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Abstract: Endophytes represent microorganisms residing within plant tissues without typically 

causing any adverse effect to the plants for considerable part of their life cycle and are primarily 

known for their beneficial role to their host-plant. These microorganisms can in vitro synthesize 

secondary metabolites similar to metabolites produced in vivo by their host plants. If microorganisms 

are isolated from certain plants, there is undoubtedly a strong possibility of obtaining beneficial 

endophytes strains producing host-specific secondary metabolites for their potential applications in 

sustainable agriculture, pharmaceuticals and other industrial sectors. Few products derived from 

endophytes are being used for cultivating resilient crops and developing non-toxic feeds for livestock. 

Our better understanding of the complex relationship between endophytes and their host will 

immensely improve the possibility to explore their unlimited functionalities. Successful production 

of host-secondary metabolites by endophytes at commercial scale might progressively eliminate our 

direct dependence on high-valued vulnerable plants, thus paving a viable way for utilizing plant 

resources in a sustainable way. 
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1. Importance of medicinal plants  

Different types of microbial species as symbionts of a plant, living most of their lifetime within 

the tissues showing no symptoms, are recognized as endophytes [1]. Normally plants have always 

been a primary source of food and medicine since time immemorial. Medicinal plants have always 

remained a primary source for treating common ailments and diseases in some parts of the world 

lacking basic healthcare facilities. Several allopathic drugs are either transformed or derived directly 

from plant parts thus putting pressure on already depleting plant resources. Alternative source of 

some of the metabolites commonly derived from plants would eventually reduce our dependence on 

plant-based bio-resources. The herbal medicines derived from plants have been well documented 

since ancient civilizations of India, Egypt, China, Central Asia, Greece, etc. These civilizations, over 

several centuries, have played a considerable role in exploring and reporting beneficial properties of 

diverse group of plant species [2–4]. Medicinal plants and their derivatives remain a major source of 

medicine for regular ailments in developing countries as they are reasonably priced and easily 

accessible [5].  

Last few decades have again received a considerable interest towards the search for unique 

metabolites from natural sources [6]. Several components of drugs are still derived directly from 

plant parts while few others are transformed from the molecules obtained from various plants. Even 

after exploring for natural compounds all these years, plants continue to hold treasure house of 

unknown metabolites [7]. Demand for Ayurvedic and Chinese herbal medicines are very high due to 

inadequate facilities for allopathic treatment and poor healthcare system in these regions [8]. 

About 70% of people across the globe continue to rely on herbal medicines as remedies and for 

treating numerous diseases [9]. There is a considerable growth in consumption of medicines derived 

from plants even in Western and European countries [10]. Herbal products occupy fair share in 

overall drug market across the globe which will continue to grow steadily [11,12]. Medicinal plants 

continue to hold a significant place in various therapeutics and health care systems leading to 

massive demand for plant-based bio-resources [13]. 

2. Characteristics of endophytes 

The microorganisms such as fungi, bacteria including actinomycetes and viruses that reside 

within plant tissues are known as endophytes [14]. The endophytes have been classified as true 

endophytes or transient endophytes depending upon their diversity, biological nature, classification 

and method of transmissions [15]. Endophytes were further classified by Rodriguez et. al. into 

clavicipitaceous (class 1) and non-clavicipitaceous (classes 2, 3 & 4) based upon the narrow or broad 

range of hosts, types of tissues colonized, pattern of colonization in plants that is either extensive or 

limited, in planta bio-diversity that could be high, low or unknown, vertical or horizontal types of 

transmission through different generations and habitat or non-habitat adapted fitness benefits. 

Tolerance to drought conditions and enhancement of growth are common non-habitat adapted 

benefits, irrespective of origin of habitat, whereas benefits of habitat adapted are specific to the 

habitat with selective pressures that include salinity, pH and temperatures [16]. 

Considerable attention in the extensive investigation of beneficial microorganisms from the 

plant tissues fully demonstrate their unique abilities to produce secondary metabolites of the host 

plant and collection of functionalities (Figure 1) with their possible applications in agriculture, 

pharmaceutical and industrial sectors [17–20]. Importance of endophytes came into light only after 

the demonstration of toxic syndrome in cattle caused by endophytes of pasture grasses [21,22]. 



177 

AIMS Microbiology                                                             Volume7, Issue 2, 175–199. 

Endophytes are abundant in nature and have been found in all those plant species that have been 

studied so far. These microorganisms share an obligate or facultative relationship with the plant 

while causing no harm to their host [23]. Endophytes have characteristic of producing bioactive 

compounds, as they have been isolated from the tissues of roots, leaves and stems of their host plant, 

which produce similar metabolites [24,25]. 

Identification of fungal endophytes has been carried out by studying the morphological 

characteristics after sporulation. However, classification of non-sporulating fungi is problematic and 

it is carried out through phylogenetic analyses of rDNA-ITS sequences after the amplification of DNA 

extracted from the fungal mycelia [26,27]. Similarly, phylogenetic analyses of the 16s sequences 

obtained after the amplification of rDNA would help to identify the bacterial endophytes [28]. 

