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Abstract

For the past five years, genome-wide association studies (GWAS) have identified hundreds of common variants associated
with human diseases and traits, including high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol
(LDL-C), and triglyceride (TG) levels. Approximately 95 loci associated with lipid levels have been identified primarily among
populations of European ancestry. The Population Architecture using Genomics and Epidemiology (PAGE) study was
established in 2008 to characterize GWAS–identified variants in diverse population-based studies. We genotyped 49 GWAS–
identified SNPs associated with one or more lipid traits in at least two PAGE studies and across six racial/ethnic groups. We
performed a meta-analysis testing for SNP associations with fasting HDL-C, LDL-C, and ln(TG) levels in self-identified
European American (,20,000), African American (,9,000), American Indian (,6,000), Mexican American/Hispanic (,2,500),
Japanese/East Asian (,690), and Pacific Islander/Native Hawaiian (,175) adults, regardless of lipid-lowering medication use.
We replicated 55 of 60 (92%) SNP associations tested in European Americans at p,0.05. Despite sufficient power, we were
unable to replicate ABCA1 rs4149268 and rs1883025, CETP rs1864163, and TTC39B rs471364 previously associated with HDL-
C and MAFB rs6102059 previously associated with LDL-C. Based on significance (p,0.05) and consistent direction of effect, a
majority of replicated genotype-phentoype associations for HDL-C, LDL-C, and ln(TG) in European Americans generalized to
African Americans (48%, 61%, and 57%), American Indians (45%, 64%, and 77%), and Mexican Americans/Hispanics (57%,
56%, and 86%). Overall, 16 associations generalized across all three populations. For the associations that did not generalize,
differences in effect sizes, allele frequencies, and linkage disequilibrium offer clues to the next generation of association
studies for these traits.
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Introduction

Since its introduction in 2005, the genome-wide association

study (GWAS) design has become a powerful tool in human

genetics to identify single nucleotide polymorphisms (SNPs) asso-

ciated with common diseases or traits using an experimental

design that does not require a priori biological knowledge. As of

September 2010, greater than 1,000 SNPs across the genome have

been reported as genome-wide significant (p#561028) for 165

traits [1]. An early analysis of the GWAS-reported SNPs demon-

strated that most identified variants were intergenic or intronic [2],

suggesting either novel biology or that the functional variant has

yet to be found.

While GWAS have been successful in identifying novel asso-

ciations, there are several limitations. First, the majority of GWAS

have been conducted in populations of European-descent. There

are several GWAS in populations of Asian-descent, and GWAS

are just emerging for other populations such as African Americans

[3–20], Mexican Americans/Hispanics [9,20–26], and American

Indians [27]. It is possible that novel associations await discovery

in these populations given the differing linkage disequilibrium (LD)

patterns when compared with populations of European-descent

[28]. Second, much work is needed to test SNPs discovered in

case-control studies in more population-based, representative

cohorts to determine if the associations generalize. Data on gen-

eralization will inform future fine-mapping [29] and discovery

studies as well as provide clues to whether GWAS-identified SNPs

are simply tagSNPs or are more likely to be true functional SNP(s).

A major goal of the Population Architecture using Genomics

and Epidemiology (PAGE) study is to determine whether GWAS-

identified variants generalize to diverse groups drawn from popu-

lation-based studies [30]. Generalization is defined here as a

significant association (p,0.05, uncorrected for multiple testing) in

a non-European population and a direction of genetic effect in the

same direction as that of European Americans. In PAGE, variants

identified in GWAS and well replicated in multiple studies are

chosen for targeted genotyping in hundreds to thousands of Euro-

pean Americans (,20,000), African Americans (,9,000), Amer-

ican Indians (,6,000), Mexican Americans/Hispanics (,2,500),

Japanese/East Asians (,690), and Native Hawaiians/Pacific

Islanders (,175). All samples are linked to extensive demographic,

health, and exposure data, making the PAGE study a rich resource

for post-discovery generalization and characterization for common

human diseases and traits.

We present here PAGE study data on the replication and

generalization for 49 SNPs associated with three common lipid

traits: low-density lipoprotein cholesterol (LDL-C), high-density

lipoprotein cholesterol (HDL-C), and triglycerides. Each of these

three traits has numerous GWAS published in European ancestry

individuals [30–43] but only a handful published in other popu-

lations (such as Asians [44] and Micronesians [45]). Additional

data are just now emerging from large sample sizes of diverse

populations for generalization [32,46–51] and fine-mapping [52]

of these lipid GWAS-identified SNPs. We demonstrate that the

majority of the targeted GWAS-identified SNPs replicate in Euro-

pean Americans in PAGE and that many generalize to diverse

populations. Both power and LD are explored as explanations of

non-generalization, highlighting the complexities involved in pro-

perly interpreting results of even robust genetic associations such

as these.

Results

Study population characteristics
The PAGE study sites are diverse across multiple variables

(Table 1 and Table S1). Together, the PAGE study consists of

several populations: European Americans, African Americans,

Mexican Americans/Hispanics, American Indians, Japanese/East

Asians, and Native Hawaiians/Pacific Islanders. All PAGE study

sites except WHI ascertained both men and women. Participant

age varies widely across PAGE. For example, CHS ascertained on

average older adults (median age = 74 and 72 years for Euro-

pean and African Americans, respectively), CARDIA ascertained

younger adults (median age = 26 and 24.5 years for European and

African Americans, respectively), and NHANES ascertained all

ages of adults (18 years to 90 years; median age = 51, 39, and 40

years for European, African, and Mexican Americans, respective-

ly). In addition to demographic differences, lifestyles and health

differed across the PAGE study sites by population, including

lipid lowering medication use and current smoking status. More

Japanese participants ascertained by MEC reported lipid lowering

medication use compared with other populations ascertained by

other PAGE study sites: 38.3% versus ,5–10%. American Indians

from the Dakotas reported more smoking (42.2–47.8%) than other

American Indians (25–33%) or other PAGE study site populations

(6.3% to 35.3%). The differences in demographics, lifestyle, and

health characteristics observed across the PAGE study sites and

populations are reflected in the three traits studied here (Table S1).

Given the diversity observed across the PAGE study sites, we

performed all tests of association for HDL-C, LDL-C, and

triglycerides unadjusted, minimally adjusted (for age and sex), and

adjusted for various demographic, lifestyle, and health variables.

