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The complex information-processing capabilities of the central nervous system emerge
from intricate patterns of synaptic input-output relationships among various neuronal
circuit components. Understanding these capabilities thus requires a precise description
of the individual synapses that comprise neural networks. Recent advances in
fluorescent protein engineering, along with developments in light-favoring tissue clearing
and optical imaging techniques, have rendered light microscopy (LM) a potent candidate
for large-scale analyses of synapses, their properties, and their connectivity. Optically
imaging newly engineered fluorescent proteins (FPs) tagged to synaptic proteins or
microstructures enables the efficient, fine-resolution illumination of synaptic anatomy
and function in large neural circuits. Here we review the latest progress in fluorescent
protein-based molecular tools for imaging individual synapses and synaptic connectivity.
We also identify associated technologies in gene delivery, tissue processing, and
computational image analysis that will play a crucial role in bridging the gap between
synapse- and system-level neuroscience.

Keywords: fluorescent protein sensors, synaptic connectivity, synapses, gene delivery, mapping and localization,
light microscopy

INTRODUCTION

The synapse is the primary site for neurons tomake functional contacts for exchanging information.
The term ‘‘synapse’’, meaning conjunction in Greek (synapsis = together + to fasten), was coined
in 1897 by the eminent physiologist Charles Scott Sherrington (Nobel Laureate 1932). But the idea
that synapses play critical roles as dynamically polarized, communication contacts was proposed

Abbreviations: 3′UTR, 3′ untranslated region; AMPAR, α-amino-hydroxy-5-methyl-4-isoxazolepropionic acid
receptor; CA3, Cornu Ammonis 3; CALI, chromophore-assisted light inactivation; CaMKII, calcium/calmodulin-
dependent kinase II; CFP,Cyan fluorescent protein;CD4, cluster of differentiation 4;ChR,Channelrhodopsin;CRISPR,
clustered regularly-interspaced short palindromic repeats; ENABLED, endogenous labeling via exon duplication;
EM, electron microscopy; FMN, flavin mononucleotide; FP, fluorescent protein; fSPIM, fluorescent selective plane
illuminationmicroscopy;GFP, green fluorescent protein;HA, hemagglutinin;HSV-1,Herpes simplex virus-1; iDISCO,
immunolabeling-enabled three-dimensional imaging of solvent-cleared organs; ID-PRIME, Interaction-Dependent
Probe Incorporation Mediated by Enzymes; InSynC, Inhibition of Synaptic Release with CALI; KI, knock-in; LAP,
lipoic acid acceptor peptide; LM, light microscopy; LOV2, light, oxygen, and voltage 2; LpIA, lipoic acid ligase; mGluR,
metabotropicglutamatereceptors;mGRASP,MammalianGFPReconstitutionAcrossSynapticPartners;miniSOG,mini
small singlet oxygen generator; NCBI, National Center for Biotechnology Information; NS3, Nonstructural protein 3;
OFP,Orange fluorescentprotein; PDZ,PSD-95,Drosophila disc large tumor suppressor (Dlg1), andzonulaoccludens-1
protein (zo-1); PSD-95, postsynaptic density protein-95; rAAV, recombinant adeno-associated virus; SM protein,
Sec1/Munc18-like protein; SNARE, SNAP (Soluble N-ethylmaleimide-sensitive factor attachment protein) Receptor;
syb, synaptobrevin; spGFP, split-GFP; sypHTomato, Synaptophysin-fused pHTomato; TimeSTAMP, Time-Specific
Tagging for the Age Measurement of Proteins; VAMP2, vesicle-associated membrane protein 2; VenusNT, Venus
N-terminal; VenusCT, Venus C-terminal; VGluT, vesicular glutamate transporter; YFP, Yellow fluorescent protein.
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by Santiago Ramon y Cajal (Nobel Laureate 1906). Since then,
the synapse as a structural and functional communication unit
has been in the spotlight of neuroscientific inquiry (Cowan et al.,
2001). In fact, many studies have demonstrated that synaptic
events, such as changes in molecular composition, structure,
efficacy, and potentiation, play important roles in brain functions
including memory formation, perception, and other complex
behaviors (Tsien et al., 1996; Markram et al., 1997; Malinow
and Malenka, 2002; Russo et al., 2010; Caroni et al., 2014). An
important focus has been to visualize the synapse and to measure
its activity. In 1954, DeRobertis and Palay first observed synapses
independently by electron microscopy (EM) and George Gray
suggested there may be different types of synapses, i.e., excitatory
and inhibitory (De Robertis and Bennett, 1955; Palay and Palade,
1955; Palay, 1956; Gray, 1959). EM provides enough resolution
for nanometer-scale imaging of the synaptic ultrastructure,
something that cannot be achieved by light microscopy (LM)
because of its diffraction limit. However, despite recent advances
that have reduced the time needed for image acquisition and
reconstruction, EM remains inherently time-consuming, labor-
intensive, and volume-limited for large neural circuits.