 

 

Figure 1. Possible applications of metabolites and functionalities derived from 

endophytes in different sectors. 

3. Metabolites and activities of endophytes 

Microbial endophytes are well-known for their ability to produce a wide range of 

pharmacologically important compounds with enormous therapeutic potentials; which have been 

identified as antiviral, antifungal, antibacterial, antitumor and anticancer agents. A number of 

endophytes are prospective source of plant growth promoting factors, and plant hormones. They can 

synthesize compounds of applications in the field of agriculture, iron chelating agents, compounds 

with nematocidal, insecticidal activities and abiotic stress tolerant properties. Some endophytes have 

shown their ability to secrete wide range of extracellular enzymes, such as phosphatase enzyme to 
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convert insoluble phosphates to soluble form for its easy assimilation by plants. Endophytes produce 

molecules suitable for the production of bio-fuels and degrade complex organic and inorganic 

substances with suitable use in industrial sectors. The useful properties of endophytes are listed 

below with their potential significance in respective sectors. 

3.1. Potential significance of endophytes with respect to agriculture 

Published work state that endophytes are definitely an excellent source of metabolites and 

desired functions that could prove to be beneficial in organic farming system. Some of the 

endophytes could be used as bio-pesticides against phytopathogens due to their antimicrobial, 

nematocidal and insecticidal qualities. 

3.1.1. Pesticidal properties of endophytes 

The extracts from a perennial grass native to most of Europe Phleum pratense, demonstrated 

myco-toxic properties, which were secreted by a systemic grass symbiont fungal endophyte Epichloe 

typhina. The antifungal properties of the extracts were detected against Cladosporium herbarum [29]. 

A strain of fungus, L1930, obtained from Larix laricina displayed insecticidal property against larvae 

of spruce budworm. Chitinase, known to degrade chitin polymers that are essential part of a fungal 

cell wall, was produced by bacteria, an endophyte of Sinapis arvensis. The bacterial endophyte was 

identified as Bacillus cereus strain [30] and was known to play a defensive role against a 

phytopathogen Rhizoctonia solani [31]. 

Strain of Neotyphodium sp. (AR601) producing large quantities of alkaloids such as loline and 

ovaline inoculated into a cultivar ‘Jackal’ of turf tall fescue have shown birds deterring ability [32]. 

Several endophytes have consistently shown to induce effective resistance in plants against common 

phytopathogens, by producing proteins related to pathogenesis. Fungal endophytes found from the 

leaves of trees typically growing in Indian states of Western Ghats, and Tamil Nadu, were able to 

secrete chitinase and chitosanase, which could increase defenses in host plant against phytopathogens, 

by initiating host defenses and increasing resistance [33,34]. 

3.1.2. Plant growth promotion by endophytes 

Endophytes have been identified to solubilize phosphates, produce siderophores, secrete plant 

growth promoting factors and increase soil nutrition by degrading complex organic molecules. It was 

observed that ericoid plants were able to thrive in extreme conditions due to the presence of an 

endophyte, Hymenoscyphus ericae, that produced several enzymes along with phosphate 

solubilization properties [35]. Lu et al isolated Colletotrichum sp. B501 from the healthy stems of 

Artemisia annua L, secreted IAA and 3β-hydroxy-ergosta-5-ene, these compounds that showed 

properties for plant growth [36]. The production of a range of factors and plant hormones have been 

reported from both fungal and bacterial endophytes [37–41]. Some endophytes have been found to 

increase tolerance of plants in soils contaminated with heavy metals [39,42,43]. In vitro investigation 

of endophyte-plant interaction in Echinacea purpurea demonstrated that colonization potential of 

bacterial strains belonging to Pseudomonas and Arthrobacter genus were tissue specific in host 

plants from which they were originally obtained but did not show similar specificity in non-host 

plants [44]. Further, plant growth promotion (PGP) was observed in inoculated plants due to the 

secretion of Indoleacetic acid by endophytic bacteria. Physiology of plants were influenced by 
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compounds secreted by endophytes and plant metabolites, in turn, they regulated the growth of 

endophytes. Similarly, endophytic strains of Bacillus sp. isolated from Thymus vulgaris 

demonstrated plant growth promoting traits in Solanum lycopersicum L under salt stress along with 

showing antagonistic activity against Fusarium oxysporum and reduced the antioxidant stress on 

plants [45]. Antagonistic properties against human pathogens were observed in cultivable bacteria 

obtained from different segments viz. roots, stem, leaf and flower of Origanum vulgare L [46]. 

Pseudomonas and Bacillus were the most represented genera of endophytes in Lavandula dentata 

that demonstrated multiple PGP traits [47]. All these aspects make these endophytes a potential 

source of bio-fertilizer, bio-pesticide, plant growth promoter and maintain overall growth and 

development of the plants. 

Some of the bacterial and fungal endophytes and their potential applications in agriculture are 

listed in Table 1 (1.1 and 1.2).  