Genetics of Lipid Traits in PAGE
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Allele frequencies
Coded allele frequencies are presented in Table 2, Table 3,

Table 4 and in Figure S1, by population. We calculated the

Pearson correlation coefficient (r) and FST between European

American coded allele frequencies and all other groups. The

highest correlation was observed in the comparison with Mexican

Americans/Hispanics (0.97) followed by American Indians (0.92),

Native Hawaiians/Pacific Islanders (0.90), Japanese/East Asians

(0.87), and African Americans (0.84). Compared with European

Americans, the proportion of SNPs with FST values greater than

0.15 was smallest in Mexican Americans/Hispanics (0/49 SNPs)

and largest in African Americans (6/49 SNPs; 12%) followed by

Japanese/East Asians (5/46 SNPs, 11%). FST values were small for

the remaining populations compared to European Americans,

with 3% and 7% of SNPs with FST values greater than 0.15 for

American Indians and Native Hawaiians/Pacific Islanders,

respectively.

A striking example of population differences in allele frequencies

is FADS1 rs174547. The T allele of FADS1 rs174547 is the major

allele in three populations (allele frequency = 0.66, 0.91, and 0.59

in European Americans, African Americans, and Japanese/East

Asians, respectively), but is the minor allele in the other three

populations (allele frequency = 0.39, 0.21, and 0.42 in Mexican

Americans/Hispanics, American Indians, and Native Hawaiians/

Pacific Islanders, respectively). Compared to European Americans,

FST for this SNP was largest in American Indians (0.34) followed

by African Americans (0.15).

We also compared allele frequencies between the various PAGE

study sites, within each racial/ethnic group. As demonstrated in

Figure S2, the allele frequencies of European Americans, African

Americans, and Mexican Americans/Hispanics do not differ

substantially across PAGE studies (allele frequencies differ by less

than 60.10). In contrast, over half of the SNPs genotyped in

American Indians had allele frequency differences greater than

60.10, with three SNPs with allele frequencies that differed by

more than 60.25. Comparisons are more difficult in Japanese/

East Asians and Native Hawaiians/Pacific Islanders, as many

SNPs were genotyped by only one PAGE study in these two

racial/ethnic groups.

Replication in European-descent populations
We meta-analyzed tests of association for 27, 19, and 14 SNPs

previously associated with HDL-C, LDL-C, and/or triglycerides,

Table 1. Characteristics of PAGE study populations.

EAGLE MEC WHI CALiCo

ARIC CARDIA CHS SHS

Type of Study Cross-sectional NestedCase
Control

Cohort and
Clinical Trials

Longitudinal Longitudinal Longitudinal Longitudinal

Focus of Cohort N/A Cancer* Women’s
Health

Cardiovascular
Disease

Cardiovascular
Disease

Cardiovascular
Disease

Cardiovascular
Disease

Years Collected 1991–1994,
1999–2002

1993–1996 1993–1998 1987–2007 1986–2006 1989–1999 1988–present

Median Age 43 67 63 54 25 73 47

Age Range 18–90 48–86 50–79 44–66 18–35 64–96 14–93

% Women 54 36 100 57 56 62 59.3

Race/Ethnicity(nmax)

European Americans 3,909 317 4,688 11,178 2,134 2,787 –

African Americans 1,896 552 1,840 3,770 2,035 550 –

American Indians – – 113 – – – 6,021

Mexican Americans 2,361 299 762 – – – –

Japanese/East Asian – 576 251 – – – –

NativeHawaiian/PacificIslander – 87 113 – – – –

*Only controls (cancer-free participants) from the overall nested case-control study were included in this lipids study.
Epidemiologic Architecture for Genes Linked to Environment (EAGLE); Multiethnic Cohort (MEC); Women’s Health Initiative (WHI); Causal Variants Across the Life Course
(CALiCo); Atherosclerosis Risk in Communities (ARIC); Coronary Artery Risk Development in Young Adults (CARDIA); Cardiovascular Health Study (CHS); Strong Heart
Study (SHS).
doi:10.1371/journal.pgen.1002138.t001

Author Summary

Low-density lipoprotein cholesterol (LDL-C), high-density
lipoprotein cholesterol (HDL-C), and triglyceride (TG) levels
are well known independent risk factors for cardiovascular
disease. Lipid-associated genetic variants are being dis-
covered in genome-wide association studies (GWAS) in
samples of European descent, but an insufficient amount
of data exist in other populations. Therefore, there is a
strong need to characterize the effect of these GWAS–
identified variants in more diverse cohorts. In this study,
we selected over forty genetic loci previously associated
with lipid levels and tested for replication in a large
European American cohort. We also investigated if the
effect of these variants generalizes to non-European
descent populations, including African Americans, Amer-
ican Indians, and Mexican Americans/Hispanics. A majority
of these GWAS–identified associations replicated in our
European American cohort. However, the ability of
associations to generalize across other racial/ethnic
populations varied greatly, indicating that some of these
GWAS–identified variants may not be functional and are
more likely to be in linkage disequilibrium with the
functional variant(s).

Genetics of Lipid Traits in PAGE
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respectively, across European American populations collected by

individual PAGE study sites (Table S2). For HDL-C, 23 of the 27

(85%) SNPs tested were associated at p,0.05 assuming an

additive genetic model and adjusting for age and sex (Figure 1

and Table 2). The four SNPs that did not replicate at this liberal

significance threshold were rs471364 (TTC39B), rs1883025

(ABCA1), rs4149268 (ABCA1), and rs1864163 (CETP), all of

which are intronic (Table S2). For LDL-C, only one (intergenic

MAFB rs6102059) of the 19 SNPs tested was not significantly

associated at p,0.05 (Figure 1 and Table 3). Finally, for ln(TG),

all 14 SNPs tested were associated at p,0.05 (Figure 1 and

Table 4).

