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Predictive features of gene expression variation
reveal mechanistic link with differential expression
Olga M Sigalova1 , Amirreza Shaeiri2 , Mattia Forneris1 , Eileen EM Furlong1,* &

Judith B Zaugg2,**

Abstract

For most biological processes, organisms must respond to extrinsic
cues, while maintaining essential gene expression programmes.
Although studied extensively in single cells, it is still unclear how
variation is controlled in multicellular organisms. Here, we used a
machine-learning approach to identify genomic features that are
predictive of genes with high versus low variation in their expres-
sion across individuals, using bulk data to remove stochastic
cell-to-cell variation. Using embryonic gene expression across 75
Drosophila isogenic lines, we identify features predictive of expres-
sion variation (controlling for expression level), many of which are
promoter-related. Genes with low variation fall into two classes
reflecting different mechanisms to maintain robust expression,
while genes with high variation seem to lack both types of stabiliz-
ing mechanisms. Applying this framework to humans revealed
similar predictive features, indicating that promoter architecture
is an ancient mechanism to control expression variation. Remark-
ably, expression variation features could also partially predict dif-
ferential expression after diverse perturbations in both Drosophila
and humans. Differential gene expression signatures may therefore
be partially explained by genetically encoded gene-specific
features, unrelated to the studied treatment.
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Introduction

Living systems have a remarkable capacity to give rise to robust and

highly reproducible phenotypes. Perhaps the most striking example

of this is the process of embryogenesis, where fertilized eggs give

rise to stereotypic body plans despite segregating genetic variants

and moderate differences in environmental conditions (e.g. water

temperature for fish and mothers’ diet for humans). This phenom-

enon led Waddington to propose that developmental reactions are

canalized, and buffered to withstand such variation without major

alterations in embryonic development (Waddington, 1942). In

agreement with this, variation in gene expression is an evolvable

trait under selection pressure (Fraser et al, 2004; Lehner, 2008;

Metzger et al, 2015).

Gene expression variation can arise from a multitude of stochas-

tic, environmental and genetic factors (Raser & O’Shea, 2005;

Huang, 2009; Félix & Barkoulas, 2015; Eling et al, 2019). For some

genes, expression variation is tolerated, without obvious effects on

fitness, or can even be beneficial, for example in stress response or

in stochastic cell fate decisions (Blake et al, 2006; Raj & van Oude-

naarden, 2008; Macneil & Walhout, 2011). In other cases, variation

in gene expression is detrimental and must be tightly regulated, for

example for essential genes (Fraser et al, 2004) and genes that

reduce fitness in heterozygous mutants (Batada & Hurst, 2007). This

suggests that there are inherent mechanisms that modulate variation

in gene expression, either attenuating or amplifying it (Fig 1A).

Studies on single-celled organisms or in cell lines have linked

multiple regulatory mechanisms to gene expression variation,

including the presence of a TATA-box at the gene’s promoter (Blake

et al, 2006; Ravarani et al, 2016), CpG islands (Morgan & Marioni,

2018), bivalent chromatin marks (Faure et al, 2017), polymerase

pausing (Boettiger & Levine, 2009) or miRNA binding (Schmiedel

et al, 2015). However, it remains unclear what mechanisms regulate

expression variation in multicellular, developing organisms in a

gene- and tissue-specific manner.

To address this, we devised a machine-learning approach and

performed a systematic analysis of factors underlying variation in

gene expression during embryogenesis to uncover the regulatory

mechanisms involved. To measure expression variation, we used

gene expression data generated from a pool of embryos (~100)

sampled from 75 different isogenic Drosophila melanogaster lines

during embryogenesis (Cannavò et al, 2017). This experimental

design cancels out most stochastic noise (as it is bulk sequencing),

tissue-specific expression pattern (as it is whole embryo) and slight

differences in developmental progression (as it is 100 embryos per
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sample). To dissect the regulatory mechanisms that modulate

expression variation (Fig 1A), we collated over a thousand gene-

specific and genomically encoded features and applied a random

forest model to identify the properties that best explain expression

variation across individuals. As a comparison, we also predict

median expression level across lines using the same features.

Our results show that, overall, increasing regulatory complexity

translates into more robust gene expression. We identified two inde-

pendent mechanisms associated with genes with low expression

variation across individuals: low variable genes either have (i) a

broad transcription initiation region (broad promoters) with high

transcription factor (TF) occupancy, or (ii) narrow initiation regions

(narrow promoters) with RNA Polymerase II (Pol II) pausing and

high regulatory complexity outside their promoter region. In

contrast, genes with high variability generally have narrow promot-

ers and little other regulatory features, suggesting that it may be

rather a lack of “stabilizing” mechanisms that facilitate their noisy

expression. Applying the same framework to human data derived

from tissues across individuals (Lonsdale et al, 2013) identified

similar promoter-associated features to be predictive of expression

variation, thus validating our findings in an independent organism.

Remarkably, these same features are also predictive of differentially

expressed genes when tested on independent datasets from adult

Drosophila subjected to different stress conditions and genetic

perturbations, and in a collection of differential expression data for

humans. These findings suggest that the differential expression

response may be partially explained by genetically encoded gene-

specific features that are unrelated to the treatment applied.

Taken together, our results suggest that gene expression varia-

tion across genetically diverse multicellular organisms is strongly

linked to how the gene is regulated and may reflect evolutionary

constraints on expression precision.

Results

Measuring gene expression variation across individuals

To understand the mechanisms by which gene expression variation

is controlled during embryonic development, we obtained RNA-seq

data from 75 isogenic lines of Drosophila melanogaster embryos at

three different developmental stages (2–4, 6–8 and 10–12 h post-

fertilization) from Cannavò et al (2017). To reduce potential

confounding effects of maternally deposited RNA, we focused on

the late embryonic time-point (10–12 h after fertilization) and

removed genes whose expression decreased between 2–4 and 10–

12 h, resulting in embryonic expression data for 4,074 genes (Mate-

rials and Methods, Appendix Fig S1). For each gene, we calculated

200

400

600

gene1 gene2

E
xp

re
ss

io
n 

le
ve

l

genetic

environmetal

noise buffering

noise amplifica�on

stochastic
...

line 1

line 2

line 75 x 100

x 100

x 100

x 100 0.25

1.00

4.00

10 100 1000
Median expression level

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

−1

0

1

2

10 100 1000
Median expresson level

(r
es

id
ua

l C
V

)
E

xp
re

ss
io

n 
va

ria
tio

n

Variation sourcesVariation sources Output variationOutput variation Before correctionBefore correction After correctionAfter correction

0.6

0.7

0.8

0.9

1.0

5 10 20 30 40 50 60 70 74

Number of samplesC
or

re
la

tio
n 

of
 v

ar
ia

tio
n

w
ith

 fu
ll 

da
ta

se
t

815

815
814

815 815

0.2

0.3

0.4

0.5

0.6

0.7

[4,51] (51,132] (132,275] (275,585] (585,2361]
Quantiles by gene expression level

R
^2

 (
5-

fo
ld

 
cr

os
s-

va
lid

at
io

n)

DatasetDataset PredictionsPredictions PerformancePerformance

permuted variation

permuted level

expression variation

expression level

0.1 0.2 0.3 0.4 0.5

R^2 (5−fold cross validation)

40
74

 g
en

es

expression level
106 significant features

expression variation
93 significant features

A

C

E

B

D
1888 features

Figure 1. Genomic features can predict expression variation independent of expression levels.

A Differences of gene regulatory mechanisms related to noise amplification and noise buffering would result in different observed expression variation given the same
variation sources (left).

B Dependence between coefficient of variation (CV) and median expression level of 4,074 genes across 75 samples (left). Residuals from LOESS regression of CV on the
median were used as the measure of variation throughout the analysis (right). Median expression level and coefficient of variation plotted on log2 scale, red line
represents LOESS regression fit.

C Correlation of expression variation calculated from subsets of samples versus the full dataset (Pearson correlation coefficient). Data are presented as mean � SD (100
independent selections of samples).

D Schematic overview of the random forest models and feature selection with the Boruta algorithm (left). Performance shown as R2 from fivefold cross-validation and
compared to randomly permuted data (right). Data are presented as mean � SD (fivefold cross-validation).

E Performance (R2, fivefold cross-validation) for genes grouped by expression levels (quantiles). Data are presented as mean � SD (fivefold cross-validation), number of
genes per quantile indicated (x-axis). Red dotted line indicates performance of full model.
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its median expression level and the coefficient of variation (CV)

from the normalized read counts across individuals (Materials and

Methods). As variation is highly correlated with the levels of gene

expression (Anders & Huber, 2010; Ran & Daye, 2017; Eling et al,

2018), we used the residuals from a locally weighted regression

(LOESS) of the CV on median expression to obtain a measure of

expression variation that is relative to the expected variation at a

given expression level (Fig 1B).

We confirmed that this measure of variation is highly correlated

with alternative metrics, such as variance-stabilized standard devia-

tion or residual median absolute deviation (Appendix Fig S2A and

B), and robust with respect to the number and identity of samples

used (Fig 1C). Moreover, using the full dataset from Cannavò (Can-

navò et al, 2017), expression variation values were highly corre-

lated across time, especially for consecutive time-points, further

confirming the approach (Materials and Methods, Appendix Fig

S1D). Finally, we observed a strong correlation in expression varia-

tion between pairs of genes in close proximity (Appendix Fig S1E),

as previously observed for neighbouring genes in yeast (Becskei

et al, 2005; Batada & Hurst, 2007).

As these 75 samples came from strains with different genotypes,

we first calculated the proportion of expression variance that is

explained by genetics in cis (taking variants within 50 kb of each

gene into account) using variance decomposition (Materials and

Methods). On average, 6% (median across all genes) of the total

gene expression variation was explained by cis genetics

(Appendix Fig S1F), indicating that more complex genetic effects

and other properties must account for the majority of expression

variation. We reasoned that differences in the extent of expression

variation among genes should reflect inherent differences in their

regulation, including their regulatory complexity and mechanisms

of noise buffering or amplification. Therefore, in the remainder of

this study we investigate the regulatory differences between genes

with high versus low expression variation.

Genomic features predict expression variation independent of
expression levels

To understand the drivers of expression variation, we collected

1,888 gene-specific features (Datasets EV1 and EV2) and used

random forest regression to identify those that are associated with

either expression variation or expression level (Fig 1D). This

allowed us to distinguish between features that are predictive of one

or both properties. The features can be broadly divided into seven

categories: transcription start site (TSS, e.g. core promoter motifs,

chromatin accessibility, TF binding), gene body features (e.g. gene

length, number of exons), 30untranslated regions (UTR, e.g. length,

miRNA motifs), distal regulatory elements (e.g. TSS-distal chro-

matin accessibility, TF occupancy), gene type (e.g. housekeeping

genes, TFs), gene context (e.g. gene density, distance to the borders

of topologically associated domains (TADs)) and genetics (e.g. the

presence of eQTL and a cis genetic component; full description in

Materials and Methods and Dataset EV1).

To restrict our analysis to the important features, we applied the

random forest-based Boruta algorithm, which iteratively selects all

features that predict better than their permuted version (Kursa &

Rudnicki, 2010). This resulted in 93 and 106 predictive features for

expression variation and level, respectively (Fig 1D). Using these

feature sets, our models predicted expression variation and level

with an R2 of 0.45 and 0.43 (fivefold cross-validation), respectively,

while permuting the labels resulted an R2 of zero (Fig 1D). Including

gene expression as a feature leads to a slight improvement in the

random forest performance (DR2 = 0.07, Appendix Fig S2C), even

though expression level and variation are globally uncorrelated by

construction (Fig 1B). To avoid any confounding effects, we decided

to exclude expression level from the features to predict expression

variation, and instead report results for predicting expression level

and expression variation side by side.

To ensure the robustness of our predictions, we performed a

number of analyses: first, we verified that the predictions for varia-

tion are independent of the level of gene expression by showing that

the models performed equally well on genes grouped into quartiles

based on their expression levels (Fig 1E). Second, we ensured that

the predictions are robust to the choice of measure used for expres-

sion variation (Appendix Fig S2D). Third, we tested whether

dynamic gene expression changes during developmental stages can

contribute to the variation predictions. We reran the random forest

models, predicting expression variation for genes grouped based on

their absolute expression change between 6–8 and 10–12 h after

fertilization. For genes with minor expression change between the

two time-points (below median of 0.8), the performance was

comparable to the full model, while for the genes with a stronger

expression change (above 0.8), the R2 dropped to about 0.3

(Appendix Fig S2E). This indicates that some portion of expression

variation comes from dynamic changes in gene expression during

embryogenesis, which is not captured by our features (and thus

reduces the performance of our model for this set of genes).

However, since the performance is the best for genes that vary little

between stages, it indicates that variance explained by our model is

overall not majorly confounded by expression dynamics. Finally,

the model performance does not decrease when training and test

sets come from different chromosomes (Appendix Fig S2F), demon-

strating that the results are not confounded by shared regulatory

features between neighbouring genes.

