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Abstract
This article highlights some numerical challenges when implementing the bounded integer model for composite score

modeling and suggests an improved implementation. The improvement is based on an approximation of the logarithm of

the error function. After presenting the derivation of the improved implementation, the article compares the performance of

the algorithm to a naive implementation of the log-likelihood using both simulations and a real data example. In the

simulation setting, the improved algorithm yielded more precise and less biased parameter estimates when the within-

subject variability was small and estimation was performed using the Laplace algorithm. The estimation results did not

differ between implementations when the SAEM algorithm was used. For the real data example, bootstrap results differed

between implementations with the improved implementation producing identical or better objective function values. Based

on the findings in this article, the improved implementation is suggested as the new default log-likelihood implementation

for the bounded integer model.

Keywords NONMEM � Composite score � Numeric stability

Introduction

Composite scores are an outcome type of importance in

many clinical trials. The observations are discrete numbers

between a minimum and a maximum value. Early phar-

macometric models often ignored these constraints and

assumed a normal distribution for the residual error. In

recent years, however, more sophisticated approaches have

been proposed that respect the discrete, bounded nature of

the data [1, 2]. An example of such a model is the bounded

integer (BI) model that we recently proposed [3]. Con-

ceptually, the BI model assumes a latent grid defined by

quantiles of the normal distribution. Each subject’s location

in that latent grid is described both in terms of its mean and

variance over time. The BI model is conceptually straight

forward and flexible. Previously, we showed the advan-

tages in data-description of the BI model over a continuous

variable model. In this work, the numeric stability of the

implementation of the BI log-likelihood function will be

the focus.

Numerical analysis is the field in applied mathematics

that studies algorithms for solving the problems of con-

tinuous mathematics [4]. It is a common misconception to

think that a solution for a mathematical model can be

obtained by providing a computer with a formula and some

numbers and that the machine will simply use those

numbers to compute every term in the formula. In reality,

many sophisticated algorithms are involved when com-

puting predictions, even for simple statistical models. One

of the challenges encountered when performing numerical

computations revolve around floating-point arithmetic.

Computers represent real numbers as a fixed number of

significant digits and a fixed-length exponent [5]. Conse-

quently, the relative accuracy for real numbers is limited,

and a smallest and largest absolute value that can be rep-

resented exists. The impact of numerical underflow or

overflow on pharmacomtric models is rarely discussed but

might be relevant in some cases. Especially when the log-

likelihood expression is explicitly implemented by the

modeler such as for the BI model.
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Therefore, the aim of this work is to compare two

implementations of the log-likelihood of the BI model in

terms of numeric stability and to evaluate the impact when

using the model. The first implementation is a direct ren-

dering of the mathematical definition for the BI model, and

we will, hence, refer to it as the naive implementation. The

second implementation aims at avoiding the problems of

overflow and underflow, and we will refer to it as the

improved implementation.

Methods

Bounded integer model

Let Yij denote the observed score (Yij 2 f0; . . .; Sg) for

subject i (i 2 f1; . . .;Ng) at visit j (j 2 f1; . . .;Mg). Using
the inverse normal cumulative distribution function U�1,

we can define a latent grid of cut-points according to

qs ¼ U�1 s

Sþ 1

� �
: ð1Þ

The BI model defines the probability of observing a score

of s as

PðYij ¼ sÞ ¼ U
qsþ1 � f ð�Þ

gð�Þ

� �
� U

qs � f ð�Þ
gð�Þ

� �
ð2Þ

where f ð�Þ is a general function describing the mean

location of subject i on the latent grid and gð�Þ is a function
describing its standard deviation. One should note that due

to Uð�1Þ ¼ 0 and Uð1Þ ¼ 1 this definition implies cor-

rect behavior at the boundaries (s ¼ 0 and s ¼ S). In a

general pharmacometric model, f and, potentially, g will

depend on subject specific random effects, time, treatment,

covariates, etc.