With the recent engineering of fluorescent proteins (FPs)
and new developments in light-favoring tissue clearing and
advanced optical methods, LM is rising as a potent alternative
tool for investigating individual synapses in the context of
neural networks (Gray, 1959; Keller et al., 2008; Kim et al.,
2012; Tomer et al., 2012; Chung et al., 2013; Richardson
and Lichtman, 2015). Imaging the synapse with LM by using
newly engineered FPs tagged to synaptic proteins or targeted
to synaptic structures enables fine-resolution illumination of
synaptic anatomy and function in large neural circuits, possibly
in real-time. In this review, we describe recent FP-based
molecular tools for imaging individual synapses and synaptic
connectivity in the contexts of single- and dual component
synaptic detection. We also identify crucial technologies: gene
delivery of molecular synapse detector; tissue clearing for
whole-brain imaging; and computational analysis, whose parallel
development has potential to bridge synaptic sensor engineering
and systems neuroscience. We end by proposing a scheme
of technological integration for synaptic neuroscience at the
systems level.

SINGLE COMPONENT SYNAPTIC
DETECTION

The discovery of green fluorescent protein (GFP) and its
derivatives revolutionized the visualization of biological
phenomena, including the individual synapse and its functions.
GFP and other FPs are relatively inert and small (27 kDa) and
can be used to tag synaptic proteins while minimally interfering
with their normal functions. In fact, the distribution, trafficking,
and physiological changes of synaptic proteins caused by neural
activity became evident in the last two decades, largely through
observations of synaptic proteins, such as synaptophysin (Li
and Murthy, 2001) vesicle-associated membrane protein 2
(VAMP2; Ahmari et al., 2000), postsynaptic density protein-95
(PSD-95; Nelson et al., 2013) calcium/calmodulin-dependent

kinase II (CaMKII; Shen et al., 2000), α-amino-hydroxy-5-
methyl-4-isoxazolepropionic acid receptor (AMPAR; Zamanillo
et al., 1999) and so forth, that had been tagged with FPs.
Recently, sophisticated molecular engineering has allowed even
more precise and detailed visualization of synaptic structure,
composition, and physiology (Chen et al., 2014; Fortin et al.,
2014; Figure 1, Table 1).

pH-Sensitive FPs for Visualizing Vesicle
Release: pHluorin, pHTomato, and pHuji
Although previous, straightforward, FP-based detection of
synaptic distribution revealed many important details of synaptic
physiology, synaptic vesicle release/recycling and neural activity-
driven changes in membrane-bound synaptic proteins are
difficult to be detected by regular FP-tagging. Special sensors
of vesicle secretion and neurotransmission have been developed
by linking vesicle membrane proteins with pH-sensitive mutants
of GFP called pHlourin (Miesenböck et al., 1998). The
fluorescence intensity of pHluorin largely depends on the
pH of its biochemical environment: in acidic environments
with pH below 6.5, pHluorin is mostly nonfluorescent in
480 nm of light illumination, but becomes highly fluorescent
in neutral environments with pH around 7.4. This special
feature of pHluorin was achieved by several mutations on
residues important for the proton-relay of tyrosine 66 in the
chromophore (S147D, N149Q, T161I, S202F, and Q204T). These
amino acid substitutions, which set the pKa of pHluorin to
around 7.0, can facilitate the pH-dependent switching of the
electrostatic environment of the chromophore, allowing the pH-
dependent changes in fluorescent intensity (Sankaranarayanan
and Ryan, 2000). When pHluorin is fused to presynaptic
vesicle proteins such as VAMP2 (Miesenböck et al., 1998),
synaptophysin (Zhu et al., 2009), and vesicular glutamate
transporter (vGluT; Voglmaier et al., 2006), the release and
recycle of synaptic vesicles can be monitored as the pH inside
the synaptic vesicles (∼5.5) transitions to the pH of the
extracellular environment (∼7.4). Thus, by tracking changes
in pHluorin fluorescence intensity, one can detect real-time
presynaptic exocytosis in living, active neurons. Similarly,
postsynaptic endo-/exo-cytosis and related receptor dynamics
can be visualized by pHluorin-fused mGluRs, for instance
(Pelkey et al., 2007).