Taken together, these results establish that gene expression

variation—as well as gene expression levels—can be predicted

based on genomically encoded features, when measured across a

population of genetically diverse individuals during embryogenesis.

The predictions are independent of the gene’s expression level and

are robust to the metric used for measuring variation. These models

can therefore be used as the basis for addressing questions about

buffering mechanisms that regulate gene expression variation

during embryogenesis.

Promoter architecture is the most important predictor of
expression variation

Next, we used this predictive framework to investigate the genomic

features that best explain expression variation and expression level.

We retrieved the features’ “importance score” from the Boruta algo-

rithm and determined the correlation of each feature with both

expression properties (Dataset EV4). Although most features are to

some extent predictive of both expression level and variation, their

relative importance differed substantially (Fig 2A). Being a house-

keeping gene, for example, was strongly predictive of high expres-

sion level while being less important for expression variation.
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Conversely, the presence of a core promoter TATA-box motif is

strongly predictive of high expression variation only (Fig 2A; see

Dataset EV4 for full list). We note that most features are either asso-

ciated with higher variation and lower expression or vice versa,

suggesting that expression level and variation are not completely

independent, as was previously observed (Faure et al, 2017), even

though they are globally uncorrelated (Fig 1B). However, we found

that when we split genes into the categories of the top features (e.g.

housekeeping vs. non-housekeeping) the differences in expression

variation are pronounced at all expression levels (Fig 2B–E): for

example, housekeeping genes (the strongest predictor of expression

level) are less variable than non-housekeeping genes at any level of

expression (Fig 2B). The same holds true for the “Promoter shape”

feature, which is the strongest predictor of variation (Fig 2C), as

A B C

ED

F

Figure 2. Promoter architecture is the most important predictor of expression variation.

A Top 30 important features for predicting expression variation using the Boruta feature selection. Features are ordered by their importance for expression variation
(blue) and show the corresponding importance for level (orange). The absolute value and sign of correlation coefficient are indicated by the triangle size and
orientation, respectively. For binary features, phi coefficient of correlation was used, otherwise Spearman’s coefficient of correlation. Label colours correspond to
feature groups in (F).

B–E Relationship between expression level and expression variation shown as 2D kernel density contours (left) and boxplots (right) for housekeeping genes (B, Cohen’s
d = 0.8), genes separated by promoter shape (C, Cohen’s d = 1.0), number of embryonic conditions with a TSS-proximal DHS (D, Cohen’s d = 1.1 for top vs. bottom
group) and presence of TATA-box at TSS (E, Cohen’s d = 1.4). LOESS regression lines indicated for each gene group, P-values from Wilcoxon test. Boxplots: median
as central band, the first and the third quartiles as lower and upper hinges, the upper and lower whiskers extend from the hinge to the largest/smallest value at
most 1.5 inter-quartile range, respectively. Numbers of genes in each group are shown under the boxplots.

F Performance of random forest predictions (R2) for expression level (orange) and variation (blue) trained on individual feature groups. Data are presented as
mean � SD (fivefold cross-validation), colour code of y-axis labels matches Fig 2A.
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well as other features such as number of developmental conditions

in which a gene had a TSS-proximal DNase hypersensitive site (“#

conditions with DHS (prox)”; Fig 2D) and the presence of a TATA-

box at TSS (“TATA-box”; Fig 2E). This demonstrates that the

features explain expression variation independent of expression

level.

Promoter-associated features (TSS-proximal) are among the

strongest predictors in terms of explanatory power for expression

variation, and include promoter shape, core promoter motifs and

GC-content, Pol II pausing, chromatin accessibility, and TF occu-

pancy at TSS (Fig 2A). Consequently, a model based only on TSS-

proximal features can predict expression variation fairly well with

R2 = 0.37 while performing less well for predicting expression level

(R2 = 0.29; Fig 2F). Although lower than the model using all

features (R2 of variation/level 0.45/0.43), this is markedly higher

than a model on any other feature type alone. For example, the next

most predictive feature classes for variation are gene body (R2 0.27/

0.14) and gene type (0.20/0.25; although more predictive of expres-

sion level), followed by gene context (0.16/0.10). 30UTR features,

which rank third among the most predictive features of expression

levels, show little predictive value for variation (0.06/0.16), and

distal features overall showed a rather weak predictive value for

both variation and level (0.06/0.01). Finally, Genetics was the least

predictive for both variation and level among the seven feature

groups (0.03/0.05), in keeping with the variance decomposition

analysis above.

In summary, our results demonstrate that multiple regulatory

features can independently predict gene expression variation or

gene expression levels. Interestingly, promoter features, rather than

upstream regulatory complexity (such as distal DHS sites), are the

most predictive of expression variation. This is most likely due to

inherent properties of the promoter itself, as promoter architecture

is associated with variation in transcriptional start site usage across

individuals (Schor et al, 2017). Given that housekeeping genes and

TFs tend to have different promoter types (Lenhard et al, 2012;

Arnold et al, 2017; Haberle & Stark, 2018), this suggests that specific

biological functions may have distinct mechanisms to reduce varia-

tion and provide robustness to their expression (e.g. broad promot-

ers; Schor et al (2017)) as seen by models based solely on a gene’s

functional annotation (Gene type in Fig 2F). We cannot exclude that

the low predictive power of some features may partially result from

incomplete information, such as a lack of high-confidence genome-

wide enhancer–gene associations, or masking of cis genetic varia-

tion by trans-acting factors.

Expression variation in broad versus narrow promoter genes
reflects trade-off between expression robustness and plasticity

The most prominent predictive feature for expression variation is

promoter shape index (Fig 2A), which classifies promoters based on

the broadness of their transcriptional initiation region (Rach et al,

2009; Lenhard et al, 2012; FANTOM Consortium and the RIKEN

PMI and CLST (DGT) et al, 2014; Schor et al, 2017). Genes with

narrow promoters generally have higher variation compared to

genes with broad promoters (Fig 2C), and, interestingly, also

comprise a wider range of variation (Fig 3A). Moreover, expression

variation of narrow promoter genes is better explained by genomi-

cally encoded features compared to broad promoter genes

(R2 = 0.37 vs. 0.14), and this difference in performance becomes

more pronounced with more stringently defined narrow and broad

promoter genes (Fig 3B). In contrast, broad promoters themselves

are more robust, their genes have generally less variation in their

expression (Fig 3A and B), and their promoters are more tolerate of

the presence of genetic variants (Schor et al, 2017).

Interestingly, when we group genes from the two promoter

classes into quartiles based on their variation, we find very specific

functions enriched among them: the broad class is strongly enriched

for housekeeping genes (Fisher’s test odds ratio, OR = 15.0, P-

value < 1e-16, Dataset EV5) and GO terms related to basic cellular

processes (cellular transport, secretion and DNA/RNA biogenesis),

with the exception of the top 25% of the most variable genes within

the group being strongly enriched in housekeeping metabolic

processes (Fig 3C, Appendix Fig S3A, Dataset EV6). In contrast,

narrow promoter genes fall into two functional categories depending

on their expression variation: the bottom 50% were enriched in TFs

(OR = 3.0, P-value < 1e-16) and GO terms related to development,

signalling and regulation of transcription, while the top 50% are

enriched in TATA-box genes (OR = 7.9, P-value < 1e-16) and GO

terms related to metabolism, stress response and cuticle develop-

ment (Fig 3C, Appendix Fig S3A). We therefore grouped genes

along the dimensions of promoter shape and expression variation

into three classes (Fig 3A): genes with broad promoters and low

levels of variation in expression (broad), genes with narrow promot-

ers and low expression variation (narrow-low) and genes with

narrow promoters and high expression variation (narrow-high).

Next, we looked at regulatory plasticity of these classes of genes,

defined here as the variation in accessibility (DHS signal) at the

promoter across tissues and developmental time (Materials and

Methods). We observed that narrow promoter genes had high regu-

latory plasticity regardless of their expression variation

(Appendix Fig S3B). In particular, narrow-low genes are robustly

expressed across individuals at the given developmental stage while

having condition-specific regulation. In contrast, broad promoter

genes are characterized by both low expression variation and low

plasticity, which agrees with their housekeeping functions.

Enrichment of low-variable genes in either housekeeping (broad)

or developmental (narrow-low) functions may reflect selection pres-

sure to reduce expression noise in genes essential for viability and

development, as suggested by previous studies (Fraser et al, 2004;

Lehner, 2008; Metzger et al, 2015). One proxy for evolutionary

constraints is sequence conservation across long evolutionary

distances. In keeping with this, sequence conservation between Droso-

phila and human was among the top five most predictive features of

low expression variation, with conserved genes being significantly

less variable (Fig 2A, Wilcoxon test, P-value < 2e-16). Promoter

shape is also correlated with gene conservation: conserved genes are

highly enriched for broad promoters (80% in broad vs. 41% in

narrow) and more enriched in the narrow-low compared to narrow-

high class (54 vs. 28%). Within each class, conserved genes are less

variable (Appendix Fig S3C); hence, sequence conservation provides

additional information about variation constraints across genes.

Overall, these results suggest that expression variation is an

orthogonal component to regulatory plasticity. Regulatory plasticity

was previously defined based on promoter shape information alone,

with broad promoter genes generally being more constitutive and

narrow promoter genes being more condition-specific (Rach et al,
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2009; Lenhard et al, 2012). Regulatory plasticity (constitutive vs.

condition-specific genes) likely reflects sequence properties within

the promoter region, while expression variation may reflect evolu-

tionary constraints on expression robustness with essential and

highly conserved genes being less variable. These findings indicate

a partial uncoupling between expression variation across multicellu-

lar individuals in a controlled environment and variation across

tissues/development, analogous to the uncoupling between plastic-

ity and noise observed in yeast (Lehner, 2010), and suggest different

mechanisms to control expression robustness for genes with ubiqui-

tous versus condition-specific expression.

Two classes of genes with low variation have distinct regulatory
mechanisms

The results above indicate that the partial uncoupling of expression

variation and expression plasticity could be achieved by distinct

mechanisms to ensure expression robustness between different

promoter architectures (broad/narrow). To explore this, we exam-

ined the most predictive features in relation to the different

promoter types. Among the most significant promoter features is

“#conditions with DHS (TSS-prox)” (Fig 2A), which is derived from

a comprehensive tissue- and embryonic stage-specific atlas of open

broad narrow-low

narrow-high

-1

0

1

2

-4 -2 0 2
Promoter shape index

E
xp

re
ss

io
n 

va
ria

tio
n

gene type

housekeeping
TFs (non-hk)
TATA (non-hk)
other

A C

B

1019

1018

1018

1019

0.0

0.2

0.4

0.6

[−5,−2] (−2,−0.5] (−0.5,0.5] (0.5,2]
Quantiles by promoter shape index

R
^2

 (
5−

fo
ld

 c
ro

ss
−

va
lid

at
io

n)

Figure 3. Expression variation in broad versus narrow promoter genes reflects trade-offs between expression robustness and regulatory plasticity.

A Genes separate into three groups based on their promoter shape index (x-axis) and expression variation (y-axis). Each dot represents a gene; colours indicate gene
annotations: housekeeping (orange), non-housekeeping TFs (blue), non-housekeeping with a TATA-box (red) and other (grey). Distributions of promoter shape index
and expression variation across gene groups are shown as density plots. Broad and narrow promoter genes are separated based on shape index threshold of �1
(vertical black line) as in Schor et al (2017). Narrow-low and narrow-high groups are separated based on the median expression variation of narrow promoter genes
(horizontal black line).

B Performance to predict expression variation for genes split by quartiles of promoter shape index. Data are presented as mean � SD (R2 from fivefold cross-validation).
Horizontal lines show performance (mean R2 from fivefold cross-validation) on broad (orange) and narrow (blue) promoter genes separately. Numbers of genes in
each quartile are indicated.

C GO term enrichment (biological process) of genes stratified by promoter shape and expression variation. Top GO terms ranked by P-value are shown (full list in
Dataset EV6). P-values (Benjamini–Hochberg-corrected) and gene ratio from compareCluster function (R clusterProfiler package) are reported. Quartiles of expression
variation (1—lowest, 4—highest) were calculated for broad and narrow promoter genes separately. Quantile intervals for broad and narrow promoter genes provided
in Materials and Methods.
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chromatin regions (DHS data for 19 conditions) during a time-

course of Drosophila embryogenesis (J.P. Reddington, D.A. Garfield,

O.M. Sigalova, K. Aslihan, C. Girardot, R. Marco-Ferreres, R.R.

Viales, J.F. Degner, U. Ohler & E.E.M. Furlong, unpublished data).