3.2. Potential significance of endophytes with respect to pharmaceuticals  

Products derived from natural sources are a major area of research for discovering the range of 

their functions, that could be used in pharmaceutical industries [66,67]. Microorganism from 

different biotypes have repeatedly proven to be a constant source of secondary metabolites with 

novel and unique properties, which have found a major place in medical sector [68]. Since the 

discovery of endophytes and their ability to produce plant secondary metabolites and other bioactive 

compounds, several reports are available on mining of novel secondary metabolites [69,70]. 

Different saponins showing antagonism were extracted from Fusarium sp. PN8 isolated from Panax 

notogensing [71]. 

3.2.1. Antimicrobial properties of endophytes 

Some species of endophytes are known to produce antimicrobial compounds. Phomopsichalasin (11) 

an antimicrobial agent was extracted from Phomopsis sp., isolate no. MF6031 obtained from the 

twigs of Salix gracilostyla var. melanostachys. The compound 11 exhibited antibacterial activity 

against Bacillus subtilis, Salmonella gallinarium and Staphylococcus aureus with some amount of 

antagonism towards Candida tropicalis [72]. Findlay et al isolated an endophytic fungus from the 

needles of Larix laricina (Du Roi) K. Koch [53]. which produced 6-oxo-2-propenyl-3, 6-dihydro-

2H-pyran-3-yl ester (12) showing antibacterial activity against Vibrio salmonicida, S. aureus and 

Pseudomonas aeruginosa.  

In another study, a Colletotrichum sp. isolated from internal stem tissues of Artemisia annua L. 

showed antifungal, antibacterial and fungistatic properties. Its metabolites 6-isoprenylindole-3-

carboxylic acid (19), 3β,5α-dihydroxy-6β-phenylacetyloxy-ergosta-7,22-diene (21), 3β-hydroxy-

ergosta-5-ene (15), 3-oxo-ergosta-4,6,8(14),22-tetraene (16) and 3β,5α-dihydroxy-6β-acetoxy-

ergosta-7,22-diene (20) showed antibacterial activity against Gram-positive and Gram-negative 

bacteria. Compounds 15, 20 and 21 had antifungal properties, compound 15, 19 and 20 demonstrated 

fungistatic property [36]. Several other researchers have also studied endophytes possessing 

antimicrobial properties [71,73–77]. 
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Table 1.1 Bacterial endophytes with potential significance in agriculture sector. 

Sl. 

No. 

Functionalities Endophytes Properties Host plant Ref 

1. Chitinase Bacillus cereus strain 65 Antifungal Sinapis arvensis L. [31] 

2. Jasmonates, Abscisic acid and phosphate 

solubilization 

Bacillus sp., Achromobacter sp., 

Alcaligenes sp. 

Plant growth and development Helianthus annuus L. [38] 

3. Leu-surfactin (8) Bacillus mojavensis RRC 101 Biocontrol of Fusarium 

verticillioides 

Bacopa monnieri L. [48] 

4. Nitrogen fixation Rhizobium leguminosarum Biofertilization, increase rice 

yield. 

Oryza sativa L. [40] 

5. Phosphatases, Siderophore, 

Nitrogen fixation 

Rahnella sp. and Pseudomonas sp. Bio-fertilization Musa L. [49] 

6. Siderophore Streptomyces sp. GMKU 3100 Promote plant growth Oryza sativa L [50] 

7. Plant growth promoting factors Enterobacter sp. FD17 Enhancement of maize yield Zea mays L. [51] 

8. IAA, Siderophore, Phosphate solubilization Serratia sp., Enterobacter sp., 

Acinetobacter sp., Pseudomonas sp., 

Stenotrophomonas sp., Agrobacterium 

sp., Ochrobactrum sp., Bacillus sp. 

and Tetrathiobacter sp. 

Plant growth promotion in Zea 

mays. 

Zingiber officinale 

Roscoe 

[41] 
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Table 1.2. Fungal endophytes with potential significance in agriculture sector. 

Sl. 

No. 

Functionalities Endophytes Properties Host plant Ref 

Clavicipitaceous 

1. Ethyl trans-9.10-epoxy-ll-oxoundecanoate 

(1), Ethyl 9-oxononanoate (2), Ethyl azelate 

(3), Hydroxydihydrobovolide (4). 

Epichloe typhina Antifungal Phleum pratense L. [52]  

2. 8,1’,5’-trihydroxy-3’,4’ dihydro-1’H-

[2,4’]binapthalenyl-1,4,2’-trione (5) 

Fungus 

L1930 (unidentified) 

Insecticide Larix laricina (Du Roi) K. Koch [53] 

3. Phosphatase, Protease, Cellulase, 

Hemicellulases, Pectinolytic enzymes, 

Ligninase 

Hymenoscyphus ericae Phosphate solubilization, 

Protein breakdown, Cell 

wall lysis. 