More recently, red pH-sensitive FPs such as pHTomato (Li
and Tsien, 2012) and pHuji (Shen et al., 2014) have been
developed, allowing for the simultaneous monitoring of multiple
synaptic activities when combined with the green GFP-based
sensors (e.g., GCaMP). pHTomato (pKa∼ 7.8) was derived from
mStrawberry by introducing six mutations (F41T, F83L, S182K,
I194K, V195T, and G196D). Synaptophysin-fused pHTomato
(sypHTomato) has been shown to be suitable for simultaneously
monitoring the fusion of synaptic vesicles and, when paired
with GCaMP3, postsynaptic Ca2+ changes in living neurons.
In addition, multiple synaptic events have been successfully
measured by using sophisticated combinations of these pH-
sensitive FP-fused synaptic proteins and spectrally distinct
variants of optogentic stimulators (ChR2-T2A-vGluT-pHlourin
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FIGURE 1 | Scheme of single component synapse detectors. (A) Graphical depiction of the conventional green fluorescent protein (GFP) tagging scheme and
summary of the expressed carrier-sensor construct. GFP (green circle) and other fluorescent proteins (FPs) are directly tagged to synaptic proteins in the presynaptic
terminal or postsynaptic spines. Major targets for tagging include presynaptic vesicle proteins (e.g., vesicle-associated membrane protein 2 (VAMP2) and
synaptophysin), postsynaptic receptors (e.g., α-amino-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, AMPAR) and postsynaptic density protein-95 (PSD-95).
(B) pH-sensitive FP mutants are fused to synaptic vesicle membrane proteins, such as VAMP2, to visualize vesicle secretion/recycling and neurotransmission. A
pH-sensitive GFP variant, pHluorin does not fluoresce (gray circle) when inside the acidic chemical environment of the synaptic vesicle, but becomes highly
fluorescent (green circle) when the vesicle is released and exposed to the neutral extracellular environment. (C) Inhibition of Synaptic Release with CALI (InSynC):
attached to target SNARE proteins, molecular actuators such as mini small singlet oxygen generator (miniSOG; light blue filled-in circle) selectively inactivate specific
synaptic proteins that regulate vesicle release and other synaptic events. When illuminated with blue light, miniSOG stimulates generation of reactive oxygen species
(small, dark blue filled-in circles), which then oxidizes susceptible amino acid residues in target vesicle proteins and deactivates protein functions. (D) TimeSTAMP
effectively tracks spatiotemporally controlled protein synthesis and trafficking in living neurons. In the presence of a membrane-permeable protease inhibitor, NS3
protease (gray oval) activity is inhibited, and Venus C-terminus (Venus CT) and Venus N-terminus (Venus NT) reconstitute as fluorescent Venus (yellow circle).
Reconstituted Venus accumulates in the postsynaptic spine, the trafficking destination of the fused PSD-95. When the protease inhibitor is present, however, NS3
protease cleaves the protease target sites (gray circles flanking NS3), preventing Venus reconstitution.

and VChR1-T2A-synpHTomato). However, the pH-sensitivity
of pHTomato is relatively low (3-fold change in pH 5.5–7.5).
Thus, a new red pH-sensitive FP, named pHuji, has been more
recently derived from mApple (Shaner et al., 2008) by including
a K163Y mutation, resulting in high pH sensitivity (20-fold
change in pH 5.5–7.5). The use of different colored pH-sensitive
FPs together with a Ca2+ indicator and/or a spectrally distinct
optogenetic modulator offers a new promising readout system
for complex, coordinated synaptic events.

Inhibition of Synaptic Release with CALI
(InSynC)
Beyondmerely visualizing the distributions and endo-/exocytosis
of synaptic proteins by tagging them with FPs and their pH-
sensitive variants, genetically encoded chromophore-assisted
light inactivation (CALI) has been developed to selectively
inactivate specific synaptic protein functions that regulate
synaptic events such as synaptic release (Lin et al., 2013). CALI
is based on light-induced generation of reactive oxygen and the
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consequent inactivation of nearby attached synaptic proteins.
Its original agents were synthetic chromophores for example
malachite green (Jay, 1988), fluorescein (Beck et al., 2002), FlAsH
(Marek and Davis, 2002), ReAsH (Tour et al., 2003), and eosin
(Takemoto et al., 2011) and FPs such as KillerRed (Bulina et al.,
2006). To precisely inhibit synaptic release with improved target
specificity and inactivation efficiency compared to these CALI
agents, inhibition of synaptic release with CALI (InSynC) has
been recently developed using a newly engineered flavoprotein
called mini small singlet oxygen generator (miniSOG), fused
with the SNARE proteins VAMP2 and synaptophysin (Lin
et al., 2013). miniSOG was originally derived from the light,
oxygen, and voltage 2 (LOV2) domain of phototropin, a
blue light photoreceptor (Shu et al., 2011). Under blue light
illumination, this photoreceptor binds to and excites flavin
mononucleotide (FMN), which then functions as an oxygen
generator in cells. miniSOG contains the single amino acid
substitution of FMN-binding residue Cys426 to Gly on the LOV2
domain, allowing for more efficient energy transfer to FMN,
and contains further mutations for enhanced brightness. When
illuminated by blue light, synaptic proteins can be selectively
inactivated by miniSOG-mediated oxidization of susceptible
residues such as tryptophan, tyrosine, histidine, cysteine, and
methionine. InSynC by miniSOG can selectively inhibit vesicle
release at individual synapses in vitro and in vivo thanks
to the high efficiency of its light-induced oxygen generation,
independence of exogenous cofactors, and small size (106
residues, 14 kDa; Lin et al., 2013). However, further engineering
is required for investigating the functional dynamics of synaptic
circuits with physiologically relevant temporal resolutions, as
inactivation by InSynC persists relatively long (∼1 h) after light
stimulation.

