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FAK-targeting PROTAC as a chemical tool
for the investigation of non-enzymatic FAK
function in mice

Dear Editor,

Animal models, most commonly mice, that lack a protein of
interest play an important role in phenotypic and functional
studies of a target gene, allowing researchers to answer
various biological questions (Chaible et al., 2010). At pre-
sent, a variety of tools act at the DNA or RNA level to enable
researchers to model gene function (and thus protein) defi-
ciency, including nucleic acid-based RNA interference (El-
bashir et al., 2001), antisense oligonucleotides (Schoch and
Miller, 2017), and genome editing-based CRISPR-Cas9
(Doudna and Charpentier, 2014) strategies. However, chal-
lenges remain. RNA and DNA-based technologies lack
exquisite temporal control of the target gene at specified time
points in an organism’s development, and they fail to realize
acute and reversible target gene function (Chan, 2013).
These shortcomings have garnered widespread concern in
both fundamental research and drug development. Further-
more, gene knockout will often lead to embryonic lethality,
precluding the study of post-embryonic pathophysiological
functions of target genes and proteins of interest (Dhanjal
et al., 2017).

Proteolysis targeting chimera (PROTAC) is a novel
chemical knockdown technology for the post-translational
study of proteins of interest. PROTACs are hetero-bifunc-
tional small molecules, which can drive E3 ubiquitin ligase to
bind with the target protein, resulting in ubiquitination of the
target protein and consequent proteasome-mediated
degradation (Raina and Crews, 2010) (Fig. 1A). Unlike
classic inhibitors, PROTAC eliminates rather than inhibits
both enzymatic and non-enzymatic protein functions. Fur-
thermore, unlike nucleic acid (e.g., siRNA) and genome
editing-based (e.g., CRISPR-Cas9) strategies (Cong et al.,
2013; Deng et al., 2014), the small molecule-based PRO-
TAC approach is capable of degrading target proteins with-
out requiring any genetic manipulation, guaranteeing the
integrity and stability of the genome, which especially suit-
able for knockdown of embryonic lethal protein. Thus,
PROTACs offer significantly broader therapeutic applicability
than DNA or RNA-targeting strategies for protein knockdown
in vivo.

Focal adhesion kinase (FAK), an embryonic lethal protein,
exerts kinase-dependent enzymatic functions and kinase-
independent scaffolding functions (Hall et al., 2011). Both
functions are crucial in reproduction and early embryonic
development (Gungor-Ordueri et al., 2014). Many essential
non-enzymatic functions of FAK cannot be investigated with
reported FAK kinase inhibitors. To the best of our knowledge,
the PROTAC strategy has not been used to study the non-
enzymatic function of FAK in vivo. It is also unknown whether
FAK PROTACs will yield different phenotypes or reveal dif-
ferent FAK functions than kinase-dependent FAK inhibitors
in vivo. For these reasons, we have chosen FAK as a target
to demonstrate the potential utility of the PROTAC strategy
for the study of non-enzymatic protein function in mouse
reproductive system in vivo.

Based on the previous studies of our laboratory, we
synthesised the FAK-targeting PROTAC library with FAK
ligand of PF562271, cereblon (CRBN)-based E3 ubiquitin
ligase ligand of thalidomide, and a variable length of poly-
ethylene glycol or alkyl linkers (Fig. S1). Firstly, we screened
the degradation effect of FAK targeting PROTAC molecules
in mice primary reproductive related cells. We separated and
purified testis-related cells, including primary Sertoli cells
and primary germ cells, from 6 dpp C57BL/6N mice, and
tested whether degradation resulted from FAK PROTAC
library molecules in these primary cells. A remarkable
degradation effect, with a DC50 of 1.3 nmol/L for primary
Sertoli cells and 0.4 nmol/L for primary germ cells, was
observed from FAK-PROTAC library molecules, which we
confirmed it is FC-11, a PROTAC from our previous reported
work (Gao et al., 2019) (Fig. 1B–D). The optimized synthesis
route of FC-11 was shown in Supplementary Materials
(Scheme 1).