Log-likelihood implementation

For the sake of simplicity, we consider in this section only

one observation per subject and a simple mean variance

model on the latent grid for each subject, i.e.,

f ð�Þ ¼ gi and gð�Þ ¼ r: ð3Þ

However, the derivations made directly generalize to more

complex models.

Naive implementation

Combining Eqs. 2 and 3 yields the following straight for-

ward expression for the log-likelihood

logLðgi; rjsÞ ¼ log U
qsþ1 � gi

r

� �
� U

qs � gi
r

� �� �
ð4Þ

This expression can be implemented in any NLME

modelling software that allows to specify the log-

likelihood.

Improved implementation

For a simplified notation we define the z-scores

zs ¼
qs � gi

r
and zsþ1 ¼

qsþ1 � gi
r

ð5Þ

The numerically improved implementation is the result of

the three tweaks to Eq. 4.

First, due to the symmetry of the normal distribution, the

following identity holds

Uðzsþ1Þ � UðzsÞ ¼ Uð�zsÞ � Uð�zsþ1Þ: ð6Þ

This can be exploited to avoid rounding errors due to

calculations of tail probabilities too close to 1 by choosing

either the left-hand or right-hand side of this equation.

When zs [ 0 and zsþ1 [ 0 we will use the right-hand side

of the equation, otherwise the left-hand side.

For the second tweak, rather than first calculating the

probabilities UðzsÞ, Uðzsþ1Þ, substracting them, and finally

taking the logarithm, we aim at working with the log-

probabilities directly. We define

lUðzÞ ¼ logðUðzÞÞ ð7Þ

and use the identity

logða� bÞ ¼ log aþ logð1� expðlog b� log aÞÞ ð8Þ

to rewrite the log-likelihood in Eq. 4 as

logLðgi; rjsÞ ¼ lþUðzÞ þ logð1� expðl�UðzÞ � lþUðzÞÞÞ
lþUðzÞ ¼ maxðlUðzsÞ; lUðzsþ1ÞÞ
l�UðzÞ ¼ minðlUðzsÞ; lUðzsþ1ÞÞ:

ð9Þ

The log-probabilities can be represented with higher

numerical accuracy. Furthermore, Eq. 9 is written such

that expðl�UðzÞ � lþUðzÞÞ avoids numerically overflow by

only calculating the exponential for exponents less than 0.

For this equation to be even more numerically stable,

logð1� xÞ should be implemented using a special func-

tion that remains precise for x � 1 as suggested by

Goldberg [6].

The third numerical tweak concerns the calculation of

the logarithm of the cumulative normal distribution

function logðUðzÞÞ. Some software tools, such R, can

calculate this quantity without rounding errors even for

very small values of z. For other tools, such as NON-

MEM, we need to use an approximation. We first note

that the cumulative distribution function for the normal

distribution is given by
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UðxÞ ¼ 1

2
1þ erf

xffiffiffi
2

p
� �� �

ð10Þ

where erf is the error function. For the later, Abramowitz

and Stegun in equation 7.1.131 provide the bounds [7]

1

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p \ex
2

Z 1

x

e�t2dt� 1

xþ
ffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 4

p

q ð11Þ

These bound are quite accurate for larger values of x,

which is exactly when calculating logðUðxÞÞ is problematic

(n.b. we can use Eq. 6 to change from logðUðxÞÞ to

logð1� UðxÞÞ). Re-arranging Eq. 11 and taking the loga-

rithm yields the following bounds for the upper tail prob-

abilities of the normal distribution:

log

ffiffi
2
p

q
zffiffi
2

p þ
ffiffiffiffiffiffiffiffiffiffiffi
z2

2
þ 2

q � z2

2
� log

ffiffiffi
2

p

\ logð1� UðzÞÞ

� log

ffiffi
2
p

q
zffiffi
2

p þ
ffiffiffiffiffiffiffiffiffiffiffi
z2

2
þ 4

p

q � z2

2
� log

ffiffiffi
2

p

ð12Þ

Figure 1 illustrates how the precision of these bounds is

increasing for increasing values of z and that already for a

value of z ¼ 2 using either side of the inequality is an

excellent approximation. When calculating the log-likeli-

hood for the BI model, we could use the inequality to

detect when the numerically calculated value of logð1�
UðzÞÞ is not within the specified bounds and then switch to

use the upper or lower bound to avoid numerical problems.