Figure 1. Meta-analysis results for GWAS–identified SNPs by population. Each SNP was tested for an association with the indicated trait
assuming an additive genetic model adjusted for age and sex. Meta-analysis was performed, and p-values (2log10 transformed) of the meta-analysis
are plotted along the y-axis using Synthesis-View [73,74]. SNP location is given on the x-axis. Each triangle represents a meta-analysis p-value for each
population. Populations are color-coded as follows: European Americans (blue; EA), African Americans (red; AA), Mexican Americans/Hispanics
(orange; MA/H), and American Indians (purple; AI). Large triangles represent p-values at or smaller than genome-wide significance (p,1028). The
direction of the arrows corresponds to the direction of the beta coefficient. The significance threshold is indicated by the red bar at p = 0.05.
doi:10.1371/journal.pgen.1002138.g001
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Of the associations that did not replicate in the European-

descent populations from PAGE, four out of five had sufficient

power (.80%) to detect the previously reported effect size:

TTC39B rs471364 (.99% power; HDL-C), CETP rs1864163

(80% power; HDL-C); MAFB rs6102059 (.90% power; LDL-C),

and ABCA1 rs4149268 (99% power; HDL-C). ABCA1 rs1883025,

which did not replicate the expected association with HDL-C, did

not have sufficient power to detect the reported effect size (68%

power; n = 3,865).

We then compared the genetic effect sizes reported in the

literature to the genetic effect sizes estimated from the meta-

analysis of these population-based studies. We observed that the

majority of the point estimates of effect size (b) were smaller than

previously reported estimates. Using the HDL-C association

results as an example, 15 out of the 23 (65%) significant associa-

tions had effect estimates smaller than published effect estimates.

We caution, however, that we did not formally test for significant

differences between estimates and that these smaller effect esti-

mates may or may not be significantly different than the published

reports. However, it is interesting to note that 11 of our effect

estimates differed from previous reports by more than 25%,

including two HDL-C associations whose effect sizes differed by

50% or more from those in the literature (ANGPTL4 rs2967605

and MLXIPL rs17145738; Table 2 and Table S2).

Associations in non-European–descent populations
We meta-analyzed tests of association performed in African

Americans for the same 27, 19, and 14 SNPs previously associated

with HDL-C, LDL-C, and/or triglycerides in populations of

European-descent. For all three traits studied, assuming an addi-

tive genetic model and adjusting for age and sex, approximately

half of the tested GWAS-identified SNPs were associated at

p,0.05: 12/27 (44%) for HDL-C, 11/19 (58%) for LDL-C, and

8/14 (57%) for ln(TG) (Figure 1, Figure S3, Table 2, Table 3,

Table 4, Table 5). The majority of SNPs that failed to replicate in

the meta-analysis for European Americans also failed to associate

in the meta-analysis for African Americans. Interestingly, one SNP

(CETP rs1864163) was significantly associated with HDL-C in

African Americans (n = 451; CAF = 0.27; b= 22.79; p = 6.1961023)

but not in European Americans (n = 291; CAF = 0.23; b= 22.07;

p = 0.13).

Other populations that were examined for select SNPs included

American Indians, Mexican Americans/Hispanics, Japanese/East

Asians, and Native Hawaiians/Pacific Islanders. Among American

Indians, 9/21 (43%), 10/14 (71%), and 10/13 (77%) of the SNPs

tested for association with HDL-C, LDL-C, and ln(TG), respec-

tively, were associated at the liberal significance threshold of

p,0.05. For Mexican Americans/Hispanics, 14/27 (52%), 10/19

(53%), and 12/14 (86%) SNPs were significantly associated at

p,0.05 with HDL-C, LDL-C, and ln(TG), respectively. Despite a

small sample size, intronic CETP rs1864163 was significantly

associated with HDL-C in Mexican Americans/Hispanics (n =

265; CAF = 0.28; b= 22.98; p = 1.7861022) but not in European

Americans (n = 291; CAF = 0.27; b= 22.07; p = 0.13), although

the size and the direction of effect were similar. Venn diagrams

representing the overlap of significant associations across the four

major PAGE populations are presented in Figure S3.

The sample sizes for Japanese/East Asians and Native Hawai-

ians/Pacific Islanders are considerably smaller compared with the

other populations examined. Despite the lower power to detect

associations, significant associations were observed for both groups

at a liberal significance threshold of p,0.05. Among the 26, 18,

and 13 SNPs tested for associations with HDL-C, LDL-C, and

ln(TG), respectively, there were nine (35%), three (17%), and three

(23%) SNPs significantly associated in the combined Japanese/

East Asian group.

For Native Hawaiians/Pacific Islanders, the group with the

smallest sample size considered here, one SNP each was associated

with HDL-C (APOA1/C3/A4/A5 gene cluster rs28927680) and

LDL-C (APOB rs754523) out of the 24 and 18 SNPs tested for

association, respectively. Three out of 12 SNPs tested for an

association with ln(TG) were associated at p,0.05 (PLTP rs7679,

MLXIPL rs17145738, and APOA1/C3/A4/A5 gene cluster rs289

27680), with the latter at a significance of p,10219.

Generalization across non-European–descent populations
For the 55 SNP-trait associations that replicated in European

Americans, we determined which associations generalized across all

Table 5. Observed versus expected number of significant associations, by trait and population.

Trait Race/Ethnicity
# of Total Tests
of Association*

# of Observed
Significant Associations

# of Expected Significant
Associations{ P-value{

HDL-C AA 23 11 17.3 0.01

AI 20 9 14.4 0.01

MA/H 23 13 13.8 0.83

LDL-C AA 18 11 14.7 0.03

AI 14 10 11.9 0.15

MA/H 18 10 10.6 0.81

ln(TG) AA 14 8 11.9 0.01

AI 13 10 8.4 0.56

MA/H 14 12 10.4 0.54

The expected number of significant associations was based on power calculations assuming an additive genetic model and liberal significance threshold (0.05) in each
racial/ethnic group for each test of association. We further assumed the observed genetic effect size (beta) from PAGE European Americans and the observed allele
frequency, sample sizes, and trait mean/standard deviations from each non-European American population.
*Only includes associations that replicated in EA.
{Based on the additive power of all loci.
{One-sample binomial test.
African Americans (AA); American Indians (AI); Mexican Americans/Hispanics (MA/H); number (#).
doi:10.1371/journal.pgen.1002138.t005
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four of our largest populations (European Americans, African

Americans, American Indians, and Mexican Americans/Hispanics).

Generalization was based on two criteria: 1) level of significance (i.e.

p-value) and 2) direction of effect (i.e. positive or negative beta).