Ericoid plants [35] 

4. Indole-3-acetic acid (IAA) and 

3β-hydroxy-ergosta-5-ene (6) 

Colletotrichum sp. B501 Plant growth hormone Artemisia annua L.  [36] 

5. Phosphate solubilization Penicillium sp. Bio-fertilization Triticum aestivum L. [54] 

6. 3- Hydroxypropionic acid (7) Phomopsis phaseoli and 

Melanconium betulinum 

strains 

Nematicidal Broad leaved tree of tropical 

rainforest, Betula pendula Roth. 

And Betula pubescens Ehrh. 

[55] 

7. Volatile organic compounds Muscodor albus Mycofumigation Cinnamomum zeylanicum Blume [56] 

8. Protease amylase, lipase, laccase, cellulase 

and pectinase. 

Various fungal species Enhance resistance of 

grasses to multiple stresses. 

Catharanthus roseus L. (G. Don.), 

Calophyllum inophyllum L., Bixa 

orellana L., and Alpinia calcarata. 

Roscoe 

[57] 

9. Gibberellins Penicillium sp. M5.A and 

Aspergillus sp.  M1.5 

Promote plant growth and 

development. 

Monochoria vaginalis (Burm.f.) C. 

Presl ex Kunth 

[37] 

Continued on next page 
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Sl. 

No. 

Functionalities Endophytes Properties Host plant Ref 

Clavicipitaceous 

10. Siderophore Phaeotheca sp. Fusarium sp., 

Penicillium sp. and Arthrinium 

sp. 

Antibacterial Pinus sylvestris L. and 

Rhododendron tomentosum 

Harmaja 

[58] 

11. 1,8-cineole (monoterpene) (9) Hypoxylon sp. Antimicrobial Persea indica (L.) Spreng. [59] 

12. Chitosanase, chitinase. Xylariaceae sp., Aureobasidium 

pullulans, Colletotrichum sp., 

Lasiodiplodia theobromae, 

Phomopsis sp. and Fusarium sp., 

Botrytis sp., Trichoderma sp., 

Alternaria sp., Nodulisporium 

gregarium, Nigrospora oryzae, 

Drechslera sp., Pithomyces sp. 

Sordaria sp. and Pestalotiopsis 

sp. 

Pathogenesis related 

proteins, phytoalexins and 

proteinase inhibitors in 

plants. Acts against 

phytophagous nematodes 

and plant pathogenic fungi. 

Leaves of different tree species of 

Western Ghats. 

[33] 

13. Phosphate solubilization Penicillium sp. Bio-fertilization Camellia sinensis (L.) Kuntze [60] 

14. Gibberellins and Indole acetic Acid Penicillium sp. LWL3 and 

Phoma glomerata LWL2 

Promote plant growth Cucumis sativus L. [61] 

15. Plant growth promoting factors Phoma sp. Bio-fertilizatzion Tinospora cordifolia (Thunb.) 

Miers and Calotropis procera 

(Aiton) W.T. Aiton 

[62]  

16. Trichodemin Trichoderma brevicompactum Antifungal against 

phytopathogens 

Allium sativum L. [63]  

Continued on next page 
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Sl. 

No. 

Functionalities Endophytes Properties Host plant Ref 

Clavicipitaceous 

17. Indole acetic acid, Gibberellins and Reactive 

oxygen species. 

Galactomyces geotrichum 

WLL1 

Promote growth of plants in 

heavy metal contaminated 

soil. 

Trapa japonica Flerov [42]  

18. Not identified (ethyl acetate extract) Aspergillus sp. and 

Emericella sp. 

Insecticidal properties Rhizophora mucronata Lam. [64] 

19. Plant Growth promotion and Resistance to 

heavy metals 

Phialocephala fortinii, 

Rhizodermea veluwensis, 

and Rhizoscyphus sp. 

Growth enhancement, 

Nutrient uptake, Decrease 

Heavy metal concentration 

Clethra barbinervis Sieb. Et Zucc. [43] 

20. Not identified 

(ethyl acetate extract) 

Several fungal isolates 

belonging to Ascomycota and 

few Zygomycota. 

Antifungal properties 

against root rot pathogens. 

Panax notoginseng (Burkill) F. 

H. Chen ex C. Y. Wu & K. M. 

Feng 

[34]  

Non clavicipitaceous 

21. Indole Acetic Acid (IAA) Rhodotorula sp. and 

Rhodosporidium sp. 

Plant growth Populus L. [65] 

22. Plant growth promoting factors and reduce 

cadmium toxicity 

Piriformospora indica Enhance plant growth in 

cadmium toxic soil. 

Triticum aestivum L. [39] 
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3.2.2. Other medicinal properties of endophytes  

Few endophytes show the medicinal properties as anticancer and antitumor in their metabolites. 

An endophyte isolated from Taxus brevifolia Nutt., Taxomyces andreanae, was able to produce 

Taxol, the host secondary metabolite, in a broth culture medium [78]. Similarly, different metabolites 

with anticancer properties were obtained from the microbial species isolated from different plant 

species [79,80]. A metabolite, Hypericin, with anti-viral, antimicrobial and anti- inflammatory 

properties was produced from a microbial strain isolated from Hypericum perforatum L. [81]. 