Alternatively, we can just use a prespecified value above

which we will switch the equation. In this work, we choose

the latter and will calculate

logð1�UðzÞÞ¼

logð1�UðzÞÞ if z�6

log

ffiffiffi
2

p

r

zffiffiffi
2

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
z2

2
þ4

p

r � z2

2
� log

ffiffiffi
2

p
if z[6

8>>>>><
>>>>>:

:

ð13Þ

Comparison of implementations

The two implementations presented in the previous section

were compared in three different contexts: (i) a more the-

oretical comparison by simply plotting the log-likelihood

for different parameter values, (ii) a comparison within a

simulation and estimation study where the simulated truth

can be controlled, and (iii) a comparison using real data to

assess the impact in a data analysis.

Graphical comparison

A graphical comparison of the naive and improved

implementation of the log-likelihood expression was per-

formed by plotting the calculated log-likelihood as a

function of gi for the r values of 0.01, 0.1, 0.5 and 1. For

this comparison, an observed score s of 10 and a maximal

score S of 60 were considered.

Evaluation in a simulation study

The second comparison was based on a simulation and

estimation study with three simulation scenarios (S1, S2,

S3). All scenarios used a score with a range of 0 to 70 and

the same trial design with 600 subject and 5 observations

each, at times 0, 3, 6, 9, and 12 months. The function

describing the evolution of the subject on the latent scale

was also identical between scenarios, assuming a linear

change from baseline, i.e.,

f ðb0; a; tÞ ¼ bþ a � t ð14Þ

The parameters b and a were assumed to follow a normal

distribution (Nðhb;x2
bÞ and Nðha;x2

aÞ). The model for the

standard deviation on the latent scale was

gðrÞ ¼ r ð15Þ

where parameter variability model for r differed between

scenarios. Scenarios S1 and S2, used no between-subject

variability for r (i.e., r ¼ hr) with typical values of 1 and

0.1, respectively. Scenario S3 used a log-normal variability

model for r with log r�Nðlog hr;x2
rÞ (hr ¼ 0:1 and

x2
r ¼ 0:1). The parameter values for the different simula-

tion scenarios are summarized in Table 1. Figure 2 visu-

alizes a simulated dataset for each of the three scenarios.

Each scenario was estimated using both the Laplace

estimation algorithm and the stochastic approximation

expectation maximization (SAEM) algorithm [8, 9]. For

the later, the option AUTO ¼ 1 in NONMEM was used to

let the software find the optimal estimation settings. The

SSE tool in PsN was used to perform the simulation and

estimation procedure [10].

The performance of the implementations for each sce-

nario and estimation algorithm was compared in terms of

the number of successful minimizations (only for Laplace),

the runtime, and the relative estimation error defined as

1 The authors learned about these bounds through the blog post

‘‘Computing extreme normal tail probabilities’’ by Cook (https://

www.johndcook.com/blog/2018/06/01/computing-extreme-normal-

tail-probabilities/).

Journal of Pharmacokinetics and Pharmacodynamics (2021) 48:241–251 243

123

https://www.johndcook.com/blog/2018/06/01/computing-extreme-normal-tail-probabilities/
https://www.johndcook.com/blog/2018/06/01/computing-extreme-normal-tail-probabilities/
https://www.johndcook.com/blog/2018/06/01/computing-extreme-normal-tail-probabilities/


REE ¼ Ĥ�H
H

ð16Þ

where H and Ĥ are the true parameter value and its esti-

mate, respectively.