SNPs that were significantly associated at p,0.05 and had the same

direction of effect as European Americans in all populations studied

were considered to have generalized. For HDL-C, five SNPs (CETP

rs3764261, LPL rs6586891, LIPC rs4775041, LPL rs2197089, and

APOA1/C3/A4/A5 gene cluster rs3135506) met these criteria, and

two SNPs (LCAT rs2271293 and LPL rs328) were associated in three

groups and trended towards significance in a fourth group (p = 0.06

and p = 0.07 in Mexican Americans/Hispanics and American

Indians, respectively; Table 2).

For LDL-C, six SNPs generalized across all four groups, if

genotyped: APOB rs562338, CELSR2/PSRC1/SORT1 rs599839

and rs646776, PCSK9 rs11591147, HMGCR rs12654264, and

LDLR rs2228671 (Table 3). Similarly for ln(TG), six SNPs were

significantly associated across the four largest populations: APOA1/

C3/A4/A5 gene cluster rs964184 and rs3135506, GCKR rs780094,

LPL rs328, MLXIPL rs1714573, and FADS1 rs174547. In addition,

for ln(TG), two SNPs (LPL rs2197089 and GCKR rs1260326) were

associated in three groups and trended towards significance in a

fourth group (p = 0.07 in African Americans and p = 0.09 in

American Indians, respectively). Among the 17 SNPs that gen-

eralized across the largest groups among the three lipid traits,

only four (24%) were either nonsense (rs328) or missense SNPs

(rs3135506, rs11591147, and rs1260326; Table S2).

Power
Based on our definition of generalization, several SNPs dis-

covered and replicated in European-descent populations failed to

generalize to other populations. There are several possible explana-

tions for non-generalization, including power. To further investigate

potential lack of power, we first performed post-hoc power calcu-

lations assuming an additive genetic model and liberal significance

threshold (0.05) in each racial/ethnic group for each test of associa-

tion. In these power calculations, we further assumed the observed

genetic effect size (beta) from PAGE European Americans and the

observed allele frequency, sample sizes, and trait mean/standard

deviations from each non-European American population. By adding

the power of all tested loci, we estimated the number of expected

significant associations and compared this to the number of observed

significant associations (Table 5).

In general, the number of expected significant associations was

greater than the number observed. African Americans consistently

had fewer significant associations (11, 11, and 8 for HDL-C, LDL-

C, and ln(TG), respectively) than expected (17.3, 14.7, and 11.9

for HDL-C, LDL-C, and ln(TG), respectively) based on power,

regardless of the lipid trait being tested. More specifically, we were

powered to detect in African Americans 17 of the 25 associations

that replicated in European Americans but failed to generalize to

African Americans.

Compared to African Americans, differences between the

observed and the expected number of associations for American

Indians and Mexican Americans/Hispanics were less extreme. In

fact, for ln(TG), more significant associations were detected in these

two populations than the PAGE study was powered to detect (8.4

and 10.4 expected; 10 and 12 observed for American Indians and

Mexican Americans/Hispanics, respectively; Table 5). We were

powered to detect in American Indians nine of the 18 associations

that replicated in European Americans but did not generalize to

American Indians. Similarly, we were powered to detect in

Mexican Americans/Hispanics eight of the 20 associations that

replicated in European Americans but failed to generalize to

Mexican Americans/Hispanics.

Linkage disequilibrium
To examine whether LD can account for the lack of gen-

eralization of the properly powered tests of association in African

Americans, we examined LD patterns in HapMap Europeans

(CEU) and West Africans (YRI) as well as those published in the

literature for the genotyped SNPs and surrounding variation. For

APOA1/C3/A4/A5 rs28927680, previous studies in European-

descent populations have noted that this SNP is in strong LD

(r2 = 0.98) with missense APOA5 rs3135506 [42]. APOA1/C3/A4/

A5 rs964184 is also in moderate LD with missense rs3135506

(r2 = 0.510 in CEU). However, neither rs28927680 nor rs964184

are in LD with missense rs3135506 (r2 = 0.039 and r2 = 0.048) in

YRI. Furthermore, APOA5 rs3135506 is associated with HDL-C

in European Americans, African Americans, Mexican Americans/

Hispanics, and American Indians (Table 1 and Table 2). Gen-

eralization of rs3135506 coupled with non-generalization and

differences in YRI LD patterns for rs28927680 and rs964184

suggest that APOA5 rs3135506 is either the putative functional

SNP for the association with HDL-C or in LD with the functional

SNP. Although the exact mechanism is not yet known, molecular

modeling [53] as well as in vitro [53] and in vivo [54,55] studies

support the epidemiologic evidence that rs3135506 is functional.

Other interpretations of LD patterns are more difficult. For

example, CETP rs9989419, which failed to generalize in African

Americans for HDL-C despite sufficient power, is not in strong LD

with obvious functional SNPs in CEU within 50 kb flanking the

genotyped SNP. The strongest pair-wise LD (r2 = 0.251) consists of

intergenic and intronic SNPs, and these same SNPs have weak LD

(r2,0.03) or are not found in YRI. Similarly, LIPC rs261332

associated with HDL-C levels in European Americans but failed to

generalize in African Americans. LIPC rs261332 is in strong LD

(r2.0.80 in CEU) with SNPs in the 59 flanking region of LIPC, but

not in LD with these same SNPs in YRI (r2,0.15).

Adjustments for exposures and co-morbidities
Genetic variations in isolation are not the sole determinants of

lipid trait distributions. Many environmental exposures and

demographic variables are associated with lipid traits. To account

for these variables, we meta-analyzed all tests of association for

HDL-C, LDL-C, and ln(TG) adjusted for age, sex, body mass

index, current smoking, type 2 diabetes, post-menopausal status,

and current hormone use. Adjustment for these additional cova-

riates did not appreciably alter the results compared with the

models minimally adjusted for age and sex (Figures S4, S5, S6).

Inclusion of previous myocardial infarction as a variable to the

fully adjusted model also did not appreciably alter the results

compared with the minimally adjusted models (Figures S4, S5, S6).