Time-Specific Tagging for the Age
Measurement of Proteins (TimeSTAMP)
Another new strategy beyond merely visualizing synaptic
proteins by tagging with FPs is time-specific tagging for
the age measurement of proteins (TimeSTAMP; Lin et al.,
2008). As spatiotemporally controlled protein synthesis
and trafficking are critical for synaptogenesis, synaptic
connectivity, and long-lasting changes in synapses, TimeSTAMP
is beneficial for tracking important, newly synthesized synaptic
proteins such as PSD-95 and CaMKII in living neurons.
TimeSTAMP is a drug-controllable, time-specific tagging
strategy based on the hepatitis C virus NS3 protease and
its cell-permeable inhibitor BILN-2061. PSD-95-GFP, for
example, was fused to NS3 protease flanked by NS4A/B
target sites and the C-terminal HA tag (PSD-95-GFP-TS-
HA). In the absence of the specific inhibitor BILN-2061,
NS3 protease cleaves the NS4A/B target sites allowing the
C-terminal HA-tag to be cleaved from PSD-95-GFP and
degraded; but drug application will allow the HA-tag to
be accumulated. This allows distinguishing between newly
and previously synthesized PSD-95 by measuring HA/GFP
signals at a time defined by the drug application. For
the TimeSTAMP strategy, the NS3 protease domain was

chosen because it is small (19 kDa) and monomeric, specific
to its substrate, and not cytotoxic, and most of all, NS3
shows high selectivity and efficiency of its cell-permeable
inhibitor.

Although the first version of TimeSTAMP has worked
successfully in primary hippocampal neurons to track PSD-
95 accumulation during synaptic growth, and in Drosophila
for whole-brain mapping of newly synthesized CaMKII,
it required post hoc immunostaining against epitope tags,
limiting the benefits of pulse-chase labeling through time.
Thus, TimeSTAMP2 has been introduced, replacing HA-
tag with split-fluorescence proteins (e.g., Yellow fluorescent
protein, YFP; Orange fluorescent protein, OFP). In fluorescent
TimeSTAMP2, for instance, Venus yellow fluorescent protein
is separated by an NS3 domain flanked by NS4A/B target
sites into VenusNT (1-158 aa) and VenusCT (159-238 aa)
for drug-dependent fluorescence. In the absence of BILN-
2061, VenusCT is cleaved and degraded by the active NS
domain resulting in no yellow fluorescence, while VenusNT
and CT are reconstituted as fluorescent forms after drug
application. This allows optical pulse labeling of synaptic proteins
such as PSD-95 and Neuroligin with a drug-defined temporal
resolution. Additionally, photo-oxidizing TimeSTAMP using
miniSOG inserted into TS:YFP can be used to visualize new
proteins at an EM-based ultrastructural level (Butko et al.,
2012).

DUAL COMPONENT SYNAPTIC
DETECTION

Thus far, we have described methods for detecting
synapses by labeling single components, either pre- or
post-synaptic. Although these single-component tools
allow for detecting, measuring, and manipulating synaptic
structures and activities, they do not address the critical
fact that synapses are bilateral microstructures involving
both presynaptic terminal and postsynaptic density. For
reliable synapse detection, therefore, several recent studies
introduced new methods for labeling synaptic interactions
between pre- and post-synaptic components, such as
using split-FPs or enzymes to label neurexin-neuroligin
interactions. Here we review dual-component methods using
handshaking-like transmembrane molecular interaction
across the synaptic cleft, with particular attention to GFP
Reconstitution Across Synaptic Partners (GRASP; Figure 2,
Table 1).