The median number of developmental conditions in which a gene

had a DHS site at its promoter was 18, 8 and 1 for broad, narrow-

low and narrow-high genes, respectively (Fig 4A), thus highlighting

again that the narrow-low and broad classes differ in their develop-

mental plasticity. A similar trend was observed for related features,

such as using a compendium of TF occupancy data during embryo-

genesis (Fig 4B), TSS-proximal TF peaks with motifs, or motifs

alone (Appendix Fig S4A and B). To understand how these

promoter-type-specific DHS patterns are regulated, we examined the

24 TFs that were predictive of expression variation in the full model

(Dataset EV4, “med_imp_var” column). Broad promoter genes were

generally strongly enriched for occupancy by ubiquitously expressed

TFs, insulator proteins and chromatin remodelers (e.g. BEAF-32,

MESR4, E(bx); Fig 4C, Dataset EV5; Fisher’s exact test). The narrow

promoters were enriched for occupancy by the Polycomb-associated

developmental factors Trl and Jarid2, with stronger enrichment for

the narrow-low group (Fig 4C). Among the narrow promoters, the

narrow-low were enriched for Jarid2 and Trl with respect to

narrow-high (Fisher’s test odds ratio = 1.86 and 1.43, P-value < 1e-

3). Interestingly, some of the TFs enriched in broad versus narrow

promoters are still predictive of expression variation in the narrow-

promoter-only model (e.g. MESR4, E(bx) and YL-1; Appendix Fig

S4C), while the presence of “narrow” TFs, despite being associated

with low variation in narrow promoters, had the opposite effect in

the broad class (Fig 4C bottom right).

The next most predictive feature in our model is “Pol II pausing

index” (Fig 2A), defined as the density of polymerases in the

promoter region divided by the gene body length (Saunders et al,

2013; Fig 2A). Narrow-low genes have the highest pausing index

(median of 40) followed by broad and narrow-high genes (10 and 7,

respectively; Appendix Fig S4D). Consequently, Pol II pausing is

strongly negatively correlated with expression variation in narrow

promoters (Spearman’s correlation q = �0.28, P-value < 1e-16), yet

showed no significant relationship in broad (Fig 4D), again high-

lighting different mechanisms to confer robust expression. This may

be partially explained by Trl, which can modulate the level of Pol II

pausing (Tsai et al, 2016).

Among the most significant non-promoter features, our model

identified distal regulatory complexity (“#TF motifs (dist)” and

“#DHS peaks (dist)” in Fig 2A) and post-transcriptional events

(“#miRNA motifs” and “#RBP motifs” in Fig 2A) as predictive of

expression variation. For distal regulatory complexity, narrow-low

had the highest number of associated distal regulatory elements

(median of 6), defined as DHS within 10 kb of the TSS, followed by

broad (4) and narrow-high (4) genes (Appendix Fig S4G). Conse-

quently, the number of distal DHS is negatively correlated with

expression variation in genes with narrow promoters (q = �0.22, P-

value < 1e-16) while being uncoupled from variation for broad

(Fig 4F). Similarly, narrow-low genes have a higher number of

miRNA motifs in their 30UTRs (median of 35) compared to broad

(20) and narrow-high (14) genes (Appendix Fig S4E), which again

was negatively correlated with variation in narrow promoter genes

only (q = �0.31, P-value < 1e-16; Fig 4E). Similar results were

obtained for the number of RNA-binding protein (RBP) motifs,

which have an effect for narrow, but not for broad, genes

(Appendix Fig S4F).

In summary, these findings provide strong evidence that robust-

ness in gene expression across individuals is conveyed by different

mechanisms depending on the gene’s promoter type: in broad

promoter genes, robust expression is likely a result of a plethora of

broadly expressed TFs that bind to the core promoter and keep the

chromatin constitutively accessible, compatible with their house-

keeping roles. Narrow promoter genes, in contrast, seem to be regu-

lated by a smaller number of (narrow-specific) TFs, and their

robustness is conveyed through mechanisms that involve Pol II

pausing, distal regulatory elements and post-transcriptional regula-

tion. This suggests that broad and narrow promoter types have

distinct mechanisms to regulate expression variation that are not

necessarily transferable. This is possibly related to the relatively

higher regulatory plasticity required of the narrow-low genes. Our

results generalize findings on 14 developmental control genes,

showing that Pol II pausing at promoters is linked to more synchro-

nous gene activation, thereby reducing cell-to-cell variability in the

activation of gene expression (Boettiger & Levine, 2009). Similarly,

miRNAs have been proposed to buffer expression noise (Schmiedel

et al, 2015; preprint: Schmiedel et al, 2017). Our data put these find-

ings in a more global context as part of a distinct mechanism for a

particular promoter type.

We summarized these mechanisms as two indices based on the

ranked averages of the corresponding features: broad regulatory

index (number of TF peaks, motifs and conditions with DHS at the

TSS) and narrow regulatory index (Pol II pausing index, number of

distal DHS and miRNA motifs), respectively (Fig 4G), which nicely

separate the three gene groups. Interestingly, we found no evidence

for a specific noise-amplifying factor, except for the TATA-box. Yet,

even for TATA-box genes, since they are depleted of all the afore-

mentioned robustness features (Appendix Fig S4H), the observed

high variation may result from a lack of robustness-conveying

factors rather than the presence of a TATA-box.

Expression variation can predict signatures of
differential expression

In the analysis above, we identified two distinct mechanisms that

regulate expression variation, which are directly encoded in the

genome. In the following, we assess the impact of these findings for

interpreting gene expression studies in general.

We postulate that the expression variation of a gene across indi-

viduals can be interpreted as its ability to be modulated by any

random perturbation. If this holds true, we expect expression varia-

tion to be predictive of a gene’s response to changes in the environ-

ment. To test this, we used an independent gene expression dataset

from adult flies that were subjected to different stress conditions

related to temperature, starvation, radiation and fungus infection

(Moskalev et al, 2015). In agreement with our hypothesis, genes

that are differentially expressed in at least one stress condition (DE)

also have high expression variation in our embryonic dataset

(Fig 5A, Wilcoxon test, P-value < 1e-16), as seen for both up- and

downregulated genes (Appendix Fig S5A). Remarkably, this held

true for every individual stress condition (Appendix Fig S5B).

Differentially expressed genes are moderately enriched for

narrow promoters (63 vs. 52% for non-DE genes, Fisher’s test odds
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Figure 4. Different regulatory mechanisms lead to expression robustness in genes with broad and narrow promoters.

A, B Chromatin accessibility—number of developmental conditions with a DHS at the promoter (A), Cohen’s d = 1.0 for broad versus narrow-low (d = 0.8 for narrow-
low vs. narrow-high), or number of different TF peaks (B), Cohen’s d = 0.3 for broad versus narrow-low (d = 0.3 for narrow-low vs. narrow-high) overlapping TSS-
proximal DHS for genes stratified into broad, narrow-low and narrow-high (defined in Fig 3A). P-values from Wilcoxon test. In (B), only genes with TSS-proximal
DHS peak are considered. Boxplots: median as central band, the first and the third quartiles as lower and upper hinges, and the upper and lower whiskers extend
from the hinge to the largest/smallest value at most 1.5 inter-quartile range, respectively. Numbers of genes in each group indicated.

C Top: enrichment (odds ratio from Fisher’s test) of ChIP peaks for 24 TFs in TSS-proximal DHSs of broad, narrow-low and narrow-high genes. Only TFs with
predictive importance for expression variation (based on Boruta) were included. For each TF, Fisher’s test was performed separately for each category versus all
other. Colour = log2 odds ratio from Fisher’s exact test (two-sided), grey = non-significant comparisons (adjusted P-value cut-off of 0.01, Benjamini–Hochberg
correction on all 24x3 comparisons). Strong enrichments (odds ratio above 2) are outlined in red. Lower panels: the presence of BEAF-32 (left) and Trl (right) ChIP-
seq peaks in TSS-proximal DHS, plotted in coordinates of promoter shape index and expression variation (same as Fig 3A). Each dot represents a gene (grey if TF
peak is absent, blue for Trl, orange for BEAF-32). Boxplots on the left and right sides of the scatter plots compare expression variation (y-axis) of genes with and
without ChIP-seq peak (x-axis) for broad and narrow promoter genes, respectively. Numbers of genes in each category are indicated. Boxplots: median as central
band, the first and the third quartiles as lower and upper hinges, and the upper and lower whiskers extend from the hinge to the largest/smallest value at most 1.5
inter-quartile range, respectively. P-values from Wilcoxon test.

D–F Relationship between polymerase pausing index (D), number of miRNA motifs in 30UTR of a gene (E), number of TSS-distal DHS peaks (F) and expression variation
for broad (orange) and narrow (blue) promoter genes. Each dot represents a gene, lines linear regression fits, q = Spearman’s correlation coefficient.

G Gene scores by two indices constructed as the normalized rank average of: number of embryonic conditions with DHS, number of TF peaks, number of TF motifs
(broad regulatory index; left), and number of TSS-distal DHS, number of miRNA motifs, Pol II pausing index (narrow regulatory index; right). Colours correspond to
broad (orange), narrow-low (blue) and narrow-high (red)) gene groups. P-values < 1e-09 for all pairwise comparisons of the distributions (Wilcoxon test).
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ratio = 1.5, P-value = 1.5e-10). Within both narrow and broad

promoter groups, DE genes are characterized by condition-specific

chromatin accessibility at their promoter (Appendix Fig S5C), lower

number of TSS-distal DHSs (Appendix Fig S5D), lower Pol II pausing

index (Appendix Fig S5E) and a lower number of miRNA motifs

(Appendix Fig S5F). Overall, DE genes showed lower regulatory

complexity as reflected in our broad and narrow indices (Fig 5B

and C).

To assess this association more systematically, we next examined

whether the model for predicting expression variation could also

identify differentially expressed genes. We trained a random forest

model using our embryonic data to classify the top 30% versus

bottom 30% of variable genes and used it to predict differential

expression in adult flies subjected to different stresses (Materials

and Methods). Remarkably, the model predicted differential

expression on the non-overlapping test set with an AUC of 0.65 and

0.74 when trained to predict embryonic variation for all genes and

for narrow promoter genes, respectively (Fig 5D). This demon-

strates that differential expression can be predicted based on a

model trained for predicting expression variation. Since the model’s

performance was better when trained only on variation in narrow

promoters, it is likely that the narrow-specific regulatory mecha-

nisms, such as microRNA and enhancers, determine a gene’s

responsiveness to stress. This is also reflected by the strong dif-

ferences in narrow index between DE and non-DE genes (Fig 5C).

To assess whether similar associations with expression variation

exist for genes that are differentially expressed upon genetic pertur-

bations, we collected data from 53 differential expression studies

with genetic perturbations in Drosophila (Materials and Methods

and Dataset EV8). For each study, we compared the mean
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Figure 5. Expression variation can predict signatures of differential expression upon multiple conditions.

A Expression variation of genes differentially expressed (DE) upon any stress conditions in Moskalev et al (2015) compared to non-differentially expressed genes (non-
DE), Cohen’s d = 0.62.

B, C Differences in scores by the broad and narrow indices (from Fig 4G) between DE and non-DE genes (from Fig 6A) split by promoter shape: broad index (B), narrow
index (C), P-values from Wilcoxon rank test, numbers indicate number of genes. Cohen’s d: (B) 0.25 and 0.60, (C) 0.75 and 0.90 for broad and narrow promoter
genes, respectively. Boxplots: median as central band, the first and the third quartiles as lower and upper hinges, and the upper and lower whiskers extend from
the hinge to the largest/smallest value at most 1.5 inter-quartile range, respectively.

D ROC curves for predicting DE (from Fig 6A) with random forest models trained on expression variation (top 30% of variable genes vs. bottom 30% of variable genes)
in all genes (light blue) or narrow promoter genes (dark blue). Models were trained and tested on non-overlapping subsets of genes in 10 random sampling rounds
(all plotted). Median AUC values from 10 sampling rounds.

E Difference in expression variation for DE versus non-DE genes in 53 datasets with different genetic perturbations (Dataset EV8). Cohen’s d and P-value from
Wilcoxon rank test for comparing DE versus non-DE genes are shown as scatter plot; each dot represents one dataset. Vertical dashed line indicates cut-off on
minimal effect size (0.2).

F Expression variation (y-axis) of genes found as DE in different numbers of genetic perturbation studies (groups on the x-axis), P-values from Wilcoxon rank test,
numbers indicate number of genes. Boxplots: median as central band, the first and the third quartiles as lower and upper hinges, the upper and lower whiskers
extend from the hinge to the largest/smallest value at most 1.5 inter-quartile range, respectively.

