels 
of GM-CSF, MCP1, IL-17A, IL-23, TSLP, and sIL-7Rα compared 
with samples taken at 14 weeks post-injection. We speculate that 
these cytokines are particularly associated with lung inflamma-
tion and fibrosis, rather than arthritis, since they were increased 
only at 22 weeks post-injection. There is a body of evidence sup-
porting GM-CSF as an important mediator in lung inflammation 
by upregulating TLR2, TLR4, and CD14 expression (22–24), 
and by boosting IL-6 and IL-1β production from macrophages 
(22,  25, 26). In addition, GM-CSF itself is a strong inducer of 
neutrophil infiltration in various tissues (27, 28). Furthermore, 
the neutralization of GM-CSF has been shown to significantly 
inhibit neutrophil infiltration into the lungs of SKG mice, show-
ing the importance of GM-CSF in lung inflammation (29).

Although a previous study showed that blocking IL-17A was 
not effective in preventing ILD development (29), IL-17A is also 
known as a strong inducer of neutrophil infiltration (30). In our 
data, the lung-infiltrating cells were mostly CD11b+Gr1+ neutro-
phils and these cells co-express GM-CSF as well as IL-17A. A pre-
vious study showed that gamma/delta T cells are the predominant 
source of IL-17 in mice with collagen-induced arthritis, but not 
in SKG mice (31). Our results suggest that neutrophils might be 
the main source of IL-17 in curdlan-treated SKG mice, especially 
when both arthritis and ILD are present. In these circumstances, 
where neutrophils play a major role in ILD pathogenesis such 
as in our study, blocking IL-17A may have a role in controlling 
ILD aggravation. Recent report by Miyachi et  al. (32) showed 
improvement of ILD in patients with psoriasis through the use 
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FigUre 5 | Opal multiplexed immunofluorescent images of lung tissues. (a) IL-23+, CXCL5+, IL-17A+, GM-CSF+, and TNF-α+ cells in curdlan-treated SKG mice.  
(B) IL-17A+ cells and neutrophils in inflamed lesion of the lungs of curdlan-treated SKG mice.
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of secukinumab (anti-IL-17A monoclonal antibody), thus sup-
porting IL-17A blockade as a potential treatment option for ILD.

MCP1, which is known as a monocyte chemoattractant, is 
also important in the recruitment of neutrophils to the lung (33). 
Thus, increased serum levels of MCP1 might have played a role 
in increased neutrophil infiltration in mouse lungs in our study. 
In a recent study, IL-23-treated neutrophils produced IL-17A 
selectively, and IL-17+ neutrophils were found in the colons 
of a DSS-induced colitis model through the adoptive transfer 
of IL-23-treated neutrophils (34). Moreover, IL-23-mediated 
pathways are known to drive inflammation in various tissues 
including intestine in curdlan-treated SKG mice (35); IL-23 also 
triggers production of GM-CSF in the lung (36), which may 
lead to GM-CSF+ polarization of neutrophils in the lung. Taken 
together, increased serum levels of IL-23 in our study may have 
contributed to IL-17A+GM-CSF+ polarization of neutrophils in 
the lungs of SKG mice.

TSLP, which was also increased in the serum of curdlan-
treated SKG mice at 22 weeks post-injection, was first implicated 
as a driver of Th2 responses in the airway (37). Aberrant levels 
of TSLP have been observed in a variety of airway diseases, such 
as asthma, chronic obstructive pulmonary disease, and nasal 
polyps (38, 39). Recently, TSLP has also emerged as an important 
cytokine in the pathogenesis of systemic sclerosis and idiopathic 
pulmonary fibrosis (40–42). The biologic effects of TSLP are 
mediated by binding to a functional heterodimeric receptor 
complex composed of the TSLP receptor and the sIL-7Rα chain 
(43), which signals through the STAT3 (44) and STAT5 pathways 
(45). The elevated serum levels of TSLP and sIL-7Rα observed in 
our study may account for the fibrosis of the lung tissue, although 
the mechanisms by which TSLP and sIL-7Rα are increased have 
yet to be elucidated.

We speculate that increased serum levels of GM-CSF, MCP1, 
and IL-17A in curdlan-treated SKG mice collectively promote 
neutrophil recruitment into the lung. The neutrophils are then 
polarized to IL-17A+GM-CSF+ neutrophils, probably by increased 
serum level and tissue expression of IL-23. Moreover, the increased 
expression of IL-17A and GM-CSF within the lung tissues further 
recruits more neutrophils into the lung, thereby contributing to a 
positive feedback loop of neutrophil infiltration and polarization. 
This can be a possible explanation for why IL-17A+GM-CSF+ neu-
trophils are the major infiltrating cells in ILD of curdlan-treated 
SKG mice. It is also possible that the increased serum levels of 
TSLP and sIL-7Rα contributed to lung fibrosis.

A previous study suggested IL-6, TNF-α, and IL-1 as key 
cytokines that mediate autoimmune arthritis in SKG mice (46). 
Consistently, our data also showed that at 14 weeks post-injection, 
curdlan-treated SKG mice had higher serum levels of IL-6 and 
TNF-α compared with PBS-treated SKG mice. Furthermore, 
serum levels of IL-6 and TNF-α seemed to be numerically lower 

in the curdlan-treated SKG mice at 22 weeks post-injection than 
that at 14 weeks post-injection. This implies that IL-6 and TNF-α 
may not be as important in lung inflammation as it is in arthritis. 
This finding may account for the observation that anti-TNF and 
anti-IL-6R agents are useful for treating arthritis, but not for ILD. 
Indeed, in the Opal staining, the population of TNF-α+ cells was 
not increased. Rather, populations of IL-23+, CXCL5+, IL-17A+, 
and GM-CSF+ cells were increased. Thus, these cytokines may 
play a role in developing RA-associated ILD.

In summary, we observed lung inflammation and fibrosis 
mimicking ILD, following autoimmune arthritis, and identified 
IL-17A+GM-CSF+ neutrophils as the main inflammatory cell 
population in the inflamed lung tissue of curdlan-treated SKG 
mice. We also demonstrated GM-CSF and IL-17A, all of which 
were increased in the serum at the time of ILD development, 
suggesting IL-17A+GM-CSF+ neutrophils are a major mediator 
of pathogenesis in this ILD model. Further elucidation of the 
exact mechanisms by which IL-17A+GM-CSF+ neutrophils are 
induced, and how they mediate lung inflammation and fibrosis, 
may lead to a better understanding of the pathogenic mechanisms 
of RA-associated ILD.
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