Mammalian GFP Reconstitution Across
Synaptic Partners (mGRASP)
To detect particular synaptic connections with LM, the
Mammalian GFP Reconstitution Across Synaptic Partners
(mGRASP) technique takes advantage of the complementarity
of two non-fluorescent split-GFP fragments, each of which is
tethered specifically to the pre- and postsynaptic membrane,
respectively (Kim et al., 2012). When two neurons, each
expressing one of the fragments, are closely opposed across a
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FIGURE 2 | Scheme of dual component synapse detectors. (A) GFP reconstitution-dependent molecular tools detect pre- and postsynaptic membrane
apposition through the reconstitution of spGFP fragments each attached to the extracellular ends of membrane protein carriers. Synapse-targeted GFP
Reconstitution Across Synaptic Partners (GRASP) utilizes a presynaptic component of spGFP11 (spG11, circular wedge) linked to a CD4-neurexin-1β C-terminus
(NxCT) fusion through flexible peptide linkers (gray zigzag), and a postsynaptic component of spGFP1-10 (spG1-10) and truncated neuroligin-1 (tNg) connected with
a linker. SpG11 and spG1-10 unite at synapses, not random membrane contacts. In activity-dependent X-RASP the presynaptic split-XFP1-10 (spX1-10) is fused to
SNARE proteins such as synaptobrevin (syb), and unites with CD4-bound spG11 when presynaptic activity triggers vesicle release. (B) Neurexin (Nx)-neuroligin (Ng)
interaction-dependent molecular tools detect individual synapses through fluorescent protein (FP)-based (SynView) and enzymatic reaction-based
(Interaction-Dependent Probe Incorporation Mediated by Enzymes, ID-PRIME) direct visualization of Nx-Ng interaction. In SynView, spG11 is inserted between the
esterase and proximal extracellular domain of Ng, and spG1-10 in the middle of the LNS domain of Nx. GFP reconstitutes when Nx and Ng unites. ID-PRIME uses
the identical set of synaptic protein carriers, but tandem LAP tags (3xLAP) and lipoic acid ligase A (LplA) are attached to C-terminus of Ng esterase domain and Nx
LNS domain, respectively. Nx-Ng interaction initiates LplA-mediated lipoic acid tagging to 3xLAP, and signals useful for imaging originate from antibody-fluorophore
conjugates.

synaptic cleft, the split fragments are reconstituted as fluorescent
GFP in that location. This dual component synapse detection
bypasses the Abbe’s diffraction limit and allows relatively
rapid and accurate synapse mapping with LM. This method
takes advantage of the fast folding kinetics and stability after
maturation of superfolder GFP (Pédelacq et al., 2006), split
into two fragments, namely spGFP1-10 (first 214 residues
comprising ten β barrels) and spGFP11 (16 residues, 11th β-
barrel strand). The GRASP technique was initially implemented
in C. elegans (Feinberg et al., 2008; Park et al., 2011) and
later in Drosophila (Gordon and Scott, 2009; Fan et al., 2013;
Gorostiza et al., 2014). In the original GRASP constructs,
membrane carriers (human CD4) for split-GFP fragments were
not synapse-specific—fluorescence could arise wherever any
membranes expressing fragment pairs were closely apposed.
This became a critical issue for mammalian synapse detection
because the mammalian nervous system contains much more
compactly intermingled neurites than the invertebrate nervous
system.

In a previous study, we engineered and successfully applied
mGRASP for mapping fine-scale synaptic connectivity in
the mouse brain (Kim et al., 2012). The primary features of
mGRASP include targeting specific synapses, and matching the

approximately 20 nm-wide synaptic cleft without gross changes
in endogenous synaptic organization and physiology. Based
on published sequences from NCBI, we generated synapse-
specific chimeric carriers. Both the pre- and postsynaptic
mGRASP components share a common six-subcomponent
framework: (1) a signal peptide; (2) a split-GFP fragment;
(3) an extracellular domain; (4) a transmembrane domain;
(5) an intracellular domain; and (6) a fluorescent protein for
neurite and soma visualization. The presynaptic mGRASP
component consists of the signal peptide of nematode β-
integrin (PAT-3, residues 1–29), GFP β-strand 11 (spGFP11,
16 residues), two flexible GGGGS linkers, the extracellular
and transmembrane domains of human CD4-2 (residues
25–242). Rat neurexin-1β (residues 414–468) containing
the PDZ-binding motif constitutes the intracellular domain
for maintenance of correct localization at the presynaptic
site. mCerulean is fused to the intracellular end of the
presynaptic mGRASP to visualize axonal expression. The
postsynaptic mGRASP component is based primarily on
mouse neuroligin-1, which interacts with presynaptic adhesion
proteins including β-neurexins, and mediates the formation
and maintenance of synapses between neurons. To prevent
nonspecific synaptogenesis through interactions with its
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endogenous partner, neurexin, the extracellular esterase
domain of neuroligin is deleted in the main skeleton of the
postsynaptic mGRASP. Similar to presynaptic mGRASP,
post-mGRASP is composed a signal peptide from the
esterase-truncated neuroligin-1 (residues 1–49), GFP β-
strand 1-10 (spGFP1-10, 648 residues), the extracellular,
transmembrane, and intracellular regions of neuroligin (71,
19, and 127 residues, respectively), followed by the self-
cleavable 2A peptide-fused dTomato for visualizing postsynaptic
neuronal morphology. This optimized mGRASP enabled the
comprehensive synaptic connectivity mapping of hippocampal
CA3-CA1 and identified spatially structured patterns of synaptic
connectivity (Druckmann et al., 2014). It is important to note
that brain-wide synapse detection for comprehensive fine-scale
mapping becomes achievable not only by advanced molecular
engineering to label the synapse such as mGRASP, but also by
appropriately engineered computational analysis (Feng et al.,
2012, 2015).