Evaluation for real data

The third evaluation of the two implementations was per-

formed using the data used in the work of Ito et al.,

originating from an observational study of patients with

mild cognitive impairment or Alzheimer’s disease

(AD) [11]. For the present work, only the data from the AD

patients was used. The model structure and the set of

included covariates was inspired by the original publication

but implemented using a BI model with the following

functions for f and g in Eq. 2:

f ðb0; a; tÞ ¼ bþ a � t
gðrÞ ¼ r:

ð17Þ

The parameter model for b the baseline, a the slope, and r
the standard deviation were

b ¼ hb þ gi;b

a ¼ ha �
zi;age
75

� �hage
�hzi;apoeapoe � hzi;sexsex þ gi;a

r ¼ hr

ð18Þ

where hx denotes fixed effect parameters, gi;x denotes

random effect parameters (gi;x �Nð0;x2
xÞ), and zi;x denotes

covariate values.

The model parameters were estimated using both like-

lihood implementations with the Laplace estimation algo-

rithm in NONMEM [8, 12]. In addition, the estimation

procedure was repeated for 100 replicates of the data cre-

ated using the bootstrap procedure implemented in

PsN [10]. Parameter estimates and objective function val-

ues (OFV), equivalent to -2 times the log-likelihood,

obtained for the original data as well as the bootstrap

samples were compared between implementations.

Software

This work used NONMEM 7.4.4 for parameter estima-

tion and simulation [12]. The simulation and estimation

study as well as the bootstrap procedure were performed

using PsN version 4.10.1 [10]. Data processing and

generation of graphics were done using R version

3.5.2 [13].

−3

−2

−1

0.0 0.5 1.0 1.5 2.0
z

lo
g (

1
−

Φ
(z

))

Fig. 1 Upper and lower bound for the approximated log-probability

(shown as gray area) in comparison with the exact log-probability

(shown as a solid line)

Table 1 Parameter values for the simulation scenarios

Scenario

S1 S2 S3

hb - 0.3 - 0.3 - 0.3

ha 0.1 0.1 0.1

hr 1 0.1 0.1

x2
b 1 1 1

x2
a 0.000625 0.000625 0.000625

x2
r – – 0.1

Scenario: S1 Scenario: S2 Scenario: S3

0 3 6 9 12 0 3 6 9 12 0 3 6 9 12
0

20

40

60

Time

S
co

re

Fig. 2 Spaghetti plot of the

simulated data under each

simulation scenario
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Results

Graphical comparison

The plots in Fig. 3 compare the two alternative imple-

mentations of the log-likelihood as a function of the gi
parameter for different values of r. For r values larger or

equal to 0.5 both expressions seem to agree over the whole

plotted gi range from - 4 to 4. For r values of 0.1 and

smaller, however, naive and improved implementation

eventually diverge significantly.

Simulation study

Figure 4 compares the relative estimation error obtained

with the two log-likelihood implementations under the

three simulation scenarios, both for the Laplace and the

SAEM estimation algorithms. In addition to the relative

estimation error shown in Fig. 4, the results in terms of the

root mean square error (RMSE) are available in appendix

B. Both implementations performed essentially identical

for a hr value of 1 (scenario S1). In scenario S2, however,

the improved implementation showed significantly lower

bias and imprecision when used with the Laplace

σ = 1 σ = 0.5 σ = 0.1 σ = 0.01
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Implementation naive improved

Fig. 3 Comparison of log-

likelihood implementations for

different values of r

scenario: S1 scenario: S2 scenario: S3

algorithm
: laplace

algorithm
: saem

−1 0 1 2 −0.2 0.0 0.2 −0.5 0.0 0.5 1.0

ωσ
2

ωα
2

ωβ
2

θσ

θα

θβ

ωσ
2

ωα
2

ωβ
2

θσ

θα

θβ

Relative estimation error

Implementation naive improved

Fig. 4 Relative estimation error

for all scenarios and model

parameters using the naive and

improved log-likelihood

implementation. The boxes

show the median as well as the

25% and 75% quantiles. The

lower whisker indicates the

smallest observation at most 1.5

times the interquartile range

away from the 25% quantile.