Lovastatin was produced in significant amount by an endophyte Phomopsis vexans isolated from 

Solanum virginianum L. [82].  

The secondary metabolites and other functions from endophytes could have potential 

applications in therapeutics without causing damage to the respective plant species. The bacterial and 

fungal endophytes suitable for therapeutic purposes are listed in Table 2 (2.1 and 2.2). 

Table 2.1. Bacterial endophytes with potential significance in therapeutic sector. 

Sl. 

No. 

Functionalities/ 

Metabolites/Compounds 

Endophytes Properties Host plant Ref 

1. Xiamycin (62), methyl 

ester of Xiamycin (63) 

Streptomyce sp. 

GT2002/1503 

Antiviral Bruguiera 

gymnorrhiza 

(L.) Savigny 

[83] 

2 Agarwood Bacillus pumilus. Antimicrobial, 

Laxative, sedative, 

digestive, etc. 

Aquilaria species [84] 
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Table 2.2. Fungal endophytes with potential significance in therapeutic sector. 

Sl. 

No. 

Functionalities/Metabolites/Compounds Endophytes Properties Host plant Ref 

Clavicipitaceous 

1. Taxol (10) Taxomyces andreanae Antitumor Taxus brevifolia Nutt. [78] 

2. Phomopsichalasin (11) Phomopsis sp. isolate 

no. MF6031 

Antimicrobial Salix gracilostyla var. melanostachys [72] 

3. Cryptocandin (13) Cryptosporiopsis 

quercina 

Antimycotic Tvipterigeum wilfordii Hook. f. [85] 

4. 3β,5α,6β-trihydroxyergosta-7,22-diene (14), 3β-

hydroxy-ergosta-5-ene (15), 3-oxo-ergosta-4,6,8(14),22-

tetraene (16), 3β-hydroxy-5α,8α-epidioxy-ergosta-6,22-

diene (17), 3β-hydroxy-5α,8α-epidioxy-ergosta-

6,9(11),22-triene, 3-oxo-ergosta-4-ene (18), 6-

isoprenylindole-3-carboxylic acid (19), 3β,5α-

dihydroxy-6β-acetoxy-ergosta-7,22-diene (20) and 

3β,5α-dihydroxy-6β-phenylacetyloxy-ergosta-7,22-

diene (21). 

Colletotrichum sp. Antibacterial, antifungal 

and fungistatic. 

Artemisia annua L. 

 

 

[36] 

 

 

5. 7-butyl-6,8-dihydroxy- 3(R)-pent-11-enylisochroman-1-

one (22), 7-but-15-enyl-6,8-dihydroxy-3(R)-pent-11-

enylisochroman-1-one (23), 7-butyl-6,8-dihydroxy-

3(R)-pentylisochroman-1-one (24) 

Geotrichum sp. Ccre7 Antifungal, 

antituberculous and 

antimalarial 

Crassocephalum crepidioides 

(Benth.) S. Moore 

[74] 

6. Asperfumoid (25), Asperfumin (26), 

Monomethylsulochrin (27), Fumigaclavine C (28), 

Fumitremorgin C (29), Physcion (30), Helvolic acid 

(31), 5α,8α-epidioxy-ergosta-6,22-diene-3β-ol (32), 

Ergosta-4,22-diene-3β-ol (33), Ergosterol (34), Cyclo 

(Ala-Leu) (35) and Cyclo (Ala-Ile) (36). 

Aspergillus fumigates 

CY018 

Antimycotic Cynodon dactylon (L.) Pers. [73] 

Continued on next page  
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Sl. 

No. 

Functionalities/Metabolites/Compounds Endophytes Properties Host plant Ref 

Clavicipitaceous 

7. Brefeldin A (37) Cladosporium sp. Antimicrobial Quercus variabilis Blume [75] 

8. Ampelopyrone (38), macrosporin (39), 3-O-

methylalaternin (40), methyltriacetic lactone (41), 

citreoisocoumarin, macrosporin (42), 3-O-methylalaternin 

(43), desmethyldiaportino (44), 

desmethyldichlorodiaportin (45), ampelanol (46), 

altersolanol A (47), alterporriols D (48), alterporriols E 

(49) and altersolanol J (50). 

Ampelomyces sp. Cytotoxic and 

antimicrobial 

Urospermum picroides (L.) Scop. ex 

F.W. Schmidt 

[86] 

9. Paclitaxel (51) Fusarium solani Anticancer Taxus celebica (Warb.) H. L. Li [79] 

10. Usnic acid (52), Cercosporamide (53), Phomodione (54). Phoma sp. isolate No. 

2323 

Antibacterial Saurauia scaberrinae Hemsley [77]  

11. Phomopsin A (55), Phomopsin B (56), Phomopsin C (57), 

Cytosporone B (58), Cytosporone C (59) 

Phomopsis sp. ZSU-

H76 

Antifungal Excoecaria agallocha L. [87] 

12. Not identified Fusarium sp. DF2 Antimicrobial Taxus wallichiana Zucc. [88] 

13. Deoxypodophyllotoxin (61) Aspergillus fumigatus 

Fresenius 

Anticancer Juniperus communis L. Horstmann [80]  

14. Benquinol (64), Benquoine (65) Phomopsis sp. CMU-

LMA 

Antibacterial and 

cytotoxic 

Alpinia malaccensis 

(Burm. f.)  Roscoe 

[89] 

15. Terpene (66) Phomopsis sp. Antibacterial Allamanda cathartica L. [90] 

16. 8-octadecanone (67), 1-tetradecene (68), 8-pentadecanone 

(69), octylcyclohexane (70) and 10-nonadecanone (71). 