Effect of including versus excluding by medication use
All analyses presented thus far include fasting adult participants

regardless of lipid lowering medication use. Many GWAS con-

ducted for the lipid traits excluded participants on lipid lowering

medication [40,42,43] given that these medications substantially

lower LDL-C levels. We have included these participants for

analysis as participants on lipid lowering medication could repre-

sent the upper extreme of the normal LDL-C distribution asso-

ciated with a genetic profile found in a general population. Exclu-

sion of these participants would preclude these meta-analyses from

fully describing the extent and strength of associations relevant to

these traits in a population-based setting. However, if genetic
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variation is associated with lipid concentrations and medication

use lowers lipid concentrations, inclusion of participants on lipid

lowering medications could bias associations towards the null. As a

sensitivity analysis, WHI used detailed medication data available

on a subset of participants, and performed the tests of association

for HDL-C, LDL-C, and ln(TG) excluding and including parti-

cipants on lipid lowering medication with the latter adjusted for

medication usage using average effects estimated in Wu et al [56]

for specific drug classes. Figure S7 suggests that both the point

estimates and the confidence intervals of the genetic effects are

similar for this female-only study whether participants are ex-

cluded or included and adjusted for medication use.

We also performed a second sensitivity analysis: tests of

association excluding participants on lipid lowering medication

for all models. As detailed in Figures S8, S9, S10, excluding parti-

cipants on lipid lowering medication usage does not appreciably

alter the results, with the possible exception of LDL-C associations

in Japanese/East Asians. More specifically, two SNPs (rs11206510

and rs1501908) became significantly associated with LDL-C after

excluding participants on medications while two other SNPs

(rs562338 and rs6544713) were no longer significantly associated

(Figure S9). The difference in significance for these four tests of

association may be related to lipid lowering medication use;

however, it is more likely due to statistical fluctuations from small

samples sizes (nInclude = 690; nExclude = 467). Also of note, use of

lipid-lowering medications was low (,10%) in the ARIC, CHS,

NHANES, and WHI studies since the majority of study recruit-

ment occurred before the introduction or widespread use of the

recent generation of lipid-lowering medications. Medication use

was higher in the MEC study (20–38% depending on the popu-

lation), which contributed the majority of Japanese/East Asian

samples.

Discussion

We have performed an extensive replication and generalization

effort for HDL-C, LDL-C, and TG GWAS-identified SNPs. The

PAGE study consists of six racial/ethnic groups: European Ameri-

can, African American, Mexican American/Hispanic, American

Indian, Japanese/East Asian, and Native Hawaiian/Pacific Island-

er, with population-specific sample sizes ranging from ,100 to

.20,000 for any one test of association. Although power to detect

associations varied across the lipid traits and populations, we

observed general patterns worth noting for future genetic epide-

miological studies.

Replication in European-descent populations
Perhaps not unexpectedly, we were able to replicate most

reported associations in European Americans. Regardless of sig-

nificance, all but one of the tested SNPs had effect estimates in the

same direction as the previously reported association from the

literature. FADS1 rs174547, which was significantly associated

with decreased ln(TG) in this meta-analysis for European Ameri-

cans, was associated with increased TG in European Americans

from the Framingham Heart Study (n = 7,423) [43]. HDL-C had

proportionally (15%) the greatest number of SNPs that failed to

replicate in European Americans compared with LDL-C (5%) and

TG (0%) despite the fact that we had sufficient power to detect the

reported genetic effect size for many of these tests. TTC39B

rs471364 was not associated with HDL-C levels despite a sample

size of 18,089 and .99% power to detect the reported effect size.

Neither ABCA1 rs4149268 nor rs1883025 was associated with

HDL-C, although the latter test of association was underpowered

(68%; n = 3,865). Finally, as previously discussed, CETP rs186

4163 was not associated with HDL-C in this European American

dataset although we had 80% power to detect the reported genetic

effect size. For LDL-C, only MAFB rs6102059 was not associated

despite .90% power to detect the reported effect size.

The reasons for non-replication in this European American

dataset for properly powered tests of association are unclear. It is

possible that we have overestimated our power to detect reported

associations. The ‘‘winner’s curse’’ and inflated genetic effect

estimates from initial discovery are well known [57,58]. Indeed, for

the five SNPs that did not replicate in this meta-analysis for

European Americans, the association was described in only one

GWAS each despite the fact that numerous GWAS [31,33–43]

and a large meta-analysis [32] for these three traits have been

conducted in populations of European-descent. The meta-analysis

recently reported by Teslovich et al [32] did report significant

associations between TTC39B rs581080 for HDL-C and MAFB

rs2902940 for LDL-C. TTC39B rs581080 is in moderate linkage

disequilibrium (LD) with rs471364 (r2 = 0.49 in CEU HapMap),

but MAFB rs2902940 is not in LD with rs6102059 (r2 = 0.03 in

HapMap CEU).

A second possibility for our observed non-replication is het-

erogeneity among the PAGE studies. Because it is important to

understand the degree to which associations are consistent across

individual studies, we compared directions of effect (betas) across

PAGE study sites for each test of association (Figures S11, S12,

S13) and performed tests of heterogeneity. Association results for

TTC39B rs471364, which meta-analysis result for HDL-C in

European Americans was insignificant, had significant evidence

for heterogeneity across studies (pheterogeneity = 0.048; I2 = 58.25%).

In four of the five PAGE study sites, the association between this

SNP and HDL-C had consistent directions of effect; however, only

one test of association was significant in European Americans

(p = 0.005 in EAGLE; Figure S11). Only two other association

results had evidence for heterogeneity among European Ameri-

cans: FADS1 rs174547 for HDL-C (pheterogeneity = 0.006; I2 =

75.73%) and PCSK9 rs11206510 for LDL-C (pheterogeneity = 0.048;

I2 = 55.34%). However, for both of these loci, the tests of

association were significant in European Americans and had

similar directions of effect in all but one of the PAGE study sites

(Figures S11 and S12).

Generalization to non-European populations
When taking into account power, significance, and direction of

effect, most SNPs discovered in European Americans generalized

to African Americans, Mexican Americans, and American Indians.

Of note are the eleven tests of association significant in European

Americans that did not generalize to African Americans despite

having adequate power. Given that GWAS products are a mixture

of tagSNPs and functional SNPs, it is likely that discovery in

European Americans represents tagSNPs rather than the true

functional SNP. Because linkage disequilibrium patterns differ

across populations, tagSNPs genotyped directly in populations

of non-European descent may not recapitulate the association

observed in European-descent populations depending on the

pattern of LD. The association of HDL-C and nonsynonymous

rs3135506 versus tagSNPs rs28927680 in the APOA1/C3/A4/

A5gene cluster in this analysis is an example of the effects of LD and

the ability to generalize across populations.