Next, in order to overcome the defect of FAK knockdown
in vivo caused by existing genetic tools and to clarify the
effect of PROTAC tools on the non-enzymatic function of
protein in the mouse reproductive system, a few critical
issues need to be addressed: 1. Can FC-11 degrade FAK
in vivo? 2. If it can, is there any different phenotypes between
FAK PROTAC and FAK inhibitor? 3. Is the FAK protein
degradation reversible?
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Encouraged by the results from primary cells, we contin-
ued to test FC-11 induced FAK degradation in the repro-
ductive tissues (testis, epididymis, seminal vesicle and
preputial gland) of male mice in vivo (Fig. S2). Ten-week-old
male C57BL/6N mice were administered intraperitoneal
injections of FC-11 (20 mg/kg, twice daily [BID]), PF562271
(10 mg/kg, BID), or vehicle control over a 5 day period
(Fig. 1E). After 5 days treatment, all FC-11 treated mice
exhibited a more than 90% reduction of FAK and phosphor
FAKtyr397 in the tested reproductive tissues, while PF562271
had no effect on the level of FAK protein, but had an inhi-
bitory effect on the phosphor FAKtyr397 levels (Figs. 1F and
S3). These results demonstrated that FC-11 can rapidly and
efficiently degrade FAK in the reproductive tissues of male
mice. In addition, the location and expression of FAK in the
testis were detected by immunofluorescent. Immunostaining

revealed that FAK was mainly localized to the basal com-
partment of seminiferous tubules, which was consistent with
previously published data (Siu et al., 2009) (Fig. S4). As
above, FC-11 treatment significantly decreased the cyto-
plasmic expression of FAK, while PF562271 treatment had
no effect on FAK levels, again demonstrating the totally dif-
ferent mechanisms of action of the FAK-PROTAC protein
degrader FC-11 and the FAK inhibitor PF562271.

Whether FAK protein could be recovered to normal levels
after withdrawal of treatment? The mice were raised nor-
mally for 2, 4, 6, 9, and 14 days, after withdrawing drug
treatment (Fig. 1E). FAK levels recovered gradually over
time after FC-11 withdrawal. Except in the preputial gland,
the level of FAK in mouse reproductive organs (testis, epi-
didymis and seminal vesicle) was almost normal at 14 days
after FC-11 withdrawal. FAK levels in the preputial gland only
recovered about 40% in 14 days (Fig. 1G). The above
results indicate that FC-11 can achieve reversible regulation
of FAK in mice.

Based on the above results, FAK-PROTAC showed a
potent and reversible FAK degradation in mouse reproduc-
tive tissues of male mice, which indicated that FC-11 can be
used as a biological tool for FAK knockdown in vivo. Next,
the possible functional consequence differences between
FAK PROTAC and FAK inhibitor in mouse reproductive
system of male mice were further observed. We adminis-
tered FC-11 (20 mg/kg, BID), PF562271 (10 mg/kg, BID),
and vehicle control to 10 week old male C57BL/6N mice via
intraperitoneal injections for 13 days. After 13 days treat-
ment, all FC-11 treated males exhibited a significant reduc-
tion in the weight or size of the testis, epididymis, seminal
vesicle, and preputial gland of 24.2%, 37.5%, 51.6% and
90% of vehicle control, respectively. No reduction was
observed in PF562271-treated mice compared to the vehi-
cle-treated group (Figs. 2A and S5). In addition, the number
of viable sperm from the caudal epididymis was markedly
decreased in FC-11 treated mice. Analysis of sperm motility
in FC-11 treated males also revealed a significant (more than

Figure 1. Rapid and reversible FAK knockdown by FAK

targeting PROTAC in male mice reproductive organs.