Fusarium solani Antimicrobial Taxus baccata L. [91] 

17. Emerimidine A (72), Emerimidine B (73), 

Emeriphenolicins A (74), Emeriphenolicins D (75), 

Aspernidine A (76), Aspernidine B (77), Austin (78), 

Austinol (79), Dehydroaustin (80), and 

Acetoxydehydroaustin (81) 

Emericella sp. (HK-ZJ) Antiviral Aegiceras corniculatum 

(L.) Blanco 

[92] 

Continued on next page  
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Sl. 

No. 

Functionalities/Metabolites/Compounds Endophytes Properties Host plant Ref 

Clavicipitaceous 

18. Guignardin A (82), Guignardin B (83), Guignardin C 

(84), Guignardin D (85), Guignardin E (86), 

Guignardin F (87), Palmarumycin C1 (88), BG1 (89) 

and JC1(90). 

Guignardia sp. KcF8 Antimicrobial, 

Cytotoxic, Protein 

inhibitor 

Kandelia candel (L.) Druce [93] 

19. Lovastatin (91) Phomopsis vexans Lower blood 

cholesterol 

Solanum xanthocarpum [82] 

20. Unknown Luteibacter sp. NORREL-

Li2 

Bio convert major 

ginsenosides into 

minor ginsenoside 

Platycodong randiflorum (Jacq.) A. 

DC. 

[94] 

21 Saponins Fusarium sp. PN8 and 

Aspergillus sp. PN17 

Antimicrobial Panax notoginseng 

(Burkill) F. H. Chen ex C. Y. Wu & 

K. M. Feng 

[71] 

Not identified 

22. Protocatechuic acid (92) and acropyrone (93). Fungal endophyte Antibacterial  Citrus jambhiri Lush. [76] 

23. Hypericin (60) INFU/Hp/KF/34B Antibiotic, antiviral, 

anti-inflammatory, 

seasonal effective 

disorder, relief from 

sinusitis 

Hypericum perforatum L. [81] 

24. 6-oxo-2-propenyl-3,6-dihydro-2H-pyran-3-yl ester 

(12) 

L1930 (unidentified) Antimicrobial Larix laricina (Du Roi) K. Koch [53] 
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Table 3.1. Bacterial endophytes with potential significance in industrial sectors. 

Sl. 

No. 
Functionalities Endophyte Properties Host plant Ref 

1. 
Pectinase 

 

Paenibacillus 

amylolyticus 
Pectin lyase Coffea Arabica L. [95] 

2. 
Thermostable α-

amylase 
Nocardiopsis sp. Starch degradation Pachyrhizus erosus L. [96] 

3. 
Thermostable 

glucoamylase 
Streptosporangium sp. Starch degradation Zea mays L. [97] 

4. Protease 
Bacillus halotolerans 

strain CT2 

Alkaline 

protease 

Solanum tuberosum 

L. 
[98] 

Table 3.2 Fungal endophytes with potential significance in industrial sectors. 

Sl. 

No. 

Functionalities Endophyte Properties Host plant Ref 

Clavicipitaceous 

1. Amylase, cellulase, 

xylanase and 

ligninase. 

Fusarium sp., 

Phomopsis sp. Phoma 

sp., Colletotrichum 

sp., 

Wood 

degradation 

Brucea javanica (L.) 

Merr. 

[99] 

2. Microbial oil and 

cellulase 

Phomopsis, 

Cephalosporium, 

Microsphaeropsis, 

and Nigrospora. 

Production of 

bio-fuel 

Taxus chinensis var. 

mairei Mast, Cupressus 

torulosa D. Don, 

Keteleeria davidiana 

varchienpeii, Sabina 

chinensis cv. Kaizuca and 

Keteleeria evelyniana 

Mast. 

[100] 

3. Myco-diesel Gliocladium roseum 

(NRRL 50072) 

Energy 

production 

and 

utilization 

Eucryphia cordifolia 

Cav. 

[101] 

4. 1,4-Cyclohexadi-

ene (94) 

Hypoxylon sp. Oxidizes to 

benzene 

(component 

of crude oil) 

Persea indica 

(L.) Spreng. 