Evoking LD as an explanation for lack of generalization is

appealing, but it does have limitations given that the functional

SNP is not often obvious. All tests of association that did not

generalize to African Americans had evidence of LD differences

between CEU and YRI using the HapMap data. However, most

of these SNPs are located in the intergenic and intronic regions.
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Further fine-mapping in both the discovery population as well as

other diverse populations will be needed along with a better

understanding of genetic variation and its relationship to biological

function to identify the true functional SNPs for these traits.

Among the five putative functional SNPs genotyped (nonsynon-

ymous rs11591147, rs1260326, rs3135506, and rs1800961 and

nonsense rs328), all five replicated in populations of European-

descent, and three of the five generalized to populations of non-

European descent. One putative functional SNP that did not

replicate across populations was HNF4A rs1800961, likely due to

low power because of the very low minor allele frequency in all

subpopulations (0.0065 to 0.0398). Both the direction and mag-

nitude of effect, however, were consistent across groups. GCKR

rs1260326 did not generalize to all populations of non-European

descent but did generalize in three of the four populations tested

and trended towards significance in American Indians (p = 0.085;

Table 4).

Limitations and strengths
The major strengths and limitations of the PAGE study for

lipids are sample size and diversity. The largest sample size is for

samples of European-descent (,20,000), followed by African

Americans and American Indians. The sample sizes for Mexican

Americans, Japanese/East Asians, and Pacific Islanders/Native

Hawaiians are smaller and consequently underpowered for tests of

association as estimated from genetic effect sizes in the published

European-descent discovery studies. Also, not all SNPs were

genotyped in all PAGE studies, further affecting the power of the

meta-analyses.

An additional limitation is the lack of data related to lipid

lowering medication. Ideally, all analyses would be adjusted for

use of lipid lowering medication based on the type and dose of

medication. In most PAGE studies, these data were not available

and in many, use was low at baseline when blood samples were

obtained. As we demonstrate in Supplementary material, inclusion

of participants using lipid-lowering medication did not appreciably

alter the results of the meta-analysis when compared with

excluding these participants. While this finding may be useful for

future studies, we caution that the majority of participants in this

study were not on lipid lowering medications.

In general, the cohorts and surveys included in PAGE are

diverse with regard to demographics, genetic ancestry, lifestyle,

health, and environmental exposure. Despite this diversity, very

few tests of association from the meta-analysis exhibited evidence

of heterogeneity.

Conclusions
Overall, the majority of GWAS-identified SNPs for HDL-C,

LDL-C, and TG replicated in European Americans and genera-

lized to non-European-descent populations. These results suggest

that the genotyped SNP either tags the functional SNP(s) common

across these populations or that the genotyped SNP represents the

risk SNP directly. SNPs that replicated in European Americans

but did not generalize in the largest non-European-descent popu-

lations, despite adequate power, could represent priority associa-

tions that require fine-mapping and re-sequencing to identify the

functional variant(s).

Materials and Methods

Study populations and phenotypes
All studies were approved by Institutional Review Boards at their

respective sites (details are given in Text S1). PAGE study samples

were drawn from four large population-based studies or consortia:

EAGLE (Epidemiologic Architecture for Genes Linked to Envi-

ronment), based on three National Health and Nutrition Exami-

nation Surveys (NHANES) [59–61], the Multiethnic Cohort (MEC)

[62], the Women’s Health Initiative (WHI) [63,64], and Causal

Variants Across the Life Course (CALiCo), a consortium of several

cohort studies: Atherosclerosis Risk in Communities Study (ARIC)

[65], Coronary Artery Risk in Young Adults (CARDIA) [66],

Cardiovascular Health Study (CHS) [67], Strong Heart Family

Study (SHFS) [68], and Strong Heart Cohort Study (SHS) [69]

(Table 1). The PAGE study design is detailed in Matise et al [30].

Serum HDL-C, triglycerides, and total cholesterol were mea-

sured using standard enzymatic methods. LDL-C was calculated

using the Friedewald equation [30,70], with missing values assigned

for samples with triglyceride levels greater than 400 mg/dl. For

PAGE study sites with longitudinal data, the baseline measurement

was used for analysis. A full description of each study, along with

population-specific study characteristics, is presented in Text S1 and

Table S1.

SNP selection and genotyping
All SNPs considered for genotyping were previously associated

with HDL-C, LDL-C, and/or triglycerides in published (as of

2008) candidate gene and genome-wide association studies. A total

of 52 SNPs were targeted for genotyping by two or more PAGE

study sites. There is no overlap between samples used in this study

and samples used in GWAS from which the SNPs were selected.

The 52 targeted variants are located in or nearby 32 different

genes/gene regions, with 12 of the gene/gene regions represented

by two or more SNPs. Five SNPs are nonsynonymous, one SNP is

a nonsense variant, and two SNPs are synonymous; the remainder

are located in introns, flanking, or intergenic regions. The full list

of targeted SNPs, their locations, and their previously associated

lipid trait can be found in Table S2.

Cohorts and surveys were genotyped using either commercially

available genotyping arrays (Affymetrix 6.0, Illumina 370CNV

BeadChip), custom mid- and low-throughput assays (TaqMan,

Sequenom, Illumina GoldenGate or BeadXpress), or a combina-

tion thereof. Quality control was implemented at each study

site independently. In addition to site-specific quality control, all

PAGE study sites genotyped 360 DNA samples from the Inter-

national HapMap Project and submitted these data to the PAGE

Coordinating Center for concordance statistics [71]. Study specific

genotyping details are described in Text S1. Of the 52 targeted

SNPs, three (CETP rs1800775, APOE rs429358, and APOE rs7412)

failed at all PAGE study sites that attempted genotyping; therefore,

a total of 49 SNPs were tested in this analysis.

Statistical methods
All tests of association were performed by each PAGE study site

using the same analysis protocol prior to meta-analysis. The study

protocol excluded participants ,18 years of age as well as non-

fasting samples (defined here as ,8 hours). When triglyceride level

was the dependent variable, participants with .1,000 mg/dl were

excluded from analyses. Triglyceride (TG) levels were natural-log

transformed (ln) prior to analysis.