Current GRASP technology has proved to be a tool suitable
for rapid and accurate mapping of synaptic connectivity in
nematode (Feinberg et al., 2008), fruit fly (Gordon and Scott,
2009), and mouse (Kim et al., 2012; Druckmann et al., 2014). Yet,
further improvements to GRASP such as multi-colored FPs for
analyzing convergent synaptic inputs, various carriers for neural
activities, and tailored computational analyses will provide a clear
overview of complex synaptic connectivity and its operation. We
next discuss recent efforts in these directions.

Engineering FPs for Multi-Color GRASP
A neuron oftentimes receives multiple inputs from different
presynaptic neurons of distinct cell types and/or various
brain areas. For comprehensive mapping of complex synaptic
circuits, multiple synaptic detection is beneficial, as described
earlier in the section describing pH-sensitive FPs. The
current version of GRASP restricts convergent synaptic
mapping because it relies on only a single pair of spGFP
fragments such that spectral overlap of its signals hinders
simultaneous imaging with previously well-established GFP-
based tools such as GCaMP. Therefore, the multi-color
GRASP (XRASP) components have been developed recently
(Macpherson et al., 2015; Li et al., 2016). Given that Cyan
fluorescent protein (CFP), GFP, and YFP have identical
structures except for several residues in the chromophore
located in beta barrels of 1-10, C-RASP and Y-RASP were
generated by color-shifting mutations in spGFP1-10 (Y66W,
S72A, F145A∗, N146I, and H148D for C-RASP, ∗additional
mutation in Li et al., 2016, T65G, V68L, S72A and T203Y
for Y-RASP) paired with the unaltered spGFP11 (Li et al.,
2016). Multi-color GRASP (XRASP) was tested in vivo in
several circuits, including the Kenyon cells of the mushroom
body, and projection neurons of the thermosensory and
olfactory systems in the fruit fly. Reconstructed CFP and YFP
signals showed minimal spectral overlap with the GRASP
emission and excitation spectra. Extended choices of multi-
color GRASP (XRASP) will allow simultaneous imaging of
multiple, convergent connectivity and functional activity.
However, more red-shifted XRASP is required for in vivo

2-photon imaging together with Ca2+ indicators and for
fine-scale synapse labeling from multiple inputs within the
single neuron, because it has proved difficult to separate
CFP/GFP/YFP signals in the complex mammalian nerve
system.

Engineering Carriers
for Activity-Dependent GRASP
To understand functional organizations underlying complex
brain functions that go beyond structural connectivity patterns,
it will be essential to identify active synaptic connectivity at
defined times and conditions. For the activity-dependent GRASP
system, synaptobrevin (syb), a key constituent of synaptic
vesicle membrane, was used as a synaptic carrier instead of
constantly membrane-targeted carriers in the previous GRASP
systems. The straightforward fusion of syb and spGFP1-10
(syb:spGFP1-10) with the original CD4:spGFP11 can together
form activity-dependent GRASP, called the syb:GRASP system.
Given activity-dependent interactions of syb with SNARE-SM
protein complex triggering synaptic vesicle release, syb:GRASP
showed preferential labeling of active synapses as a boost of
GRASP fluorescence signals in well-studied thermosensory and
olfactory circuits in the fruit fly (Macpherson et al., 2015). This
new strategy for mapping active synaptic connectivity might
expedite the mapping of functional connectivity at the synapse
level in a way previously achieved only by difficult combinations
of Ca2+ imaging and exhaustive EM reconstruction (Bock
et al., 2011; Briggman et al., 2011). Yet, these new techniques
raise basic concerns about possible side effects caused by
the overexpression of key synaptic vesicle proteins, and need
further optimization before they can be applied to mammalian
networks.

FP- and Enzyme-Based Visualization
of Neuroligin-Neurexin Interaction
An alternative way to detect synapses has been suggested
by imaging neurexin-neuroligin interactions. Presynaptic
neurexin and postsynaptic neurolign are transmembrane
adhesion proteins and their interaction at the synaptic
cleft has been believed to be a key process for synaptic
formation, maintenance, and connectivity (Li and Sheng,
2003; Graf et al., 2004; Chen et al., 2010; Krueger et al.,
2012). Therefore, it is thought that identifying sites of
neurexin-neuroligin interactions could provide selective
visualization of synapses. Similar to the GRASP approaches,
this method, based on neuroligin-neurexin interactions using
splitGFP, is called SynView. It is composed of spGFP1-
10-inserted neurexin-1β between residues N275-D276 or
A200-G201 for the presynaptic component, and the split-
GFP11-inserted neuroligin-1 in the C-terminal end of the
extracellular esterase (between Q641-Y642) for the postsynaptic
component (Tsetsenis et al., 2014). Another method for
visualizing neuroligin-neurexin interactions is based on
mutated bacterial lipoic acid ligase (LpIA) and lipoic acid
acceptor peptide (LAP) tags (Uttamapinant et al., 2010, 2012),
and is called Interaction-Dependent Probe Incorporation
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Mediated by Enzymes (ID-PRIME; Liu et al., 2013). Using
the same principle of SynView, ID-PRIME was designed to
detect trans-synaptic contacts of neurexin and neuroligin
enzymatically using lipoic acid. These two methods successfully
imaged the direct interactions of neurexin-neuroligin synaptic
adhesive molecules. However, these methods seem restricted
to particular investigations of the dynamics of neurexin-
neuroligin, rather general synaptic mapping. In addition,
it is known that overexpressing these synaptic adhesion
molecules causes substantial structural and physiological
perturbations of normal synaptic compartments and cleft
structures.