(A) Schematic depiction of the PROTAC strategy. FAK-

PROTAC tool can act on both enzymatic and non-enzymatic

functions of FAK, while FAK inhibitor only act on the enzymatic

function of FAK. TP, Target Protein. (B) Chemical structure of

FAK PROTAC, as shown in the upper portion. Binding mode of

PROTAC (ball stick), FAK (PDB 5TOB, green) and CRL4-CRBN

(PDB 2HYE and 4CI3, gray) was simulated by Pymol. (C and D)

FAK protein degradation in mice primary Sertoli cells and

primary Germ cells, the cells were treated at the indicated

doses of FC-11 for 8 h. (E) Schematic depiction of FC-11

treated mice for FAK degradation and recovery. (F) FC-11 leads

to more extensive FAK degradation in testis, epididymis,

seminal vesicle and preputial gland, respectively. Each lane

represented a single mouse (n = 4 or 5). (G) The recovery ability

of FAK in testis, epididymis, seminal vesicle and preputial gland

in the indicated days after withdraw administration (n = 6). All

western blots are the representatives from at least 3

experiments.
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five fold) reduction compared to vehicle males. However,
there was no significant decrease in sperm viability in
PF562271 treated mice compared to vehicle control mice
(Fig. 2B and 2C).

In addition, the fertilization rate and the development of
2-cell, morula, and expanded blastocyst embryos from FC-
11 treated mouse sperm was strongly impaired compared to
embryos fertilized by sperm from vehicle mice, while the
fertilization rate and embryos fertilized by sperm from
PF562271-treated mice displayed normal or only slightly
impaired embryonic development in vitro (Figs. 2D–G and
S6). The observed decrease in sperm fertility and impaired
embryo development in FC-11 treated males imply that FC-
11 has the potential to modulate the fertility of male mice.
Furthermore, histopathology and apoptosis analysis of the
seminiferous tubules of the testis showed that FC-11, but not
PF562271, induced a significant increase in apoptosis of
germ cells close to the base membrane of seminiferous
tubules compared to vehicle (Figs. 2H, 2I and S7).

In summary, we have described developing a FAK-tar-
geting PROTAC probe for chemical biology study of related
non-enzymatic function of FAK in murine reproductive sys-
tem. This novel strategy has an advantage over current FAK
small molecule inhibitors because inhibitors are only appli-
cable to the study of enzymatic functions, not the study of
both enzymatic and non-enzymatic function. In this study,
the result showed that FAK can be degraded by more than
90% after representative degarder FC-11 treatment, and that
it can be recovered to normal levels within two weeks after
withdrawing treatment in vivo. In contrast to FAK inhibitor
PF562271-treated mice, which exhibit an intact reproductive
system, FC-11-treated FAK knockdown mice exhibit low
sperm viability and motility, and subsequent decreased fer-
tility and poor embryo development due to the impairment of
non-enzymatic FAK functions.

Furthermore, in order to make better use of the FAK
PROTAC tool in mice, we also detected the general distri-
bution of FC-11 in mice with 20 mg/kg of FC-11 (BID) in
10 week old male C57BL/6N mice through intraperitoneal
injections for 5 days. The result displayed that FC-11 can not
penetrate the blood–brain barrier, and we did not detect the
FAK knockdown in brain of mice. However, FC-11 can work
in other mice organs such as liver, spleen, lung, and kindey
with different degradation degree, which may further
broaden the potential application of FC-11 in other biological
studies. In addition, from the celluar FAK selectivity analysis,
we also found that FC-11 did not degrade the off-targets of
PF562271 such as CDK1, CDK2, CDK7 and FLT3 (Roberts
et al., 2008), but FC-11 showed a very slight protein degra-
dation in proline-rich tyrosine kinase 2 (Pyk2) in SRD15 cell
line, the homolog of FAK, which have a highly consistent in
structure with FAK (45% homology with FAK in amino acid
sequence and 61% homology in catalytic domain) (Fig. S8)
(Zheng et al., 1998).

Overall, our findings indicate that PROTACs can be used
as chemical knockdown tools to study the non-enzymatic
functions of proteins, shedding the constraints of traditional
small molecule inhibitors. Unlike DNA- or RNA-based protein
knockout technology, the PROTAC strategy knocks down
target proteins directly, rather than acting on the genome or
nucleic acid level, and is suitable for the functional study of
embryonic-lethal proteins in adult organisms. Finally, PRO-
TAC probes also provide exquisite temporal control, allowing
the knockdown of a target protein of interest at specific
developmental time points and enabling the recovery of the
target protein after withdrawal of drug treatment.
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