The upper whisker indicates the

largest observation at most 1.5

times away from the 75%

quantile. Values outside the

range indicated by the whisker

is plotted as individual points
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estimation algorithm. The improved implementation also

performed better with the Laplace estimation algorithm in

scenario S3. However, the estimates for x2
r appeared to be

quite strongly biased with either implementation. There

was no difference in estimation performance between

implementations when using the SAEM algorithm in any

scenario. Furthermore, the SAEM algorithm produced

unbiased estimates even for x2
r in scenario S3.

Figure 5 highlights the differences between implemen-

tations in the percentage of runs completing with mini-

mization successful when using the Laplace estimation

algorithm. Similar to the performance in terms of relative

estimation error, there are no differences for scenario S1

but quite large differences for scenarios S2 and S3. For

scenario S2, the naive implementation has a success rate of

less than 50% while the improved implementation main-

tains 100% success rate. For the last scenario, also the

success rate of the improved implementation drop from

100 to 80%, but it remains considerably higher then for the

naive implementation (40%).

The differences in runtime for the two implementations

is shown in Fig. 6.

Real data

Estimating the data from the real data example with the

improved implementation yielded a 24.6 point lower OFV.

The parameter estimates differed most for the covariate

parameters with hage showing the largest difference (see

Table 2).

Figure 7 conveys the impact of the log-likelihood

implementation on the bootstrap results. For an arbitrary

selection of model parameters, the figure contrasts the

estimates for a given bootstrap samples obtained with the

two implementations. While some points in the plots are

located on the line of identify, indicating agreement in

estimates for that particular bootstrap sample, most points

are located off that line. The relative difference between

estimates differed by parameter with the highest value for

IIVSLOPE (60%) and the lowest for TVBASE (2%).

The impact on the OFV is highlighted in Fig. 8. The

figure plots the OFVs obtained for the same bootstrap pair

with the two implementations. Similar to the parameter

level, some bootstrap pairs yielded identical OFV values,

most, however, did not. Notable is that all points in Fig. 8

0%

25%

50%

75%

100%

S1 S2 S3
Scenario

M
in

im
iz

at
io

n 
su

cc
es

sf
ul

Implementation naive improved

Fig. 5 Percentage of runs completed with minimization successful

under both naive and improved log-likelihood implementation when

estimating using the Laplace estimation algorithm

algorithm: laplace algorithm: saem

S1 S2 S3 S1 S2 S3

0

200

400

600

Scenario

R
un

tim
e 

(s
)

Implementation naive improved

Fig. 6 Runtime comparison of

the naive and improved log-

likelihood implementation for

the three scenarios of the

simulation study for the Laplace

and SAEM estimation algorithm

Table 2 Objective function value (OFV) and parameter estimates

with relative standard error (RSE) for the real data example

Naive Improved

OFV 4075.1 4050.5

Estimates value (% RSE)

hb - 0.650 (3.1) - 0.652 ( 3.1)

ha 0.015 (17.7) 0.016 (18.8)

hage - 2.192 (30.9) - 2.451 (29.0)

hAPOE 1.076 (17.0) 1.108 (18.3)

hsex 1.049 (15.1) 0.987 (16.0)

hr 0.132 ( 4.0) 0.136 ( 4.0)

x2
b 0.253 ( 6.1) 0.249 ( 6.2)

x2
a 0.014 ( 8.3) 0.016 ( 7.6)
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are located on or below the line of identity, indicating that

the OFV obtained with the improved implementation was

always equal or lower than the one obtained with the naive

implementation.