[59] 

5. Polyurethanases Pestalotiopsis 

microspora E2712A 

Degrade 

polyester 

polyurethane 

Ecuadorian Amazonian 

plant 

[102] 

6. Lipase 

 

Candida guillermondi Synthesis of 

methyl oleate 

Ricinus communis L. [103] 

Continued on next page 
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3.3. Potential significance of endophytes in industries  

Microorganisms and their derivatives play a significant role in processing of substrate into 

several products for use in industrial sectors. There are many reports of enzymes being produced by 

endophytes isolated from different plant species. Enzymes like amylase, pectinase and lipases 

obtained from different endophytes have been known to hydrolyze starch, pectin and oils, 

respectively. Other enzymes include cellulases, xylanases, amylase, laccase, and proteases, which 

have application in various industrial sectors [98,104,106,107]. An endophyte, Nocardiopsis sp., 

Sl. 

No. 

Functionalities Endophyte Properties Host plant Ref 

Clavicipitaceous 

7. Amylase  Alternaria sp., Phoma 

sp., Nigrospora sp. 

Starch 

hydrolysis at 

alkaline pH 

and low 

temperature 

Eremophilia longifolia 

(R.Br.) F. Muell. 

[104]  

8. Bio-pigment Phoma sp. Bio-pigment 

production 

Clerodendrum viscosum 

L. 

[105] 

9. Xylanases Trichoderma 

harzianum 

Xylan 

degrading 

enzyme 

Sargassum wightii [106] 

10. Laccase Hormonema sp. 

and Pringsheimia 

smilacis 

Degrade 

Lignin 

Eucalyptus globules 

Labill. 

[107] 

11. Cellulase and 

Xylanase 

Acremonium sp. 

Aspergillus sp. 

Degrade 

cellulose and 

Xylan 

Memecylon excelsum 

Blume, Glochidion 

borneese Mull. Arg.) 

Boerl. 

[108] 

Non clavicipitaceous 

12. Lignocellulolytic 

enzymes 

Bjerkandera sp. Wood 

degradation 

Drimys winteri J. R. 

Forst. & G. 

Forst. and Prumnopitys 

andina (Poepp. 

ex Endl.) de Laub. 

[109] 

13. Microbial oil and 

cellulase 

Sclerocystis Production of 

bio-fuel 

Taxus chinensis var. 

mairei Mast, Cupressus 

torulosa D. Don, 

Keteleeria davidiana 

varchienpeii, Sabina 

chinensis cv. Kaizuca 

and Keteleeria 

evelyniana Mast. 

[100] 
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isolated from Pachyrhizus erosus L., was found to secrete a thermostable α-amylase, which is useful 

for starch degradation [96]. Similarly, Candida guillermondii from Ricinus communis L. produce 

lipase and helps in the synthesis of methyl oleate [103]. 

Some endophytes are also known to produce bio-fuels, as alternate source of conventional fuels. 

A fungal isolate, Hypoxylon sp. from Persea indica (L.) Spreng. was found to secrete 1,4-

Cyclohexadi-ene (94). The compound 94 readily oxidizes to benzene, which is a main component of 

crude oil [59]. In another work, an endophyte Gliocladium roseum (NRRL 50072) isolated from 

Eucryphia cordifolia Cav. produced a bio-fuel known as myco-diesel [101]. 

While some of the endophytes are known to degrade polyurethane which are of great value to 

the industrial sector [102], others are known to produce pigment suitable for use in food industry 

[105]. Bacterial and fungal endophytes with their ability to produce bioactive compounds with their 

potential applications in industries are listed in Table 3 (3.1 and 3.2). 

3.4. Understating the potential of endophytes through genome mining 

Some microorganisms are known to synthesize only a limited number of secondary metabolites 

(SMs) as compared to the ones estimated through genome mining [110]. SMs are synthesized 

through pathways that utilize multiple enzymes. Biosynthetic gene cluster (BGC) comprises set of 

genes that encode for proteins required during a pathway. Diverse methods could be employed to 

activate the cluster of genes that remain silent under in vitro conditions. The genome mining 

approach could reduce the time taken to identify the putative genes required for the synthesis of 

secondary metabolites [110]. The sequencing of genes have helped in the identification of genes 

related to SMs and enhanced the characterization process [111]. Nielsen and Nielsen have suggested 

three approaches for understanding the unknown BGCs that include targeted approach: where the 

similar BGCs are compared to form a probable BGCs, untargeted approach involves the use of 

different databases to mine for information and lastly through the use of metabolomics techniques [112]. 

Wang et al. [113] developed bacteriophage recombinases to quickly identify and stimulate BGCs that 

are cryptic in strains of Burkholderia species. Poplar trees augmented with a modified strain of 

endophyte, Pseudomonas putida W619-TCE, showed increased reduction (90%) of trichloroethylene 

evapotranspiration under field tests [114].   