G–I Same as (B–D) for comparison between genes that were found as DE in more than 10 studies with genetic perturbation versus genes DE in 0–10 studies. Cohen’s d:
(G) 0.86 and 0.41, (H) 0.14 and 0.43 for broad and narrow promoter genes, respectively (absolute values). Boxplots: median as central band, the first and the third
quartiles as lower and upper hinges, and the upper and lower whiskers extend from the hinge to the largest/smallest value at most 1.5 inter-quartile range,
respectively.
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expression variation of all DE versus non-DE genes (union of condi-

tions, if multiple conditions were tested) using Cohen’s d as the

measure of effect size and Wilcoxon rank test for significance. For

the majority of studies (83%, 44/53), DE genes were more variable

compared to non-DE genes (Cohen’s d > 0.2; Fig 5E). These find-

ings, based on genetic perturbations, agree with the conclusions

drawn from stress response experiments described above.

In addition, we observe a positive relationship between the

number of studies in which a gene was differentially expressed and

its degree of expression variation in our data (Fig 5F). One interpre-

tation of this is that genes observed in only one specific perturbation

may be more direct targets, and thus potentially more interesting to

follow up than those that frequently change their expression regard-

less of the treatment. The latter may reflect a group of genes that is

highly responsive to any environmental differences between test

and control samples or stress induced by the genetic perturbation.

Genes that were differentially expressed in multiple studies were

strongly enriched in narrow promoters (89% of DE genes in more

than 10 studies have narrow promoter versus 46% of DE genes in

0–10 studies, Fisher’s test odds ratio = 9.7, P-value < 1e-16). Within

the narrow promoter group, genes that were differentially expressed

in more than 10 studies had significantly lower regulatory complex-

ity, as indicated by various regulatory features (Fig 5G and H,

Appendix Fig S5G–J). Finally, the model for predicting expression

variation (top 30 vs. bottom 30% of variable genes) can identify

genes differentially expressed in multiple experiments (DE in more

than 10 datasets vs. DE 0–10 datasets) following the same methodol-

ogy described above. The model was performed with AUC of 0.78

on all genes (mostly, classifying broad vs. narrow promoter genes)

and AUC of 0.74 on narrow promoter genes only (Fig 5I).

Taken together, these findings indicate that expression variation

across individuals is strongly linked to differential expression

between conditions.

Human promoter features predict both expression variation and
differential expression

Given that gene expression variation across individuals can be

predicted from genomic features in Drosophila, we next asked

whether this holds true in humans, and whether the predictive

features are conserved. We used high-quality RNA-seq datasets from

the GTEx project comprising 43 tissues with data for at least 100

individuals (Lonsdale et al, 2013). For each tissue, we measured

expression variation across individuals using the coefficient of varia-

tion corrected for mean–variance dependence, applying a similar

approach as for Drosophila (Materials and Methods). Since gene

expression variation values were highly correlated across all tissues

(Appendix Fig S6), we also computed the mean of tissue-specific

variations (mean variation) as potentially more robust metrics.

Since TSS-proximal features were the most predictive of expres-

sion variation in fly, we focused on promoter features to train the

models (Materials and Methods). This included promoter shape, TF

binding at the TSS, chromatin states and several sequence features

(TATA-box, GC-content, CpG islands). To predict the mean expres-

sion variation, promoter shape and chromatin state features were

aggregated across multiple tissues. In addition, we collated three

tissue-specific datasets for muscle, lung and ovary by matching

RNA-seq, CAGE and chromHMM datasets (Materials and Methods).

Based only on these features, random forest models were able to

predict expression variation and level within each tissue to a similar

extent as in Drosophila embryos (Fig 2F) with R2 ranging between

0.38 and 0.46 for expression variation and between 0.19 and 0.24

for expression level (Fig 6A). Aggregating expression variation

across tissues yielded even higher performance, with R2 of 0.56

versus 0.31 for mean level across all expressing tissues. The overall

performance was robust to changes in the numbers of samples

including stratification by age or sex (Appendix Fig S8A).

The predictive features of expression variation in humans are

highly overlapping with those in Drosophila (Fig 6B and C), and

include promoter shape, TATA-box and the number of TFs binding

to the promoter. An additional feature highly predictive of genes

with low expression variation was the presence of CpG islands, in

line with previous findings in single cells (Morgan & Marioni, 2018),

while bivalent TSS state was predictive of high expression variation,

in line with previous studies (Faure et al, 2017; Fig 6B and C). We

also uncovered a number of transcription factors predictive of low

variation, including GABPA, YY1 and E2F1 (84 predictive TFs in

total, Dataset EV18). Similar to Drosophila, the presence of TSS-

proximal peaks of all 84 predictive TFs was associated with reduced

mean expression variation, again suggesting that high variation (in

bulk RNA-seq) is due to a lack of buffering mechanisms rather than

a specific mechanism for noise amplification. Extending the distance

around the TSS did not improve the correlation between the pres-

ence of TF peaks and expression variation, indicating that the key

regulatory information is already contained within the core

promoter region (Appendix Fig S8B).

We next asked whether expression variation across individuals is

predictive of differential expression in different conditions, similar

to what we observed in Drosophila. For this, we used differential

expression prior (DE prior), a metric that integrates more than 600

published differential expression datasets and reflects the probabil-

ity of a gene to be DE irrespective of the biological condition tested

(Crow et al, 2019). Indeed, DE prior is correlated with expression

variation in all tissues (median Spearman’s correlation q = 0.50)

while being uncorrelated with expression level (Appendix Fig S6). A

model trained to predict the top 30% versus bottom 30% of the

most variable genes (based on the features predictive of mean

expression variation) could predict DE prior with an AUC of 0.75

versus 0.85 when both training and testing are done on DE prior

(Fig 6D, Materials and Methods), and predictive features for varia-

tion showed similar effects in DE prior (Fig 6E). This indicates that

inherent promoter features can explain expression variation and the

probability of differential expression to a similar extent—potentially

due to partially overlapping underlying mechanisms.

Importantly, both expression variation and DE prior were signifi-

cantly lower for essential genes while being higher for GWAS hits

and common drug targets (Fig 6F, Appendix Fig S8C). Higher

expression variation of the latter agrees with an interpretation that

these genes are less buffered to withstand different sources of varia-

tion (Fig 1A) and hence are more likely to change in expression

level upon different types of perturbations including genetic or envi-

ronmental factors.

In summary, despite significant differences in promoter regions

between humans and Drosophila (e.g. the presence of Drosophila-

specific core promoter motifs, human-specific CpG islands, predomi-

nately unidirectional versus bidirectional transcription), promoter
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Figure 6. Features in human promoters predict both expression variation and differential expression.

A Performance of random forest predictions (R2) for expression level (orange) and variation (blue) trained on expression variation in tissue-specific RNA-seq (lung, ovary
and muscle), as well as mean variation across 43 tissues (Materials and Methods). Data are presented as mean � SD (fivefold cross-validation)

B Top 20 features for predicting expression variation using Boruta feature selection. Features ordered by their importance for expression variation (blue), showing the
corresponding importance for level (orange). Shapes indicate four different datasets (three tissues and mean variation).

C Differences in expression variation for some of the top predictive features from (B). “Share TssBiv > 0” indicates genes that have “TSS bivalent” chromatin state
(chromHMM, Materials and Methods) in at least one tissue. “Share broad > 0.8” indicates genes that have broad promoter in at least 80% of tissues where it is
expressed. “#TF > 20” indicates genes with more than 20 different TF peaks in TSS-proximal region. “With TATA-box” and “With CGI” indicate the presence of TATA-
box and CpG island in gene core promoter, respectively. P-values = Wilcoxon test, number of genes indicated. Cohen’s d: 0.72 (“Share TssBiv > 0”), 0.93 (“Share
broad > 0.8”), 1.43 (“#TF > 20”), 1.02 (“With TATA-box”), 1.03 (“With CGI”). Boxplots: median as central band, the first and the third quartiles as lower and upper
hinges, and the upper and lower whiskers extend from the hinge to the largest/smallest value at most 1.5 inter-quartile range, respectively.

D ROC curves for predicting DE prior (top 30% vs. bottom 30%) with random forest models trained on DE prior (light blue) and mean expression variation (dark blue).
Models trained and tested on non-overlapping subsets of genes in 10 random sampling rounds (all plotted), with median AUC values indicated.

E Differences in DE prior for some of the top predictive features from (B). “Share TssBiv > 0” indicates genes that have “TSS bivalent” chromatin state (chromHMM,
Materials and Methods) in at least one tissue. “Share broad > 0.8” indicates genes that have broad promoter in at least 80% of tissues where it is expressed.
“#TF > 20” indicates genes with more than 20 different TF peaks in TSS-proximal region. “With TATA-box” and “With CGI” indicate the presence of TATA-box and CpG
island in gene core promoter, respectively. P-values = Wilcoxon test, number of genes indicated. Cohen’s d: 0.71, 0.48, 0.5, 0.52, 0.35, respectively (same order as in
(C)). Boxplots: median as central band, the first and the third quartiles as lower and upper hinges, and the upper and lower whiskers extend from the hinge to the
largest/smallest value at most 1.5 inter-quartile range, respectively.

F Mean expression variation of specific genes groups (GWAS hits, essential genes, drug targets) compared to the distribution of mean expression variation for all genes
in the dataset. P-values = Wilcoxon test, Cohen’s d: 0.2, 0.71 and 0.74 for GWAS catalogue, drug targets and essential genes, respectively (comparison to all genes).
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features are highly predictive of expression variation in both

species. Genes with high variation tend to also have differential

expression across diverse conditions, and are significantly enriched

in disease-associated loci (GWAS hits).

Discussion

Our analysis suggests that expression variation across a population

of multicellular genetically diverse individuals is gene-specific and

can be explained by genetically encoded regulatory features, all

highly correlated with core promoter architecture. Overall, we found

that regulatory complexity positively correlates with robust gene

expression. Yet, we identified two independent mechanisms that

decrease expression variation depending on the core promoter archi-

tecture. Genes with broad core promoters in Drosophila were overall

less variable and characterized by ubiquitously open chromatin and

a high number of transcription factors (TFs) binding to the TSS-

proximal region. In contrast, genes with a narrow core promoter

had a much higher spread of expression variation, which was, in

addition to TFs, modulated by regulatory complexity outside of core

promoters (miRNAs, number of enhancers and Pol II pausing).

Remarkably, we found similar promoter-related features were

predictive of expression variation across human individuals by

applying the same predictive framework to tissue-specific RNA-seq

datasets. This was surprising given the differences in promoter

features between Drosophila and mammals, with higher heterogene-

ity within broad promoters and high regulatory importance of CpG

islands (Lenhard et al, 2012; Haberle & Stark, 2018), and suggests

that some core promoter properties are ancient features that reduce

expression noise, which agrees with conclusion of previous studies

(Carey et al, 2013; Metzger et al, 2015).

It is interesting to note that differences in expression variation

within broad promoter genes are poorly explained by the extensive

set of regulatory features examined here (Fig 3B). One explanation

is that this is due to the overall low variability of broad promoter

genes—broad promoters, for example, are more tolerant of the pres-

ence of natural sequence variation across individuals (Schor et al,

2017). However, we cannot exclude the possibility that expression

variation of these genes is better explained by orthogonal regulatory

mechanisms not considered in this study, such as mRNA degrada-

tion rates or post-transcriptional modifications. In addition, the

weaker (though significant) correlation of enhancer complexity with

expression variation might be the result of incorrect enhancer to

target gene assignment, which is one of the current challenges in

genomics. Beyond the scope of this study, a systematic analysis of

post-transcriptional regulation and enhancer complexity on expres-

sion variation presents an interesting direction for future research,

when such datasets become available.

Gene expression variation can arise from a multiplicity of

stochastic, environmental and genetic factors, and defining the exact

cause of expression variation in a particular experiment is likely an

intractable task. Even for single-cell experiments, which can control

for genetic and macro-environmental factors, there is ongoing

debate as to whether the observed gene-specific expression variation

can be explained by intrinsic (e.g. transcription bursting) or extrin-

sic (cell-to-cell variability) factors (Battich et al, 2015; Larsson et al,

2019; Foreman & Wollman, 2020), or whether these sources are

indistinguishable (Eling et al, 2019). Yet, despite the differences in

interpretation of the underlying sources of variation, there is a

consensus that genes differ in their expression variation. Here, we

found that gene expression variation, in bulk data from thousands

of cells, was highly reproducible across different datasets, including

developmental time-points in Drosophila and tissues in humans,

and did not depend on the identity of the samples used. This

suggests that gene expression variation, along with expression level,

can be used as an informative readout of gene function and regula-

tion in multiple biological contexts.

Interestingly, we recapitulated most of the regulatory features

previously linked to expression noise in single-cell experiments

(Boettiger & Levine, 2009; Perry et al, 2010; Ravarani et al, 2016;

Faure et al, 2017; Morgan & Marioni, 2018; preprint: Schmiedel

et al, 2017), despite the fact that the composition of variation

sources is very different between bulk and single-cell experiments.

A number of studies have proposed that robustness to stochastic

noise and robustness to environmental and genetic variation are

highly correlated (Ciliberti et al, 2007; Lehner, 2008; Kaneko, 2011).