BRIDGING TOOLS BETWEEN
MOLECULAR SYNAPSE DETECTORS
AND BRAIN-WIDE SYNAPSE MAPPING

Thus far, we have described methods for detecting synapses
focusing on molecular engineering. To exert these genetically
encoded synapse detectors to brain-wide synaptic mapping
at the system level, there need to be critically partnered
technologies such as gene delivery, advanced imaging, and digital
representation platform that are appropriate for neural system
(Figure 3).

Gene Delivery System for Synapse
Detectors in the Mouse Brain
Improving the targeting specificity for types of cells and
scaling up the scope of synaptic sensor delivery are among
the crucial initial steps needed to expand single-synapse
level analysis to systems level neuroscience. Gene delivery
technologies, particularly for the nervous system, have
developed at a breathtaking pace over the past decades,
establishing methodologies that can be classified into
two main categories: germ line manipulation and viral
injection.

Genetic Manipulation-Based Gene Delivery
To avoid side effects that can sometimes be caused by the
overexpression of FP-tagged synaptic proteins, and to mimic
expression patterns of endogenous proteins, gene knock-
in (KI) technology has been used to substitute wild-type
genes with FP-tagged copies. For synaptic detectors based
on universal synaptic proteins such as PSD-95, however,
this standard KI method leads to expression of FP-tagged
synapse detectors globally, throughout the brain, which makes
it difficult to acquire high resolution images of a particular
cell type. Therefore, a recent study introduced a conditional
KI strategy called endogenous labeling via exon duplication
(ENABLED; Fortin et al., 2014). In the ENABLED strategy,
a knocked-in gene cassette is composed of the floxed last
exon and 3’UTR of PSD-95 followed by its mVenus-tagged
duplicated last exon and 3’UTR. The FP-tagged duplicated
gene will be selectively expressed only in Cre-expressing
neurons because its translation is designed to be blocked by
translation stop signals in the endogenous copy in the absence

of Cre recombinase. When this PSD-95-ENABLED mouse
line is crossed with a dopaminergic cell-type specific DAT-
Cre line, for instance, PSD-95mVenus is expressed specifically
in dopaminergic neurons. PSD-95-ENABLED was shown to
functionally replace wild-type PSD-95 and to sparsely label
a particular cell-type, allowing insights into the detailed
distribution and dynamics of synapses. In applying this
strategy to a wide variety of synaptic proteins, one concern
with using the ENABLED strategy is that it is limited to
synaptic proteins that are compatible with C-terminal FP-
tagging.

Thanks to incredibly fast developments and improvements in
genetic manipulation technologies such as clustered regularly-
interspaced short palindromic repeats (CRISPR) and effector
nucleases Cas system (Cong et al., 2013; Wang et al., 2013;
Fujii et al., 2014; Aida et al., 2015), the generation of synapse
detector KI mouse lines is becoming time- and cost-efficient, and
is dramatically facilitating synapse mapping.

Viral System-Based Gene Delivery
Spatially targeted gene delivery into the mature brain can
be achieved through stereotactic microinjection of viral
vectors expressing FP-tagged proteins. Diverse virus families
have been recruited into this effort: Retroviridae (e.g.,
lentivirus), Parvoviridae (e.g., rAAV), Adenoviridae (e.g.,
canine adenovirus), and Alphaviridae (e.g., sindbis virus),
including some that cross the synapse, such as Rhabdoviridae
(e.g., rabies virus) and Herpesviridae (e.g., HSV-1 and
pseudorabies virus; Nassi et al., 2015). Because of their low
cytotoxicity and stable expression, lentiviruses and rAAVs
are the most widely used viral vectors in neuroanatomical
tracing studies and human clinical trials testing gene therapy.
In fact, spatially restricted injection of Cre-(in)dependent
rAAV vectors have been used for mGRASP-assisted synaptic
mapping.