Discussion

Our results show that the improved implementation of the

BI model has a considerably higher numerical stability and

that this improvement can translate to meaningful differ-

ences in estimation performance. At first sight, the break-

down of the naive implementation more than 10 standard

deviations away from the mean, as shown in the graphical

evaluation, might appear of little practical relevance. The

simulation study, however, showed that for a sufficiently

small value of the variance function (g in Eq. 2) these

breakdowns do matter for the performance of the Laplace

estimation algorithm. Finally, the real data example high-

lighted that small variance values could occur in a real data

context.

The simulation study revealed that when the variance on

the latent scale is small, the estimation properties of the

Laplace estimation algorithm deteriorate considerably. The

algorithm becomes more biased and imprecise as well as

unstable and slow. All these negative properties increase

due to difficulties in finding the maximum of the log-

likelihood function for each subject. This maximization is

necessary to approximate the marginal likelihood using the

Laplace method. The SAEM algorithm, on the other hand,

does not need to find these maxima. More importantly, the

sampling-based algorithm is very well suited to handle the

situation when some region of the ‘‘g-space’’ evaluates to a

very low log-likelihood. In that case, the Markov chain will

simply not explore that region and since the log-likelihood

contribution from that area is low (even when considering

the true log-likelihood), the estimation performance does

not suffer from the numerical instability. This explains why

the SAEM algorithm performs equally well with both

implementations.

For scenario S3, the Laplace algorithm was not able to

accurately estimate the inter-individual variability of the

within-subject variability parameter r, independent of the
log-likelihood implementation. SAEM, in contrast,

achieved accurate estimates with both implementations.

These findings indicate that for more complex within-

θα θAPOE ωα
2
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Fig. 7 Bootstrap parameter

estimates from the improved

implementation plotted versus

the estimates obtained with the

naive implementation for a

selection of three model

parameters
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4300

3800 4000 4200 4400
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Fig. 8 Objective function value (OFV) of the final estimates of the

bootstrap samples as obtained with the naive and improved log-

likelihood implementation

Journal of Pharmacokinetics and Pharmacodynamics (2021) 48:241–251 247

123



subject variability models the likelihood approximation

performed by the Laplace algorithm might be too crude and

the use of the SAEM algorithm could be indicated. In terms

of runtime, the SAEM algorithm is much slower than the

Laplace algorithm, even more so when the log-likelihood

surface is rather flat (as in scenario S1 with a hr value of 1).
A disadvantage of the numerically more stable log-

likelihood implementation, presented here, is its increased

complexity and a resulting higher risk of coding errors. In

order to mitigate these risks, we have made the improved

implementation available in the R package piraid which

can generate scaffold code for a simple BI model [14]. The

package provides an aid for the pharmacometric modelling

of composite score outcomes and currently supports the BI,

the coarsened grid, and the continuous variable model, as

well as, item response theory models [15]. For the BI

model, the user can select the desired log-likelihood

implementation and we intend to make the improved

implementation the default going forward.

Even if the topic of numerical stability might be par-

ticularly relevant for the BI model (due to the involvement

of the cumulative normal distribution function), our find-

ings should encourage modellers to consider numerics also

for other types of models. This is especially important

when implementing models using the log-likelihood

expression directly. Some of the numerical tweaks used in

this paper can be helpful and future research should

investigate their value in other contexts.
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Appendix: NONMEM control stream