In line with this hypothesis, expression variation in bulk is predic-

tive of single-cell noise in yeast (Dong et al, 2011) and gene expres-

sion variation across individuals in human tissue samples correlates

with promoter strength and multiple epigenetic features (Alemu

et al, 2014). Indeed, genes that have evolved mechanisms to buffer

stochastic variation in the levels of their expression may also be

insensitive to non-stochastic changes, including genetic and envi-

ronmental variation, as the same mechanisms would constrain them

both (Lehner, 2008).

In line with the above, it was recently shown that genes with DE

across many experiments are generally predictable, and to a large

extent seem to reflect some basic underlying biology of the genes

rather than the specific conditions tested (Crow et al, 2019). Our

results confirm and substantially extend this model—we show that

the likelihood of a gene to be differentially expressed is highly corre-

lated with the gene’s expression variation (independent of expres-

sion level) and the corresponding predictive regulatory features,

suggesting that the same mechanism confers robustness to different

kinds of perturbations. Further, we observe that genes that are dif-

ferentially expressed in multiple studies are highly variable across

individuals. These results have important implications, as standard

differential expression pipelines correct for variance dependence on

the expression level (Love et al, 2014) but do not take any other

gene-specific properties into account. Our findings suggest that

considering gene-specific differences in expression variation may

improve specificity and interpretability of differential expression

results as it will distinguish between genes that have an inherent

tendency to respond to any perturbation from those specific to the

given experiment. Interestingly, we observed similar patterns for

naturally occurring stress conditions and experimentally induced

genetic manipulations. The similarity might result from the fact that

genetic perturbation itself introduces stress to the organism and

changes cellular environment, hence triggering non-specific

response from more variable genes.

Finally, here we focused on the most general mechanisms

robustly linked to gene expression variation regardless of the speci-

fic tissue identity or developmental stage. There is, however, accu-

mulating evidence that changes in expression variation can be an

important indicator of specific biological processes happening in an
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organism. In particular, stochasticity of expression can differ by

developmental stage, i.e. following an hourglass pattern in early

development (preprint: Liu et al, 2019) or decreasing with cell fate

commitment (Richard et al, 2016; Eling et al, 2018). On the other

hand, an increase in expression stochasticity has been linked to

ageing (Viñuela et al, 2018; Kedlian et al, 2019) and certain disease

conditions (Zhang et al, 2015; Ran & Daye, 2017). Hence, combin-

ing information on expected gene expression variation with tissue

or disease-specific data might provide additional insights into condi-

tion-specific gene regulation in complex biological systems.

Materials and Methods

Gene expression level and variation in Drosophila DGRP lines

Gene expression quantification
To quantify gene expression, we reprocessed the single-end strand-

specific 30-Tag-seq data (Cannavò et al, 2017) for 75 inbred wild

Drosophila isolates from the Drosophila melanogaster Genetic Refer-

ence Panel (Mackay et al, 2012) at three time-points during embryonic

development (2–4, 6–8 and 10–12 h after fertilization, 225 samples in

total, each containing pool of approximately 100 embryos). Reads

were trimmed using Trimmomatic v.0.33 software (Bolger et al, 2014)

with the following parameters: -phred33 HEADCROP:7 CROP:43.

Alignment to the dm6 genome version (dos Santos et al, 2015) was

done with bwa v.0.7.17 aln (parameters: -n 5 -e 10 -q 20) and samse

(parameters: -n 1) tools (Li & Durbin, 2010). Reads with mapping

quality below 20 were removed using samtools view v1.9 (Li et al,

2009). Expression was quantified with HTSeq-count v.0.9.1 (Anders

et al, 2015; parameters: -m intersection-nonempty -f bam -s yes -q -i

Parent). PolyA sites were identified by reproducing the analysis of the

polyadenylation dataset published in Cannavò et al (2017) after

mapping the reads to the dm6 genome assembly. We observed a

partial failure of strand specificity in generating the sequencing

libraries: highly expressed polyA sites showed a corresponding anti-

sense site. To remove these artefacts, we excluded polyA sites that

were perfectly included in an antisense site. Reads that spanned both

the last transcribed base and the subsequent polyadenylation tail

allowed for single-base resolution identification of the cleavage site.

We extended polyA sites 200 bp downstream or up to the nearest

polyA site. To identify cleavage sites within our polyA sites, we

produced strand-specific coverage tracks of the 30-terminal base for

each of the polyadenylation reads. Within each polyA region, we iden-

tified the major cleavage site as the genomic base with the highest 30-
terminal base coverage.

Expression data filtering and measuring expression variation
All samples selected for the analysis had high sequencing quality and

were accurately staged, as described in original publication (Cannavò

et al, 2017). Using principal component analysis on the expression

counts from all 225 samples after applying variance stabilization

transformation from DESeq2 (Anders & Huber, 2010), we confirmed

that samples were clustered by developmental time-point

(Appendix Fig S1A) and not sequencing batch (Appendix Fig S1B).

Expression counts from 225 samples were jointly normalized

using size factor normalization from DESeq2 package (Anders &

Huber, 2010). For each time-point, we calculated median expression

and coefficient of variation (CV, standard deviation divided by

mean) for each gene across 75 samples. Genes with zero median

expression were removed as non-expressed. The CV exhibited a

strong negative relationship with median expression level (Fig 1B),

which agrees with previous studies (Anders & Huber, 2010; Faure

et al, 2017; Ran & Daye, 2017; Eling et al, 2018). To account for this

relationship, we employed local polynomial regression (LOESS;

loess function in R from stats library, degree = 1, span = 0.75; R

Development Core Team, 2013) of the CV on the median expres-

sion, and used the residuals (resid_cv, residual coefficient of varia-

tion) in all subsequent analyses, referring to them as gene

expression variation.

To check whether expression variation reflects expression

heterogeneity (across samples) at any given expression level, we

took the following approach: genes were grouped into 20 bins by

their median expression level across 75 samples (separately for each

time-point). Within each bin, genes were ordered by their residual

CV (x-axis), and normalized expression counts for each sample

were plotted on the y-axis (example of 10–12 h in Appendix Fig

S1C). For almost all expression bins, the spread of expression values

increased with higher residual CV, except bin 20 (top 5% genes by

expression level) and to a lesser extent bin 1 (bottom 5%). Based on

this analysis, the top and bottom 5% of expressed genes were

excluded from the analysis.

We focused our analysis on the latest developmental stage (10–

12 h) and removed genes that decreased in expression between 2–4

and 10–12 h after fertilization. This was done to reduce confound-

ing effects of maternal mRNA degradation and focus on the stage

when the zygotic genome is fully activated (both processes happen-

ing from 2 h post-fertilization onwards; Tadros and Lipshitz

(2009)). In total, we excluded 3,651 genes, from which 90% were

detected as maternally deposited (genes expressed in unfertilized

eggs; see below). In addition, genes with the strongest decrease in

expression (threefold or more) were highly enriched in cell cycle

biological processes (Dataset EV7), and cell cycle is known to slow

down at later developmental stages (Edgar & O’Farrel, 1989). Hence,

we reasoned that variation of these genes might be strongly

confounded by extrinsic factors (maternal mRNA degradation and

cell cycle) that are not of particular interest for this analysis.

Overall, the following filtering steps were applied to the data,

and the corresponding genes were excluded from the final dataset:

1 Genes with zero median expression level across samples (as

non-expressed genes);

2 Genes falling into top and bottom 5% by expression level (as

potential source of outliers);

3 Genes that decreased in expression between 10–12 and 2–4 h

after fertilization (as maternal genes with role in early embry-

onic development and potential targets for maternal mRNA

degradation)

4 Genes with missing values in the feature table (see below)

unless the feature can be easily imputed, i.e. 0 for the absence

of transcription factor motif

Hence, our final dataset included 4,074 genes at 10–12 h post-

fertilization. The final measure of expression variation was calcu-

lated as described above on the final set of genes to avoid residual

dependence on the expression level after filtering (Fig 1B,

“resid_cv” column in Dataset EV2). Expression summary statistics
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for all three time-points including expression variation calculated at

several intermediate filtering steps are provided in Dataset EV3.

Expression variation on the subsets of samples
To test robustness of expression variation to the selection of

samples (and hence potential batch effects), we performed multiple

rounds of sample subsetting. Our full dataset comprised 75 samples

(75 DGRP lines). For a given subset size N, we randomly selected N

samples from the full dataset. Gene expression variation was calcu-

lated on this subset as described above (including fitting LOESS),

and the Pearson correlation coefficient of the resulting variation

values with the variation on the full dataset was recorded. Radom

selection of samples was performed 100 times for each subset size

(N = 5, 10, 20, 30, 40, 50, 60, 70 and 74 samples). Mean and stan-

dard deviation of correlation coefficients upon 100 rounds of

sampling for each subset size are shown in Fig 1C.

Expression level and variation of neighbouring genes
For this analysis, we considered all pairs of genes located on the

same chromosomes and with TSS-to-TSS distance below 100 kB.

Gene pairs were binned into five quantiles based on the distance

between their TSSs. Coordinates of the topologically associated

domains (TADs) were taken from the high-resolution Hi-C in Kc

cells (Ramı́rez et al, 2018). Genes were assigned to TADs based on

their TSS coordinates, and for all pairs of genes, we defined whether

they belong to the same TAD or span the TAD border. This resulted

in 10 groups of gene pairs (five quantiles by distance in same/dif-

ferent TADs). In each group, we computed the Spearman correlation

coefficient in expression levels and in expression variations between

genes in pairs (correlation between two vectors: first gene in pair

vs. second gene in pair, counting each pair only once). Results are

shown in Appendix Fig S1E.

Alternative measures of expression variation
As alternative measures of expression variation, we tested the

following metrics:

1 sd_vst: standard deviation after applying variance-stabilizing

transformation from DESeq2 package to remove mean–vari-

ance dependence (instead of taking LOESS residuals)

2 resid_sd: LOESS residuals from regressing standard deviation

on median expression

3 resid_mad: LOESS residuals from regressing median absolute

deviation on median expression

4 resid_iqr: LOESS residuals from regressing inter-quartile range

(between 25th and 75th percentiles) on median expression

These measures were calculated on the final set of 4,074 genes at

10–12 h post-fertilization. Dependences on the median expression

before and after correction for these measures are provided in

Appendix Fig S2A. The Pearson correlation coefficients with expres-

sion variation measured by resid_cv are shown in Appendix Fig 2B.

Compiling Feature table for Drosophila dataset

The full list of features used in this analysis is provided in Dataset

EV1. The features were grouped into seven classes (column “Feature

class” in Dataset EV1): Genetics, Gene type, Gene body, TSS, 30UTR,
Distal regulators and Gene context. Below are the more detailed

descriptions of how individual features were generated. The final

dataset is provided in Dataset EV2.

Basic gene properties and functional annotations
We used Flybase v6.13 genome annotation to find gene length

(length_nt), number of transcripts (n_transcripts) and number of

exons (n_exons) for each gene. Number of exons was defined as

total number of unique exons regardless of transcript isoforms.

Next, we used several gene annotations from in-house or external

sources to identify specific functional groups of genes. Ubiquitously

expressed genes (is_ubiquitous) were defined based on BDGP data-

base (Tomancak et al, 2002) as genes having ubiquitous expression

pattern in at least one developmental stage (data available for Droso-

phila embryonic stages 4–6, 7–8, 9–10, 11–12 and 13–16). Mater-

nally deposited genes (is_maternal) were defined as genes

expressed in unfertilized eggs the vgn line of Drosophila melanoga-

ster at 2–4 or 6–8 h after egg laying (Ghavi-Helm et al, 2019).

Housekeeping genes (is_housekeeping) were defined following the

methodology in Ulianov et al (2015) as genes expressed with

RPKM > 1 in all samples from Graveley et al (2011). The list of tran-

scription factors (is_tf) was taken from Hammonds et al (2013).

Human orthologs for Drosophila genes
Human orthologs for Drosophila melanogaster genes were identified

with DIOPT-DRSC Integrative Ortholog Prediction Tool (Hu et al,

2011), and two features provided by the tool were added for each

gene—conservation score (conserv_score, continuous variable indi-

cating confidence of ortholog prediction) and conservation rank

(conserv_rank, discrete variable taking the following values: none,

low, moderate and high). Genes with “high” conservation rank were

referred to as “conserved with human” (e.g. Appendix Fig S3C).

Genetics
Cis share (cis) was used as an estimate of the contribution of genetic

variation to the total gene expression variation. To calculate it, we

used LIMIX variance decomposition (preprint: Lippert et al, 2014) on

the normalized expression matrix (three time-points combined) to

assess the proportion of gene expression variation explained by cis

genetic variation (defined here as sum of cis and (cis × environment)

components from LIMIX), population structure (trans genetic varia-

tion) and time/environment. 30UTR variant index (utr3_variant_in-

dex) was used to approximate 30UTR sequence variation across DGRP

lines and also to control for potential effect of mappability bias on

gene expression variation (since expression was quantified from 30-
Tag-seq data). It was calculated using the following formula: (total

number of variants in gene’s 30UTR × mean allele frequency of vari-

ants) / total width of 30UTR peaks. The variant counts and variant

allele frequencies were obtained from the DGRP freeze2 vcf file

(Huang et al, 2014), considering only the 75 lines used in this study.