In parallel, ongoing efforts include searching for and
engineering new types of virus to allow transduction efficiency/
specificity and retrograde infection. Canine adenovirus has
drawn attention because of its strong retrograde transport
capability and relatively large payload size (∼30 kb); further,
several successful applications of Canine adenovirus in themouse
brain suggest a powerful complement to the lentivirus and rAAV
(Bru et al., 2010; Ekstrand et al., 2014; Junyent and Kremer,
2015; Schwarz et al., 2015). Additionally, systemic delivery of
viral vectors in animal models has proved to be effective and
safe for various serotypes of AAV (Foust et al., 2009; Bevan
et al., 2011; Gray et al., 2011; Yang et al., 2014; Deverman et al.,
2016).

Advanced Brain-Wide Imaging and Digital
Representation of Synaptic Detectors
Once FP-based synaptic detectors are introduced into the
brain as described above, appropriate brain-wide imaging and
digital representation technologies are necessary to map synaptic
connectivity. Happily, there has been remarkable progress
in tissue clearing methodology such as BABB (Dodt et al.,

Frontiers in Synaptic Neuroscience | www.frontiersin.org 8 June 2016 | Volume 8 | Article 16

http://www.frontiersin.org/Synaptic_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Synaptic_Neuroscience/archive


Lee et al. Advanced Fluorescence Protein-Based Synapse-Detectors

FIGURE 3 | Convergence of technologies for synaptic neuroscience at the systems level. (A) Synapse-detector genes can be delivered to target neural
components through germline manipulation-based and viral system-based methods. Exogenous genetic materials can be effectively introduced to the germline with
high expression specificity via Cre-mediated conditional knock-in (KI) strategies and the homology directed repair (HDR) pathway of the clustered
regularly-interspaced short palindromic repeats (CRISPR)/Cas system. In a Cre-mediated conditional KI strategy called endogenous labeling via exon duplication
(ENABLED), a KI cassette including duplicates of exons 19 and 20 and the 3’UTR of PSD-95 is generated. The first duplicate is flanked by head-to-tail oriented loxP
sites (black arrows), while the second duplicate has monovalent Venus (mV) inserted between exon 20 and the 3’UTR. The two duplicate sequences, along with
exon 18, are flanked by a set of homology arms (h arm), which mediates KI cassette insertion through homologous recombination. Cre-lox recombination excises the
first duplicate containing translation stop signals and polyadenylation sequences, and activates mV expression only in Cre-expressing neurons. Transient expression
of sensor genes using viral vectors benefits from efforts to engineer expression through Cre-dependent expression cassettes e.g., Cre-dependent Mammalian
GRASP (mGRASP) constructs and newly engineered serotypes that have more selective tropism and transduction efficiency (e.g., AAV-PHP.B). Local tissue or
systemic injection of such viral systems can lead to flexible, versatile gene delivery in mature organisms. (B) Combination of light-favoring brain clearing, whole-brain
imaging, and computational techniques for three-dimensional synapse mapping enables single-synapse level analysis of synaptic profiles across the whole brain.
Further improvements in lipid extraction, refractive index matching, advanced light-sheet microscopy, and large-scale data processing and 3D reference space
generation will accelerate systems neuroscience at the synaptic scale.

2007), CUBIC (Susaki et al., 2014) 3DISCO (Ertürk et al.,
2012), immunolabeling-enabled three-dimensional imaging of
solvent-cleared organs (iDISCO; Renier et al., 2014), SeeDB
(Ke et al., 2013) and CLARITY (Chung et al., 2013; Tomer
et al., 2014) that are needed to prepare the intact brain
for imaging while avoiding distortions caused by physical

sectioning. These new clearing techniques, together with
advanced optical methods such as fluorescent selective plane
illumination microscopy (fSPIM; Huisken et al., 2004), will
allow high-throughput whole brain imaging. Also, once images
are acquired, digital representation programs are necessary
to reliably extract synaptic wiring information from the
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images, and to bring data from different sections and animals
into register with one another (Johnson et al., 2010; Oh
et al., 2014). Improvements in this software will be greatly
beneficial.

In our view, new clearing methods, optics, and tailored
computational analysis platforms together with advanced
synaptic detectors such as mGRASP are very promising
developments for the complete mapping of mammalian synaptic
connectivity.

CONCLUSION AND PERSPECTIVE

Here we reviewed new FP-based synapse detection techniques,
which are useful for rapidly imaging individual synapses and
synaptic connectivity in the whole brain with LM. Recent
technical developments have allowed a focus of neuroscience to
move from individual synapses to ensemble interactions among
neurons of various cell types throughmultiple synaptic pathways.
Comprehensively mapping individual synapses in the whole

brain will provide firm grounds for further anatomical and
functional studies and such mapping is essential for analyzing
large-scale information processing phenomena. We believe that
rapid, scalable synaptic cartography with the triad of single-
synapse resolution, brain-wide scope, and cell-type-specific
connectivity requires a synergistic combination of advanced
technologies, and that FP-based neurosensors are the key to this
grand integrative project.
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