Linear regression was performed for fasting adults regardless

of lipid lowering medication use with HDL-C, LDL-C, or

ln(TG) as the dependent variable and a SNP as the independent

variable, assuming an additive genetic model, stratified by

race/ethnicity. The coded allele is reported in Table 2, Table 3,

Table 4. The beta estimate is per additional copy of the coded

allele. For each SNP, four models were considered: 1)

unadjusted, 2) adjusted for age (continuous in years) and sex,

3) adjusted for age, body mass index (continuous in kg/m2),
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current smoking (yes/no; binary), type 2 diabetes (yes/no;

binary), post-menopausal status (yes/no for females only;

binary), and current hormone use (yes/no for females only;

binary), and 4) adjusted for age, body mass index, current

smoking, type 2 diabetes, post-menopausal status, current

hormone use, and previous myocardial infarction (yes/no;

binary). All PAGE study sites (except for WHI, which is female

only) stratified models 3 and 4 by sex given the sex-specific

variables (post-menopausal status and hormone use) prior to

meta-analysis. Select PAGE study sites also included study site

or site of ascertainment as a covariate in all models. Results

from Model 2 (adjusted for age and sex) are reported in the

main text while results from Models 1, 3, and 4 are presented in

Figures S4, S5, S6. Model 2 excluding participants on lipid-

lowering medications are presented in Figures S8, S9, S10.

Meta-analyses, using a fixed-effects inverse-variance weighted

approach and tests for effect size heterogeneity across studies, were

performed using METAL [72]. P-values were not adjusted for

multiple testing, and association results were plotted using Syn-

thesis-View [73,74], where indicated. Power calculations were

performed using Quanto [75,76] assuming unrelated participants,

an additive genetic model, the published effect size from Euro-

pean-descent populations listed in Table S1, and the population-

specific allele frequencies listed in Table 2, Table 3, Table 4.

Linkage disequilibrium was calculated using HapMap European

(CEU) and West African (YRI) data accessed through the Genome

Variation Server. FST was calculated using the Weir and Cocker-

ham algorithm [77]. Aggregate data from the meta-analysis as well

as individual tests of association from each PAGE study site will be

made available via dbGaP [30,78].

Web resources
NHGRI GWAS Catalog (www.genome.gov/GWAStudies).

Genome Variation Server (pga.gs.washington.edu).

Synthesis-View (http://chgr.mc.vanderbilt.edu/ritchielab/method.

php?method = synthesisview).

Supporting Information

Figure S1 Coded allele frequency, by population. The coded allele

frequency (CAF) is plotted for each of the 49 SNPs by population

using Synthesis-View [73,74]. The populations include European

Americans (EA), African Americans (AA), Mexican Americans/

Hispanics (MA/H), American Indians (AI), Japanese/East Asians (J/

EA), and Native Hawaiians/Pacific Islanders (NH/PI).

(DOCX)

Figure S2 Coded allele frequency across PAGE study sites, by

population. The coded allele frequency (CAF) is plotted for each of

the 49 SNPs by population using Synthesis-View [73,74]. The

studies include: Atherosclerosis Risk in Communities (ARIC),

Coronary Artery Risk in Young Adults (CARDIA), Cardiovascu-

lar Heart Study (CHS), Epidemiologic Architecture for Genes

Linked to Environment (EAGLE), Multiethnic Cohort (MEC),

Women’s Health Initiative (WHI), Strong Heart Community

Study (SHCS), and Strong Heart Family Study (SHFS) in Arizona

(AZ), Oklahoma (OK) and South Dakota (SD).

(DOCX)

Figure S3 Venn diagrams representing the overlap of significant

associations (p,0.05) across the four major PAGE populations

(European Americans, African Americans, Native Americans, and

Mexican Americans/Hispanics, for the three lipid traits (HDL-C,

LDL-C, and TG).

(DOCX)

Figure S4 Comparison of unadjusted, minimally adjusted,

adjusted models for HDL-C, by population. Results of tests of

association for four regression models are plotted: model 1

(unadjusted), model 2 (adjusted for age and sex; and site of

ascertainment for select PAGE studies), model 3 (adjusted for age,

sex, body mass index, current smoking, type 2 diabetes, post-

menopausal status, and current hormone use), and model 4 (model

3 with the addition of previous myocardial infarction). Each SNP

was tested for an association with HDL-C. Meta-analysis was

performed, and p-values (2log10 transformed) of the meta-analysis

are plotted along the y-axis. SNP location is given on the x-axis.

Each triangle represents a meta-analysis p-value for each popula-

tion. Models are color coded. Large triangles represent p-values at

or smaller than genome-wide significance (p,1028). The direction

of the arrows corresponds to the direction of the beta coefficient.

The exact beta coefficients are reported on the bottom panel. The

significance threshold is indicated by the red bar at p = 0.05.

(DOCX)

Figure S5 Comparison of unadjusted, minimally adjusted,

adjusted models for LDL-C, by population. Results of tests of

association for four regression models are plotted: model 1 (un-

adjusted), model 2 (adjusted for age and sex; and site of ascer-

tainment for select PAGE studies), model 3 (adjusted for age, sex,

body mass index, current smoking, type 2 diabetes, post-meno-

pausal status, and current hormone use), and model 4 (model 3 with

the addition of previous myocardial infarction). Each SNP was

tested for an association with LDL-C. Meta-analysis was performed,

and p-values (2log10 transformed) of the meta-analysis are plotted

along the y-axis. SNP location is given on the x-axis. Each triangle

represents a meta-analysis p-value for each population. Models are

color coded. Large triangles represent p-values at or smaller than

genome-wide significance (p,1028). The direction of the arrows

corresponds to the direction of the beta coefficient. The exact beta

coefficients are reported on the bottom panel. The significance

threshold is indicated by the red bar at p = 0.05.

(DOCX)

Figure S6 Comparison of unadjusted, minimally adjusted,

adjusted models for triglyceride concentrations, by population.

Results of tests of association for four regression models are

plotted: model 1 (unadjusted), model 2 (adjusted for age and sex;

and site of ascertainment for select PAGE studies), model 3

(adjusted for age, sex, body mass index, current smoking, type 2

diabetes, post-menopausal status, and current hormone use), and

model 4 (model 3 with the addition of previous myocardial infarc-

tion). Each SNP was tested for an association with triglycerides.