The presence of eQTL (with_eQTL) indicates whether a gene has asso-

ciated expression QTL identified in Cannavò et al (2017) on the same

expression dataset, which is also used in this study.

GC-content
GC-content was calculated using bedtools-2.27.1 nuc software

(Quinlan & Hall, 2010) for nucleotide sequences of genes (gene_gc)

and regions of �100/+50 bp around gene TSS annotations from

Flybase v6.13 (tss_gc).

14 of 24 Molecular Systems Biology 16: e9539 | 2020 ª 2020 The Authors

Molecular Systems Biology Olga M Sigalova et al



Pausing index, promoter shape and promoter motifs
Polymerase II pausing index (defined as the density of polymerases

in the promoter region divided by the gene body) in Drosophila

melanogaster embryos was taken from Saunders et al (2013).

Promoter shape index was taken from Schor et al (2017). The

index was calculated following the methodology from Hoskins et al

(2011). In brief, promoter shape index is the Shannon entropy of the

TSS distribution within a promoter:

SI ¼ 2þ
XL

1

pilog2pi;

where p is the probability of observing a TSS at base position i

within the promoter, L is the set of base positions that have at

least one TSS tag, and TSS positions were identified using the

aggregated CAGE signal for all time-points and 81 fly lines from

the Drosophila Genetic Reference Panel (DGRP) at three develop-

mental time-points (Schor et al, 2017). For each gene, we used the

promoter shape index of the most expressed TSS cluster (ma-

jor_shape_ind). Promoters of genes were classified as broad if the

shape index of the most expressed TSS was below �1, and narrow

otherwise (shape). The threshold is based on the bimodality of

shape index distribution and was defined in the original publica-

tion (Hoskins et al, 2011). If any of alternative TSSs of a gene had

shape different from the most expressed one, alt_shape feature

took value of 1 (and 0 otherwise).

Position weight matrixes (PWMs) for 8 core promoter motifs

(Ohler et al, 2002; Ohler, 2006) were scanned in �100/+50-bp

region around annotated TSSs from Flybase v6.13 using fimo-4.11.3

software (Grant et al, 2011) with uniform background (–bgfile –

uniform–), no reverse complement (–norc) and default P-value

threshold (1e-4). Motifs were first scanned for the 50-most TSS of

each gene (start coordinate of genes in Flybase v6.13 annotation)

and referred to as “ohler_maj.motif_name” (e.g. ohler_maj.TATA

for TATA-box; 0/1 for motif absence/presence, respectively). In

addition, motifs were scanned for TSSs of all transcripts for each

gene (start coordinates of transcripts in gff annotation). If a motif

was predicted for some of the transcript TSSs but not for the gene

TSS, then the corresponding feature ohler_alt.motif_name was given

a value of 1, otherwise 0.

DNase hypersensitive sites
DNase hypersensitive sites (DHSs) in Drosophila melanogaster

embryos were identified in J.P. Reddington, D.A. Garfield, O.M.

Sigalova, K. Aslihan, C. Girardot, R. Marco-Ferreres, R.R. Viales, J.F.

Degner, U. Ohler & E.E.M. Furlong (unpublished data). The experi-

ment was conducted at five developmental time-points in whole

embryo (2–4, 4–6, 6–8, 8–10 and 10–12 h after fertilization) and with

tissue sorting (mesoderm/ myogenic mesoderm, neuroblasts/post-

mitotic neurons and other (double negative) at all time-points except

2–4 h; bin-positive (VM+) and bin-negative (VM�) mesoderm

(marker for visceral muscles) at 6–8 h). This resulted in 19 experi-

ments, which we refer to here as DHS conditions. Peaks called in all

experiments were combined in a single table, and for each DHS,

conditions when the site was accessible were recorded. Coordinates

of DHSs from the combined table were lifted over from dm3 to dm6

genome version using UCSC liftOver-5.2013 tool (Kent et al, 2002).

DHS standard deviation (also referred here as regulatory plasticity)

was defined in J.P. Reddington, D.A. Garfield, O.M. Sigalova, K.

Aslihan, C. Girardot, R. Marco-Ferreres, R.R. Viales, J.F. Degner, U.

Ohler & E.E.M. Furlong (unpublished data). Standard deviation was

calculated on DHS signal across time and tissues (all DHS conditions

except 2–4 h, VM+ and VM- DHS) after applying variance-stabilizing

transform from DESeq2 (Love et al, 2014).

For each gene, we quantified a number of features related to

DHSs in TSS-proximal (� 500 bp of TSS from gene annotation,

feature class TSS) or TSS-distal (more than 500 bp and less than

10kB around annotated TSS, feature class Distal regulators)

regions:

• Number of conditions with DHS (num_dhs_conditions.prox and

num_dhs_conditions.dist) is the number of conditions (out of 19

in total) when there was a DHS detected in TSS-proximal or TSS-

distal region, respectively.

• DHS tissue profile (dht_tissue_profile.prox and dhs_tissue_pro-

file.dist) summarizes accessibility profile across tissues and takes

the following values: (i) DHS present only in sorted tissues (any

of mesoderm, neuroectoderm and double negative), (ii) present in

whole embryo (WE), (iii) both in WE and in tissues.

• DHS time profile (dhs_time_profile.prox and dhs_time_pro-

file.dist) reflects accessibility profile across developmental time-

points: (i) DHS present only at early developmental time-points

(2–4, 4–6 or 6–8 h after fertilization), (ii) present only at late

developmental time-points (8–10 or 10–12 h after fertilization),

(iii) present in at least one early and late time-point.

• The presence of ubiquitous DHS (dhs_ubiq.prox and dhs_ubiq_-

dist) indicates the presence of ubiquitously accessible DHS in the

corresponding genomic region. We consider DHS as ubiquitous if

it was present in all three tissues at four developmental time-

points where tissue sorting was done (12 conditions in total).

• Number of DHSs (num_dhs_any.prox and num_dhs_any.dist) is

the total number of non-overlapping DHSs in the corresponding

intervals present in any of the 19 conditions.

DNA-binding proteins
Two hundred and eighty embryonic ChIP-seq datasets for various

DNA-binding proteins (referred to as transcription factors (TFs) for

simplicity though not all of them have reported transcription factor

activity) were downloaded from modERN database (Kudron et al,

2018). Of note, for several TFs, ChIP-seq data are available either

for several developmental time-points (Trl at 0–24, 8–16 and 16–

24 h after fertilization) or for several experimental setups (chif-RA-

GFP and chif-RB-GFP). When more than one dataset was available

for a TF, they were included independently. For the analysis, we

used peaks called according to the methodology from the original

publication (IDR threshold of 0.01, optimal set). ChIP-seq peaks

were overlapped with DHSs (single-base pair overlap required)

using findOverlaps function from GenomicRanges package in R

(Lawrence et al, 2013) resulting in 280 binary variables (1/0 for

presence/absence of each TF) for each DHS. These data were then

summarized for each gene’s TSS-proximal and TSS-distal region

resulting in the following variables:

• The presence of TF peak in TSS-proximal DHSs (280 variables

with name format like modERN.tf_name.prox) and TSS-distal

DHSs (280 variables with name format like modERN.tf_-

name.dist); 1—peak present (any number of occurrences),
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0—peak absent.

• Total number of different TF peaks (max. 280) overlapping TSS-

proximal (num_tf_peaks.prox) and TSS-distal (num_tf_peaks.dist)

DHSs.

Transcription factor motifs
Three hundred and sixty-one PWMs for Drosophila melanogaster

TF-binding motifs were downloaded from CISBP database (Weir-

auch et al, 2015). PWMs were scanned in the sequences of DHSs

resized to 200 bp using fimo-4.11.3 (Grant et al, 2011) with uniform

background (–bgfile –uniform–), with reverse complement (default),

and default P-value threshold (1e-4). 343 PWMs with matches in

our dataset were then assigned to 360 TFs using CISBP motif anno-

tation (a few motifs were assigned to multiple genes) resulting in

360 binary variables corresponding to presence/absence of individ-

ual TF motifs. Similar to TF peaks, these data were then summa-

rized for each gene’s TSS-proximal and TSS-distal region resulting

in the following variables:

• The presence of TF motif in TSS-proximal DHSs (360 variables

with name format like cisbp.tf_name.prox) and TSS-distal DHSs

(360 variables with name format like cisbp.tf_name.dist); 1—

motif present (any number of occurrences), 0—motif absent.

• Total number of different TF motifs overlapping TSS-proximal

(num_tf_motifs.prox) and TSS-distal (num_tf_motifs.dist) DHSs.

Chromatin colours
Annotation of chromatin states (five states) was taken from Filion

et al (2010). Coordinates of genomic regions assigned to different

colours were lifted over from dm3 to dm6 genome version using

UCSC liftOver-5.2013 tool (Kent et al, 2002) and overlapped with

DHS coordinates. For each DHS, overlap with any of the colours by

at least 1 bp was recorded. The results were aggregated by gene into

five TSS-proximal (i.e. color_green.prox) and five TSS-distal (i.e.

color_green.dist) binary features indicating presence/absence of the

corresponding states.

Annotated enhancers
We used several datasets of annotated enhancers from the following

sources:

• Combined set of CAD4 enhancers (curated in-house list from vari-

ous sources) and Vienna tiles (Kvon et al, 2014) lifted over to

dm6 genome version;

• Combined set of cis-regulatory modules (CRMs) of mesoderm TFs

(Zinzen et al, 2009) and cardiac TFs (Junion et al, 2012) lifted

over to dm6 genome version.

Both datasets were first overlapped with DHS table, and the

number of annotated enhancer elements in TSS-proximal and TSS-

distal regions was added to the feature table following the same

approach as above (features num_cad4_vienna_enh.prox, num_-

cad4_vienna_enh.dist, num_heart_meso_crm.prox and num_-

heart_meso_crm.dist).

30UTR features
Position weight matrixe of micro-RNAs (miRNAs) from miRBase

(Kozomara & Griffiths-Jones, 2014; Kozomara et al, 2019) and RNA-

binding proteins (RBPs) from CISBP-RNA (Ray et al, 2013) were

downloaded from MEME v4 (Bailey et al, 2009) motif databases

(466 and 54 DNA-encoded PWMs from miRBase and CISBP-RNA,

respectively). 30UTRs were defined as the regions comprised

between a major cleavage site (as defined above) and the closest

annotated stop codon. PWMs were scanned in nucleotide sequences

of the 30UTRs using fimo-4.11.3 (Grant et al, 2011) with uniform

background (–bgfile –uniform–), no reverse complement (–norc)

and default P-value threshold (1e-4). Features for motif occurrences

were named mirbase.motif_name and cisbp_rna.motif_name for

miRNA and RBP motifs, respectively. The feature took a value of 1

for a gene if the corresponding motif was predicted for any of the

annotated 30UTRs of a gene, and 0 otherwise. The total number of

unique miRNA and RBP motifs per gene was counted and included

as num_mirna and num_rbp features, respectively.

Lists of genes that are putative targets of Pumilio (embryonic and

adult data) and Smaug (embryonic data) RBPs were obtained from

Gerber et al (2006) and Chen et al (2014), respectively.

For each gene, we calculated the mean UTR length at different

time-points as the weighted mean UTR length between UTR

isoforms (only 10–12 h 30UTR lengths were used in the final feature

table). We used the polyA site expression as weights in the mean

calculation. Since length of 30UTR was highly correlated with gene

length (Spearman’s correlation q = 0.62), utr3_length feature was

calculated as actual 30UTR length divided by gene length. Finally,

30UTR length changes (log2 fold change) between different time-

points (10–12 h vs. 6–8 h, 6–8 h vs. 2–4 h, and 10–12 h vs. 2–4 h)

were calculated for each gene (utr3_l2fc_10vs6, utr3_l2fc_6vs2 and

utr3_l2fc_10vs2 features).

Genomic context features
The insulation score (ins_score_2_4 h and ins_score_6_8 h) was

calculated based on Hi-C in-house data (unpublished) for Drosophila

melanogaster embryos at 2–4 and 6–8 h after fertilization (in-nucleus

ligation, whole embryo). To assign insulation scores to genes, we

assigned the value of the nearest annotated TSS to each gene.

Coordinates of topologically associated domains (TADs) were

taken from the high-resolution Hi-C in Kc cells from Ramı́rez et al

(2018) and Hi-C in 2- to 4-h embryos (in-house data, unpublished).