The implementation of the improved model as a NON-

MEM control stream is sketched below. The code contains

annotations, and the repetitive sections handling the vari-

ous score levels have been abbreviated. A complete, run-

nable control steam as well as a simulated dataset from

scenario S1 is provided as supplementary material.
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$SIZES DIMNEW=10000
$PROBLEM
$INPUT ID DV TIME
$DATA data.csv IGNORE=@
$ABBREVIATED DECLARE Z(70)
$ABBREVIATED DECLARE P(71)
$ABBREVIATED DECLARE INTEGER I
$PRED
;-------------------------definition of f and g----------------------------------
MU_1 = THETA(1)
MU_2 = THETA(2)
BASE = THETA(1) + ETA(1)
SLOPE = THETA(2) + ETA(2)
IPRED = BASE + SLOPE*TIME
SD = THETA(3)
;-------------------------BI cut-offs--------------------------------------------
CO1 = -2.19492449930505
CO2 = -1.90841168188847
CO3 = -1.72511337703898
;...
;-------------------------BI z-scores--------------------------------------------
Z(1) = (CO1-IPRED)/SD
Z(2) = (CO2-IPRED)/SD
Z(3) = (CO3-IPRED)/SD
;...
IF(DV.EQ.1) ZL = Z(1)
IF(DV.EQ.2) ZL = Z(2)
IF(DV.EQ.3) ZL = Z(3)
;...
IF(DV.EQ.0) ZU = Z(1)
IF(DV.EQ.1) ZU = Z(2)
IF(DV.EQ.2) ZU = Z(3)
IF(DV.EQ.0) ZL=ZU
IF(DV.EQ.70) ZU=ZL
;-------------------------Switch tail probabilities to calculate-----------------
IF(DV.EQ.0) ZU=-ZU
IF(DV.GT.0.AND.DV.LT.70.AND.ZL.LT.0.AND.ZU.LT.0) THEN

TMP=ZL
ZL=-ZU
ZU=-TMP

ENDIF
;-------------------------Calculate log(1-PHI)-----------------------------------
LPHI_ZL=LOG(SQRT(2/3.141593)/(ZL/SQRT(2) + SQRT(ZL**2/2 + 4/3.141593)))-ZL**2/2-LOG(SQRT(2))
IF(ZL.LT.6) LPHI_ZL=LOG(1-PHI(ZL))
LPHI_ZU=LOG(SQRT(2/3.141593)/(ZU/SQRT(2) + SQRT(ZU**2/2 + 4/3.141593)))-ZU**2/2-LOG(SQRT(2))
IF(ZU.LT.6) LPHI_ZU=LOG(1-PHI(ZU))
;-------------------------Add log-probabilities----------------------------------
IF(LPHI_ZU.LT.LPHI_ZL) A = LPHI_ZL
IF(LPHI_ZU.LT.LPHI_ZL) B = LPHI_ZU-LPHI_ZL
IF(LPHI_ZU.GT.LPHI_ZL) A = LPHI_ZU
IF(LPHI_ZU.GT.LPHI_ZL) B = LPHI_ZL-LPHI_ZU
EB=-EXP(B)
LOGSUM = A+EB*LOG(1+EB)/((1+EB)-1)
;-------------------------Return -2*LL-------------------------------------------
IF(DV.EQ.0) Y=-2*LPHI_ZU
IF(DV.GT.0.AND.DV.LT.70) Y=-2*LOGSUM
IF(DV.EQ.70) Y=-2*LPHI_ZL

$THETA -0.3 ; TVBASE
$THETA 0.05 ; TVSLOPE
$THETA (0,1) ; SD
$OMEGA 0.1 ; IIVBASE
$OMEGA 0.000625 ; IIVSLOPE
$ESTIMATION METHOD=COND LAPLACE -2LL AUTO=1 PRINT=1
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RMSE result from the simulation study

The following figure shows the results of the simulation

study in terms of the root mean square error (RMSE) cal-

culated as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
i¼1

ðĤ�HÞ2
vuut

where M is the number of simulations performed, H and Ĥ
are the true parameter value and its estimate, respectively.

The results are in agreement with the plot of the relative

estimation error plot shown in Fig. 4. Estimation with the

Laplace estimation algorithm yields lower RMSE values

when using the improved implementation in scenarios S2

and S3 but no differences between implementations for

scenario S1. The SAEM algorithm produced identical

results with both estimation algorithms.

scenario: S1 scenario: S2 scenario: S3

algorithm
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