Meta-analysis was performed, and p-values (–log10 transformed) of

the meta-analysis are plotted along the y-axis. SNP location is

given on the x-axis. Each triangle represents a meta-analysis p-

value for each population. Models are color coded. Large triangles

represent p-values at or smaller than genome-wide significance

(p,1028). The direction of the arrows corresponds to the direction

of the beta coefficient. The exact beta coefficients are reported on

the bottom panel. The significance threshold is indicated by the

red bar at p = 0.05.

(DOCX)

Figure S7 Comparison of genetic effect estimates when parti-

cipants are excluded or included based on medication use with

adjustments in WHI. Genetic effect estimates (b) and 95% confi-

dence interval are plotted for each SNP tested for an association.

The tests of association were performed on fasting European

Americans adjusted for age and sex and excluding participants on

lipid lowering medication (blue), including all participants

regardless of medication use (green), and all participants on lipid
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lowering medication, adjusted for the average HDL-C, LDL-C,

and ln(TG) effects estimated by Wu et al [87].

(DOCX)

Figure S8 HDL-C and the effects of lipid lowering medication

use on genetic associations, by population. Comparison of genetic

effects and significance when tests of association are performed

within fasting adults regardless of lipid lowering medication

(Include) versus fasting adults not on lipid lowering medication

(Exclude). All tests of association results shown here are minimally

adjusted for age and sex.

(DOCX)

Figure S9 LDL-C and the effects of lipid lowering medication

use on genetic associations, by population. Comparison of genetic

effects and significance when tests of association are performed

within fasting adults regardless of lipid lowering medication versus

fasting adults not on lipid lowering medication. All tests of asso-

ciation results shown here are minimally adjusted for age and sex.

(DOCX)

Figure S10 Transformed triglycerides and the effects of lipid

lowering medication use on genetic associations, by population.

Comparison of genetic effects and significance when tests of as-

sociation are performed within fasting adults regardless of lipid

lowering medication versus fasting adults not on lipid lowering

medication. All tests of association results shown here are mini-

mally adjusted for age and sex.

(DOCX)

Figure S11 Comparison of HDL-C associations across PAGE

study sites, by population. Results of tests of association for the

various PAGE study sites are plotted (where available) along with

meta-analysis results (META): Atherosclerosis Risk in Communi-

ties (ARIC), Coronary Artery Risk in Young Adults (CARDIA),

Cardiovascular Heart Study (CHS), Epidemiologic Architecture

for Genes Linked to Environment (EAGLE), Multiethnic Cohort

(MEC), Women’s Health Initiative (WHI), Strong Heart Com-

munity Study (SHCS), and Strong Heart Family Study (SHFS) in

Arizona(AZ), Oklahoma (OK) and South Dakota (SD). Each SNP

was tested for an association with HDL-C, adjusted for age and sex

(Model 2), including fasting adults on lipid lowering medications.

SNP location is given on the x-axis and p-values (2log10 trans-

formed) are plotted along the y-axis. Each triangle represents a

p-value for each PAGE study. PAGE study sites are color coded.

Large triangles represent p-values at or smaller than genome-wide

significance (p,1028). The direction of the arrows corresponds to

the direction of the beta coefficient. The exact beta coefficients are

reported on the bottom panel. The significance threshold is indi-

cated by the red bar at p = 0.05.

(DOCX)

Figure S12 Comparison of LDL-C associations across PAGE

study sites, by population. Results of tests of association for the

various PAGE study sites are plotted (where available) along with

meta-analysis results (META): Atherosclerosis Risk in Commu-

nities (ARIC), Coronary Artery Risk in Young Adults (CARDIA),

Cardiovascular Heart Study (CHS), Epidemiologic Architecture

for Genes Linked to Environment (EAGLE), Multiethnic Cohort

(MEC), Women’s Health Initiative (WHI), Strong Heart

Community Study (SHCS), and Strong Heart Family Study

(SHFS) in Arizona(AZ), Oklahoma (OK) and South Dakota (SD).

Each SNP was tested for an association with LDL-C levels,

adjusted for age and sex (Model 2), including fasting adults on

lipid lowering medications. SNP location is given on the x-axis

and p-values (2log10 transformed) are plotted along the y-axis.

Each triangle represents a p-value for each PAGE study. PAGE

study sites are color coded. Large triangles represent p-values

at or smaller than genome-wide significance (p,1028). The

direction of the arrows corresponds to the direction of the beta

coefficient. The exact beta coefficients are reported on the

bottom panel. The significance threshold is indicated by the red

bar at p = 0.05.

(DOCX)

Figure S13 Comparison transformed triglyceride associations

across PAGE study sites, by population. Results of tests of

association for the various PAGE study sites are plotted (where

available) along with meta-analysis results (META): Atherosclero-

sis Risk in Communities (ARIC), Coronary Artery Risk in Young

Adults (CARDIA), Cardiovascular Heart Study (CHS), Epidemi-

ologic Architecture for Genes Linked to Environment (EAGLE),

Multiethnic Cohort (MEC), Women’s Health Initiative (WHI),

Strong Heart Community Study (SHCS), and Strong Heart

Family Study (SHFS) in Arizona(AZ), Oklahoma (OK) and South

Dakota (SD). Each SNP was tested for an association with natural-

log transformed triglyceride levels, adjusted for age and sex (Model

2), including fasting adults on lipid lowering medications. SNP

location is given on the x-axis and p-values (-log10 transformed) are

plotted along the y-axis. Each triangle represents a p-value for

each PAGE study. PAGE study sites are color coded. Large

triangles represent p-values at or smaller than genome-wide sig-

nificance (p,1028). The direction of the arrows corresponds to the

direction of the beta coefficient. The exact beta coefficients are

reported on the bottom panel. The significance threshold is indi-

cated by the red bar at p = 0.05.

(DOCX)

Table S1 Study characteristics by PAGE study and population.

Descriptive statistics for fasting ($8 hours) adults ($18 years of

age) are expressed as percentage, median, and standard deviation

(SD) for each variable.

(DOCX)

Table S2 List of candidate gene and GWAS-identified SNPs

targeted for genotyping in PAGE. For each SNP (denoted by rs

number), we list the chromosomal and genomic location, the

putative function of the SNP (based on SNP location) and the

nearest gene, the number of PAGE studies that genotyped the

SNP, the trait associated with the SNP based on the literature, the

effect allele and effect size based on the literature, and the

reference for these data.

(DOC)

Text S1 Study descriptions.

(DOCX)
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