Each gene was then assigned to TAD from the two aforementioned

annotations based on its TSS coordinate, and distance to TAD

border and TAD size were recorded (dist_to_tad_border.ramirez,

dist_to_tad_border.2_4 h, tad_size.ramirez and tad_size.2_4 h,

respectively).

Gene density was calculated as number of genes in � 1,000 bp

and � 20 kB from the TSS of each gene (num_genes.prox and

num_genes_dist, respectively) based on Flybase v6.13 genome

annotation.

Broad and narrow indices
Broad and narrow indices were calculated based on the subset of

features from the feature table. The broad index was composed of

the following features (all TSS-proximal): number of conditions with

DHS (num_dhs_conditions.prox), number of TF peaks (num_tf_-

peaks.prox) and number of TF motifs (num_tf_motifs.prox). The

narrow index was composed of the following features: number of

TSS-distal DHSs (num_dhs_any.dist), number of miRNA motifs

(num_miRNA) and Pol II pausing index (PI). All features were first

converted to ranks (random order for ties). Indices were calculated

as simple averages of the corresponding features.
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Measuring expression level and variation in human tissues

Genome version
We used Ensembl GRCH37/hg19 genome version downloaded from

UCSC table browser (Kent et al, 2002; Haeussler et al, 2019)

throughout the analysis. Sex chromosomes and non-standard chro-

mosomes were removed from all subsequent analyses. For selecting

the main transcript per gene, we used GRCH37/hg19 genome anno-

tation downloaded from Ensembl website (Cunningham et al,

2019).

Quantifying expression level and variation
Gene expression matrix (raw read counts) was downloaded from

the GTEx Portal V7 (Lonsdale et al, 2013). Gene read count

matrices per tissues were produced using GTEx sample details

downloaded from GTEx website. Tissues with more than 100

samples (43 tissues in total) were chosen for further analysis

(Dataset EV9). For each tissue, genes with 0 median counts were

removed and expression counts were normalized using size

factor normalization form DESeq2 package in R (Love et al,

2014). Median expression levels were calculated for each gene in

each tissue and converted to log scale (natural logarithm) for

subsequent analysis.

Next, we removed the top 5% of genes by median expression

level as potential outliers, following the same reasoning as for

Drosophila. Since distributions of gene expression in all tissues had

long left tails, we set additional stringent threshold on lowly

expressed genes (minimum median log-transformed normalized

count of 5).

Gene expression variation was calculated on the final set of

genes for each tissue following the same approach as for Drosophila;

namely, gene expression variation was defined as the residuals from

the local polynomial regression of coefficient of variation (CV) on

the median expression (on the log scale, loess function in R from

stats library, span = 0.25 and degree = 1). Gene expression levels

and variations in all tissues are provided in Dataset EV10.

Mean expression variation for each gene was calculated as the

mean of expression variations in all tissues where a gene was

expressed (using final per-tissue tables that passed all filtering

steps). Similarly, mean expression level was calculated by comput-

ing the mean of median expression levels in all tissues where a gene

was expressed. Mean expression variation calculated in this way

exhibited weak dependence on mean expression level (Spearman’s

correlation q = �0.11). To control for this effect, we also calculated

“global mean variation” as the LOESS residuals of the mean CV on

the mean expression level (calculated as above). This measure was

highly correlated with mean variation (Appendix Fig S6) and

showed similar results in the downstream analysis (results not

shown).

Feature tables for human dataset

Only TSS-proximal features and several gene properties (i.e. gene

length and number of transcripts) were used to predict expression

level and variation in human. The full list of features used in this

analysis is provided in Dataset EV11. Most of the TSS-proximal

features (TF peaks and chromatin states) were scanned in

the �500/+500 bp of the main TSS of the genes (referred to as

TSS-proximal regions), following the same approach as for Droso-

phila. Several features more strictly linked to the gene core

promoters (promoter shape, TATA-box, CpG islands and promoter

GC-content) were scanned in �300/+200 bp of the main TSS of

the genes (referred to as core promoter regions).

Gene properties
Number of transcripts, gene length, mean exon length, number of

exons and exon length mean absolute deviation were calculated for

each gene directly using hg19 genome annotation from Ensembl

website (Cunningham et al, 2019). Transcript width was calculated

for each transcript using the same file, and length of the main tran-

script was assigned to each gene.

Promoter shape
CAGE data for 31 tissues (library size of about 10 M mapped reads

or above, Dataset EV12) were downloaded from FANTOM5 project

(Lizio et al, 2015) using CAGEr package in R (Haberle et al, 2015).

On each dataset, we separately did a power-law normalization (Bal-

wierz et al, 2009) using CAGEr package. TSSs with low count

numbers (less than 5 counts) were removed. Next, we applied

simple clustering method (distclu, maximum distance = 20) form

CAGEr package on each dataset separately. Clusters with low

normalized CAGE signal (sum of TSSs normalized signals of the

cluster below 10–50 depending on the tissue) were removed. CAGE

clusters were then assigned to genes by overlapping them with core

promoter regions (�300/+200 bp around TSSs of all annotated tran-

scripts). Clusters that did not overlap any core promoters were

removed.

Next, we defined promoter shape for all CAGE clusters by using

two commonly accepted metrics: promoter width and promoter

shape index. Promoter width was calculated by using the inter-

percentile width of 0.05 and 0.95 following methodology from

Haberle et al (2015). Promoter shape index (SI) was calculated by

the formula as above (Drosophila section) proposed in Hoskins et al

(2011).

For classifying promoters into broad and narrow types based on

promoter width, we used the following approach: first, we did a

linear transformation of promoter width values (actual value minus

1 divided by 10; for fitting a gamma distribution). On the trans-

formed data, we fitted a gamma mixture model (2 gamma distribu-

tion), and parameters were trained using an EM algorithm

(Dempster et al, 1977) implemented in the mixtools package in R

(Benaglia et al, 2009). The threshold for classifying promoters as

broad or narrow was selected by finding the point which best sepa-

rates the two distributions. Following this approach, promoters with

width above 10–15 bp were classified as broad, which was consis-

tent across all tissues and agreed with earlier studies (FANTOM

Consortium and the RIKEN PMI and CLST (DGT) et al, 2014). To

classify promoters into broad/narrow using shape index, we fitted

Gaussian mixture model (2 Gaussian distribution) to the data and

selected the threshold separating the two distributions using the

same approach as above. For the subsequent analysis, we used

promoter width feature since it showed a more clear bimodal distri-

bution in all tissues (example in Appendix Fig S7A–C) and is a more

common metric in the analysis of mammalian promoters (Carninci

et al, 2006; FANTOM Consortium and the RIKEN PMI and CLST

(DGT) et al, 2014).
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Each gene was then assigned the promoter width of its main tran-

script. If more than one CAGE cluster was present for a gene’s main

transcript, the cluster with the highest normalized CAGE signal was

selected. Promoter width values for most of the genes were highly

correlated across tissues (Appendix Fig S7D). Based on the tissue-

specific shape data, we calculated two aggregated features for each

gene. Mean promoter width (mean_promoter_width feature) was

calculated as the mean of gene promoter widths in all tissues where it

had CAGE signal (passing the filtering criteria defined above). The

share of tissues where a gene had broad promoter (percent_of_broad

feature) was calculated for each gene by dividing the number of

tissues where the gene had a broad promoter by the total number of

tissues where the gene had a CAGE signal.

TATA-box motif
TATA-box motif coordinates were obtained from the PWMTools

web server (Ambrosini et al, 2018): JASPAR CORE 2018 vertebrates

motif library (Khan et al, 2018), P-value cut-off of 10-4, GRCh37/

hg19 genome assembly. Motif coordinates were overlapped with

gene core promoter regions (�300/+200 bp), and number of over-

laps for each gene was recorded (TATA_box feature).

Transcription factors
Transcription factor dataset (444 TFs, peaks with motifs, hg19

genome) was obtained from Vorontsov et al (2018). If several data-

sets were available for the same TF, the dataset with the best quality

was selected. For each TF, the corresponding feature was calculated

by overlapping the TF regions and gene TSS-proximal regions

(�500/+500 bp) and counting the number of overlaps for each

gene.

Chromatin states
Chromatin state dataset (chromHMM core 15-state model with five

marks and 127 epigenomes; Ernst and Kellis (2017)) was down-

loaded from the Epigenomics Roadmap project (https://egg2.

wustl.edu/roadmap/web_portal/chr_state_learning.html). We

considered 26 tissues (Dataset EV13). For each tissue, 15 features

(one for each state, e.g. TssA or TssBiv) were obtained. Each feature

was calculated by overlapping the corresponding state regions and

gene TSS-proximal regions (�500/+500 bp) and counting the

number of overlaps for each region. Finally, aggregated features

(e.g. mean_TssA or mean_TssBiv) were calculated as the mean of

feature values for each state over all 26 tissues.

CpG Islands
CpG island (CGI) data for hg19 were downloaded from the UCSC

Genome browser (Haeussler et al, 2019). For each CGI, these

included CGI length (CpG_Length), number of CpG clusters

(CpGNum) and number of GC dinucleotides (gcNum). The three

corresponding features for each gene were calculated by overlap-

ping CGI regions and gene core promoter regions (�300/+200 bp).

When a gene’s promoter did not overlap any CGI, the three features

were assigned to 0. If multiple overlaps were present, CGI with the

biggest overlap was considered for each gene.

Promoter GC-Content
Promoter GC-content (GC_content) was calculated by using

biostring package (Pagès et al, 2019) and BSgenome.

Hsapiens.UCSC.hg19 v1.4.0 in R in gene core promoter regions

(�300/+200 bp).

Compiling final feature tables
We collated three tissue-specific datasets for lung, muscle and ovary

by combining the above promoter features and tissue-specific

expression data (Datasets EV14–EV16). These tables included three

types of features:

• Tissue-specific features (promoter width and chromatin states);

• Features aggregated across tissues (mean promoter width,

percentage of broad and mean chromatin states; see above);

• Non-tissue-specific features (all other features, e.g. TATA-box or

TF peaks)

These tables included genes that were expressed and had CAGE

signal (passing the above filtering criteria in both datasets) in the

corresponding tissues. For muscle tissue, the “Skeletal muscle

male” dataset was used for tissue-specific chromatin states. The

fourth feature table included only non-tissue-specific and aggregated

features along with mean expression level and variation (Dataset

EV17). This table is comprised of genes that are expressed and had

CAGE signal in a least one of the analysed tissues. Expression varia-

tion was adjusted for the expression level on these final sets of

genes in each table (see above).

Essential genes, drug targets and GWAS catalogue
Essential genes (essential in multiple cultured cell lines based on

CRISPR/Cas screens; Hart et al (2017)) and drug targets (FDA-

approved drug targets (Wishart et al, 2018) and drug targets

according to Nelson et al (2012)) were downloaded from the

Macarthur Lab Repository (https://github.com/macarthur-lab/gene_

lists). The GWAS dataset was downloaded from EBI GWAS cata-

logue (Buniello et al, 2019). Genes with GWAS associations within

upstream regions or downstream regions were considered. These

gene annotations were used in Fig 6F and Appendix Fig S8C, but

not included in the prediction models. These gene annotations are

provided in Dataset EV10.

Predicting expression level and variation

Random forest models for Drosophila embryos
Feature selection was done with the Boruta algorithm implemented

in R (Kursa & Rudnicki, 2010) with the following parameters: P-

value = 0.01, maxRuns = 500; Z-scores of mean decrease accuracy

measure as importance attribute; Ranger implementation of random

forest regression. Feature selection was done separately for several

tasks: (i) predicting expression variation; (ii) predicting expression

level (log-transformed values); (iii) predicting promoter shape

index; and (iv–v) predicting expression variation and level in broad

and narrow promoter genes separately. Median feature importance

from 500 iterations was used as feature importance metrics. All

features selected in at least one of the five settings listed above are

provided in Dataset EV4 with the corresponding importance. Only

selected features were used in random forest predictions and all

downstream analysis.

For predicting expression level and variation, we ran random

forest regressions using the mlr package in R (Bischl et al, 2016) with

Ranger implementation of random forest (Wright & Ziegler, 2017);
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default parameters: num.trees = 500, mtry = square root of the

number variables. Model performance was reported with coefficient

of determination (R2) based on fivefold cross-validation (Fig 1D).

Random forest models for human tissues
As above, we used random forest regression to predict expression

level and variation in three tissues (lung, ovary and muscle; Data-

sets EV14–EV16), as well as mean expression level and variation

(Dataset EV17). Feature selection and random forest regression were

performed in the same way and with the same parameters as for

Drosophila dataset. Boruta feature selection algorithm was used to

select important features predictive of expression level (log-trans-

formed) and expression variation in each of the four datasets.

Feature importance scores are reported in Dataset EV18. Random

forest regressions were run on the sets of selected features for the

corresponding datasets. Model performance was reported with coef-

ficient of determination (R2) based on fivefold cross-validation

(Fig 6A for performance in all four datasets).