4. Progress and developments 

In an effort to meet the increasing demand of food and feeds, chemical fertilizers and pesticides 

have been commonly used in agricultural system for improving soil fertility and controlling pests, 

respectively. The adverse effect of use of toxic chemicals in agriculture has resulted in increasing 

interest in sustainable farming practices [115,116]. Biofertilizers and Biopesticides derived from 

microorganisms have been effective in dealing with phytopathogens as well as Biofertilization of the 

soil. Bacterial and fungal endophytes have shown positive effects in plant growth promotion, pest 

management and improving soil health [117,118]. Numerous endophytes have shown their ability to 

promote plant growth and antagonism against phytopathogens under in vitro conditions. Some of the 

strains have found their place in modern agricultural practices, such as perennial ryegrass (PRG) due 

to its endophyte, Neotyphodium lolii, was able to protect the host plant from Argentine stem weevil 

infection without producing any toxic compounds harmful to livestock. A product of Rye grass, AR1, 
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infected with the endophyte has been beneficial for livestock production in places with lesser number 

of black beetles. Another strain of PRG, Endosafe, has shown better survival response in places 

dominated with black beetles but with decreased biomass production compared to AR1 [119]. 

Adaptive Symbiotic Technologies in Seattle, USA, have developed several products under the 

brand name BioEnsure® using a combination of beneficial endophytes. The products are able to 

induce tolerance in crops to drought, high salt concentration and temperature; it improves water 

utilization by plants and is fairly stable in different climate and soil types. The microbial 

formulations can easily be applied to fields along with other agriculture inputs and are non-

competitive against other normal microbial flora of the soil. The products have a viability of more 

than two years at 4 ℃. BioEnsure® products not genetically modified are classified as organic 

products by Organic Material Review Institute, Eugene, USA [120]. Muscodor albus isolated from 

cinnamon tree, has shown properties related to bio-fumigation and it may replace the use of methyl 

bromide for fumigation of soils [121]. Though the effects of endophytes cannot substitute chemical 

inputs altogether, combination of different methods and suitable endophyte-plant combinations could 

be considered for integrated pest management programs [122]. 

5. Constrains in commercialization of endophytes 

There have been numerous reports on the production of plant secondary metabolites by 

endophytes outside its host but there are no products as such that have successfully been produced in 

mass scale and commercialized. Production of Taxol by endophytic fungus in the early 90s was 

thought to develop the process of obtaining metabolites from endophytes with eventual decrease in 

over-use of plants. However, apart from the use of few endophytes in agricultural system, not a 

single product from endophytes has made it to the market with a significant advance in secondary 

metabolite industry [123].  

The reason for the production of host metabolites by the endophytes could be hidden in their 

genes that must have undergone genetic recombination during the time of their evolution [124]. Our 

inability to understand the mechanisms by which these endophytes function inside the host, and as 

stated by Bailey et al their evolutionary significance [125] has limited our knowledge.  

Some of the constraints involved in the production of secondary metabolites under laboratory 

conditions include: the low-yield of secondary metabolites, optimization of growth-conditions 

involving variety of abiotic factors and silent gene clusters, synthesis of metabolites with 

unidentified functions, unclear understanding of pathways involved in the production of metabolites, 

role of secondary metabolites in different pathways and lack of a complete knowledge on secondary 

metabolites [110]. The cellular relationship between the host and its endophyte limits our ability to 

understand the mechanism of host-secondary metabolite production by an endophyte, and the 

eventual reduction in synthesis when outside its host in vitro system.  

6. Future perspectives 

Endophytic microorganisms have convincingly demonstrated their remarkable ability to 

typically produce an abundance of pharmacological metabolites with possible usage in drug 

manufacturing. Extensive search for newer metabolites is important to deal with multi-drug resistant 

microorganisms and to find alternative therapeutic drugs for several diseases. Secretion of plant 
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growth-promoting factors and antagonistic agents against phytopathogens could easily substitute 

chemical inputs in sustainable agriculture practices with suitable endophytes. Novel enzymes with 

better specific-activity obtained from endophytes could be valuable in fermentation industries. 

However, most of the published findings are from controlled experiments and similar results from in 

vivo trials could satisfactorily establish the practical possibility of endophytes commercialization. 

Specific mechanisms involved in the complex interactions, types of selection pressures that properly 

govern the crosstalk between endophytes and their suitable host, efficient production of host 

secondary metabolites, and possible ways to effectively manipulate the biochemical-pathways, 

would undoubtedly require comprehensive understanding before the successful commercialization of 

bioactive metabolites from endophytes.  

7. Conclusions 

It is estimated that there are more than quarter million species of plants in this planet with a 

possibility of obtaining more than one million endophytes from these plants. Very few of these 

microorganisms from their diverse group have been isolated and studied so far. Apart from 

producing array of metabolites and functions advantageous to its host plant, these microbial 

resources have proven to secrete similar secondary metabolites even outside its host using in vitro 

systems. These properties of endophytes not only make them suitable candidates for exploring their 

ability to produce various bioactive compounds, enzymes, and biopigments, etc., but it may also 

reduce the dependency of humans on endangered plant species for their secondary metabolites, thus 

resulting in sustainable use of plant-based bio-resources. The necessary factors controlling growth of 

endophytes for biosynthesis of host secondary metabolites in vitro, are required to be optimised for 

commercial-scale production of plant-derived natural compounds employing these endophytes. 
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