Testing robustness of the random forest models

Robustness tests for Drosophila dataset
We have run the following models to test robustness of our predic-

tions to various potential confounding factors:

1 Binning genes by their median expression level into five quan-

tiles and rerunning variation prediction for each quantile sepa-

rately (Fig 1E);

2 Predicting alternative variation measures (see above):

resid_sd, resid_mad, resid_iqr and sd_vst (Appendix Fig S2D);

3 Binning genes by their median expression change between 10–

12 and 6–8 h after fertilization into five quantiles and rerun-

ning variation prediction for each quantile separately

(Appendix Fig S2E);

4 Binning genes by their promoter shape index into four quar-

tiles and rerunning variation prediction for each quartile sepa-

rately (Fig 3B).

5 Training and predicting on different chromosomes (or chromo-

some arms), e.g. leaving out all genes on chr3L for testing the

model trained on all other genes (Appendix Fig S2F).

For these tests, random forest regressions were run with the

same parameters as above and on the set of features selected for the

variation prediction on the full set of genes. The performance of the

models was measured with R2 on the fivefold cross-validation in

chromosomes (arms) 1–4 and on the holdout chromosome (arm) 5.

Robustness tests on human datasets
Since human gene expression datasets from GTEx project contain

high sample heterogeneity (different ages, sexes, reasons of death,

etc.), we have rerun prediction models on the following subsets of

individuals (using sample metadata from GTEx website) for the lung

tissue expression dataset:

• Only 20- to 39-year-old individuals;

• Only 40- to 59-year-old individuals;

• Only 60- to 79-year-old individuals;

• Only males;

• Only females

• Only violence group (as the reason of death);

• Only non-violence group (as the reason of death)

Gene expression variation and level were recalculated on the

corresponding subsets of samples using the same methodology as

above. Random forest regressions were rerun with the same param-

eters as above and on the set of features selected for the variation

prediction on the full set of samples. Performance of the models

was measured with R2 on the fivefold cross-validation

(Appendix Fig S8A).

Collecting differential expression datasets in Drosophila

For the stress response experiments, we used lists of differentially

expressed genes from Moskalev et al (2015). All experiments were

conducted in adult Drosophila melanogaster flies (five-day-old

males) and included the following stress condition: ento-

mopathogenic fungus infection (10 CFU, 10 CFU), ionizing radiation

(144 Gly, 360 Gly, 864 Gly), starvation (16 h) and cold shock (+4°C,

0°C, �4°C). In total, 1,356 out of our final set of 4,074 genes were

detected as differentially expressed in at least one of the above

stress conditions (DE) versus 2,718 non-DE genes.

For genetic perturbation experiments, we collected data from 53

differential expression studies with genetic perturbations in Droso-

phila (three datasets from the laboratory with mutated TFs involved

in mesoderm formation and 50 datasets from Expression Atlas).

Information about the collected datasets with PubMed IDs (PMID)

of the corresponding publications was added as Dataset EV8. In

total, there are 136 differential expression datasets for Drosophila

deposited on Expression Atlas. For collecting data from Expression

Atlas, we used the following criteria:

• Consider studies where the “Experimental factor” field includes

keywords “genotype”, “phenotype”, “genetic modification” or

“RNAi” to identify studies that include a genetic perturbation.

• Use absolute log2 fold change of 1 and FDR of 5% to define dif-

ferentially expressed genes (default from Expression Atlas website)

• Only include datasets with at least 300 differentially expressed

genes defined as specified above

• Exclude one dataset with more than 8,000 differentially expressed

genes out of ~12 thousand quantified (E-GEOD-28728) and two

datasets where outlier samples are driving the signal (E-MEXP-

1179 and E-GEOD-3069).

For each study, we took all differentially expressed (DE) genes

(union of conditions, if multiple conditions were tested) and

compared variation of DE versus non-DE genes in our set of genes

using Cohen’s d as the measure of effect size and P-value from

Wilcoxon rank test (results provided in Dataset EV8). In total, 3,946

out of 4,074 genes in our final set were detected as differentially

expressed in at least one experiment, and 889 genes were differen-

tially expressed in more than 10 studies.

Predicting differential expression in Drosophila

To test how well a model trained on expression variation can

predict differential expression, we reformulated the variation
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prediction into a classification task to predict the top 30%

(class = 1) versus bottom 30% (class = �1) of genes ranked by

their expression variation (our embryonic dataset) and used the

trained model to predict DE (class = 1) versus non-DE genes

(class = �1) from the stress response dataset. To avoid having the

same genes in test and train sets, we undertook the following

approach: Randomly sampled 50% of DE genes (678) and the

same number of non-DE genes were set aside for the test set.

From the remaining genes (after excluding test set—either all

2,718 genes or only genes with narrow promoters), the top 30%

(class = 1) and bottom 30% (class = �1) of genes ranked by

expression variation were used for training. The model was

trained using random forest classification with default parameters

(mlr package; Ranger implementation of random forest; default

parameters: num.trees = 500, mtry = square root of the number

variables). Training was performed on the features important for

predicting expression variation on the full set of genes (see above,

Dataset EV4) for expression variation. Testing was done on the

same set of features for differential expression (1 for DE, �1 for

non-DE). Performance on the test set was assessed by area under

the ROC curve (AUC). Ten rounds of random sampling of genes

were performed, and mean AUC was reported (Fig 5D).

For predicting differential expression in genetic perturbation

experiments, we assigned genes detected as DE in more than 10

datasets to class 1 and genes DE in 0–10 datasets to class �1 and

used the same approach as described above

Predicting differential expression prior in humans

Differential expression prior data (DE Prior rank) were obtained

from Crow et al (2019). Ensembl ids were converted to entrez ids

by using BioMart package in R (Durinck et al, 2009).

We had information on both DE prior and mean variation

(average of 43 tissue-specific variations across individuals; see

above) for 11,312 human genes. As above, we reformulated the

variation prediction into a classification task to predict the top

30% (class = 1) versus bottom 30% (class = �1) of genes ranked

by their expression variation and used the trained model to

predict top 30% (class = 1) versus bottom 30% (class = �1) of

genes ranked by DE prior. Training and testing were performed

on the set of features predictive of mean expression variation

(Dataset EV18). Training and testing were done on the non-over-

lapping sets of genes using the following approach: first, we

defined top prior (top 30% by DE prior) and bottom prior genes

(bottom 30% by DE prior). Fifty percent of genes from both

groups were randomly sampled and assigned to the test set.

From the remaining genes, top 30% and bottom 30% of genes

by mean expression variation were selected for the training set.

The model was trained to classify top versus bottom variable

genes (random forest classification with default parameters; mlr

package in R, Ranger implementation of random forest). The

trained model was then used on the test set to predict top versus

bottom DE prior genes. Similarly, another model was trained and

tested on classifying top versus bottom DE prior genes on the

same training and test sets, respectively. Performance of the

models on the test set was assessed by AUC. Ten rounds of

random sampling of genes were performed, and mean AUC was

reported (Fig 6D).

Statistical data analysis and visualization

Data analysis in R was done using base, stats, MASS, rcompanion,

psych, tidyverse, magrittr, data.table, ltm, yaml, Boruta, mlr,

Ranger, GenomicRanges, DEseq2, CAGEr and rtracklayer packages.

All plots were done in R using ggplot2, ggpubr, gridExtra, ggExtra,

RColorBrewer and pheatmap libraries. Contour lines in Fig 2B–E

represent 2D kernel density estimations (geom_density_2d with

default parameters). P-values on the plots (Figs 2B–E, 4A–C, 5B and

C, F–H, and 6C, E, F, Appendix Figs S3B and C, S4A–F, S5B–J) come

from Wilcoxon rank test. Whiskers on the plots (Figs 1C–E, 2F, 3B,

and 6A, Appendix Figs S2C and D, and S8A) indicate one standard

deviation around the mean. In all boxplots (Figs 2B–E, 4A–C, 5B–C,

F–H, and 6C and E, Appendix Figs S1F, S3B and C, S4A–F, and S5B–

J), the central line corresponds to median, the lower and the upper

hinges correspond to the first and the third quartiles, and the upper

and lower whiskers extend from the hinge to the largest/smallest

value at most 1.5 IQR (distance between the first and the third quar-

tiles), respectively. All boxplots and violin plots were generated

with geom_boxplot and geom_violin function from ggplot2.

Effect sizes
Effect sizes for mean comparisons between groups of genes were

estimated using Cohen’s d (cohen.d in R from psych library, default

parameters), defined as difference between two means divided by

the pooled standard deviation. Empirical thresholds for Cohen’s d of

0.2, 0.5 and 0.8 proposed in Cohen (1988) can be used to define

small, medium and large effects, respectively. For boxplots and

density plots comparing different gene groups, we report absolute

values of Cohen’s d in figure legends. In Fig 5E, actual values of

Cohen’s d are plotted on the x-axis (values above 0 indicate higher

expression variation of differentially expressed genes compared to

non-differentially expressed).

Correlation analysis
Generally, we used the Spearman coefficient of correlation (R base)

for comparing pairs of continuous variables or discrete variables

taking more than two values (e.g. expression variation and

promoter shape index or expression variation and conservation

rank). In some cases, we used the Pearson correlation coefficient (R

base) to compare variables that are on the same scale, e.g. expres-

sion variations at different time-points (Appendix Fig S1D) and

expression variation upon subsetting of samples (Fig 1C). Finally,

point-biserial correlation coefficient (R, ltm library) was computed

between continuous and binary variables (e.g. expression variation

and presence of TATA-box motif). Median expression levels were

log-transformed before computing correlation.

Gene Ontology enrichments
Gene Ontology (GO) enrichment tests were performed using clus-

terProfiler package in R (Yu et al, 2012). We used compareCluster

function (P-value cut-off = 0.01) to find enriched biological

processes (Fig 3C) and molecular functions (Appendix Fig S3A) in

genes grouped by their promoter shape and expression variation.

All genes from our final dataset (4,074) were used as background

for GO enrichments. Genes with broad and narrow promoters were

each split into four quantiles by their expression variation (x-axis

labels in Fig 3C and Appendix Fig S3A indicate quantiles: from low
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(1) to high (4) variation). Quantile intervals for broad promoter

genes (1 to 4): [�1.06,�0.444]; (�0.444,�0.266];

(�0.266,�0.0754]; (�0.0754,1.89]. Quantile intervals for narrow

promoter genes (1 to 4): [�0.98,�0.173]; (�0.173,0.0751];

(0.0751,0.416]; (0.416,1.99]. Full results of GO enrichment tests are

provided in Dataset EV6.

Fisher’s tests
We used Fisher’s exact test (R base package) to find enrichments of

features in different gene groups in Drosophila dataset (broad,

narrow-low and narrow-high). All tests were done for 2 × 2 contin-

gency tables, and odds ratios and P-values provided by the test were

recorded. We applied Benjamini–Hochberg correction to adjust P-

values for the multiple testing and used an adjusted P-value thresh-

old of 0.01 to define significantly enriched or depleted features.

For the analysis in Fig 3A, we tested enrichment of housekeeping

genes, transcription factors and TATA-box promoter motifs in the

following pairwise comparisons: (i) broad versus narrow, (ii)

narrow-low versus two other groups, and (iii) harrow-high versus

two other groups. P-values were corrected for the number of tests (9

comparisons).

For the analysis in Fig 4C, we tested enrichments of ChIP-seq

peaks of 24 transcription factors in the TSS-proximal regions in the

same comparisons as above. Twenty-five TSS-proximal TF features

selected by the Boruta algorithm, including two ChIP-seqs for Trl

(in embryos at 8–16 and 16–24 h after fertilization) from which the

one with the overlapping time window was used (8–16 h). Since

ChIP-seq peaks were first overlapped with DHSs before assigning to

genes (see Features section above), we restricted the analysis of TF

enrichments to the genes that have at least one DHS in their TSS-

proximal regions. P-values were corrected for 72 comparisons

(24*3). Log2-transformed odds ratios from these tests are shown in

Fig 4C heatmap, actual values are provided in Dataset EV5.

Peaks of Trl and Jarid2 showed enrichments in both narrow-low

and narrow-high genes (stronger enrichment in narrow-low;

Fig 4C), which likely comes from strong depletion of these TFs at

the TSSs of broad promoter genes. To control for that, we also tested

enrichments of the same 24 TF peaks in three comparisons between

gene groups: (i) broad versus narrow-low, (ii) broad versus narrow-

high, and (iii) narrow-low versus narrow-high (also 72 comparisons

for P-value correction).

Results from all Fisher’s tests described above are provided in

Dataset EV5.

Data availability

Code used to generate the results is available at https://git.embl.de/

sigalova/regulation_of_expression_variation. Expression variation,

feature tables and result summaries are provided in Datasets EV1–

EV18. Other datasets used to generate results can be provided upon

request.

Expanded View for this article is available online.
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